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I. INTRODUCTION

The purpose of this chapter is to review some properties of isomerizing
(ABC < BCA) and dissociating (ABC — AB + C) prototype triatomic mole-
cules, which are revealed by the analysis of their dynamics on precise ab initio
potential energy surfaces (PESs). The systems investigated will be con-
sidered from all possible viewpoints—quantum, classical, and semiclassical
mechanics—and several techniques will be applied to extract information from
the PES, such as Canonical Perturbation Theory, adiabatic separation of motions,
and Periodic Orbit Theory.

The key quantity in these studies is the strength of the coupling between
reactive coordinates and perpendicular ones, where a coordinate is called
reactive if it leads from reactants to products. The reactive coordinate is
essentially an angle in the case of an isomerizing system and a stretching
coordinate in the case of a dissociating system. The strength of the coupling
between different degrees of freedom obviously depends on the choice of
coordinates. When “natural” sets of coordinates, like valence or Jacobi ones,
are used, it is rather rare that the couplings remain negligible up to the reaction
threshold. In contrast, “optimized” sets of coordinates, which minimize the
couplings between the various degrees of freedom up to and above the reaction
threshold, can be derived rather straightforwardly for a certain number of
isomerizing systems, like HCN « CNH or LiNC « NCLi. Section II describes
in detail a procedure based on Canonical Perturbation T heory, which enables
near-separation of motions for such isomerizing systems. Section II furthermore
discusses vibrationally nonadiabatic tunneling in HCN « CNH, that is, the
effect of remaining small couplings below the top of the adiabatic isomerization
barrier on the shape of the wavefunctions along the perpendicular degrees of
freedom.

For the nearly separable isomerizing systems studied in Section II, it is
sufficient to increase the energy in the reactive degree of freedom to let the
molecule explore the reaction pathway further and further and eventually react
when the deposited energy is larger than the energy of the adiabatic reaction
threshold. Recent studies dealing with the vibrational dynamics of small
molecules (HCP, HOCI, HOBr...) have shown that this is certainly not the case
for systems, which display a pronounced resonance between the reactive degree
of freedom and a perpendicular one. Section III is devoted to the description of
the subtle pattern of bifurcations, which the molecules mentioned above must
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undergo in order to reach the reaction threshold, due to the existence of a
2:1 Fermi coupling between the reactive degree of freedom and perpendicular
ones.

II. NEARLY SEPARABLE ISOMERIZING SYSTEMS

This section describes the dynamics of the isomerizing system HCN « CNH,
for which near-separation of the various degrees of freedom can be achieved. It is
first shown in Section ILA how Canonical Perturbation Theory (CPT) can be
applied to this floppy molecule in order to find “optimized” sets of coordinates,
which minimize the couplings between the various degrees of freedom. Section
ILB further discusses the effects of the remaining small coupling terms on the
tunneling between states with different quantum numbers in the perpendicular
degrees of freedom.

A. Application of Canonical Perturbation Theory
to Floppy Molecules

The basic idea of this section, which collects information scattered in Refs. 1-3,
is to apply several unitary (or canonical) transformations to floppy systems
initially described by ab initio or fitted potential energy surfaces and exact
Kinetic energy operators, in order to rewrite their Hamiltonian in terms of, as
complete as possible, a set of good quantum numbers (or classical constants of
the motion), plus some high-order small coupling terms that are eventually
neglected at the end of the procedure. For HCN < CNH [1,2,4], LINC « LiCN
[5], and C5 [6], a complete separation of motions was actually achieved after the
high-order small coupling terms were neglected: As will be seen below, the final
(or perturbative) Hamiltonian is formally a one-dimensional Hamiltonian in the
bending angle, which is parameterized by the stretch quantum numbers.

The possibility of such a separation of motions is not obvious at all when
looking at the PES of an isomerizing molecule. Figure 1 (left) shows as an
example a two-dimensional cut in the (R, y) plane of the three-dimensional PES
for the HCN «» CNH system obtained by Tennyson and co-workers [7.8]. Ris
the distance between H and the center of mass G of CN, while vy is the HGC
angle (y =0 at the linear HCN configuration). For this figure, the third
coordinate—that is, the distance r between C and N—is fixed to the HCN
equilibrium value of 1.1528 A. Tt is seen that the reaction pathway (or minimum
energy path, MEP), which connects the HCN absolute minimum (at v = 0) to
the CNH relative one (at ¥ = 180°) through the saddle (at y = 80°), displays a
very strong curvature in the (R, y) plane. Consequently, if the Hamiltonian
matrix is built in the basis set constructed as the direct products of the one-
dimensional functions for each Jacobi coordinate, then the couplings between
the vectors of the basis are strong. The first step of the CPT procedure aimed at
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Figure 1. (Left) Two-dimensional cut in the (R, Y) plane of the three-dimensional PES for the
HCN «— CNH system obtained by Tennyson and co-workers [7,8]. R is the distance in A between H
and the center of mass, G, of CN, while y is the HGC angle (y = 0 at the linear HCN configuration,
Y =m at the linear CNH configuration). For this figure, the third coordinate (i.e., the distance r
between C and N) is fixed to the HCN equilibrium value of 1.1528 A. (Right) Same plot, but for
coordinates (Z,0) defined in Eq. (3).

minimizing these couplings consists in developing the initial Hamiltonian in
Fourier series with respect to v along the MEP and in Taylor series with respect
to the stretch coordinates perpendicular to the MEP, in order to rewrite it in
terms of simple operators.

More precisely, let us suppose that the initial Hamiltonian of the system is
written in the form

H=T+V({R,r7y)

1 1 1 1 (1)
7 2. b5 LR W)
2u,p’ * 2ug Prt (2u,r2 + ZuRRz)pY

where p, and pg stand for the reduced masses of C—N and H-CN, respectively, V
is the PES expressed in terms of the Jacobi coordinates, and 7T is the classical
expression of the kinetic energy of a triatomic molecule (we temporarily forget
the additional term, which arises from the fact that the molecule is linear at
equilibrium). Defining a grid y; (i = 1,...,imax) of equally spaced points in ¥,
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such that y; =0 and y; = 180° (inax is usually taken in the range 100-200),
the MEP is first determined as the set of points (Ryzp(Y;), rmep(V;),7v;), where
Ruep(Y) and rygp(y) are solutions of

@@ o
OR Ruyep ruep Y or Rumep rmep,Y

One also calculates by the method of finite differences the vectors R;msp (v;) and
r,'WEP(y,-) of the derivatives of Rygp and rygp with respect to y. For each value v,
the Hamiltonian is then rewritten in terms of the new set of conjugate variables

Z =R — Ryer(v;), Pz = PR
I=r— rMEP(Yi)v P = Pr (3)
0=y, Po=py+ R;WEP(Yi)PR + Mhaep (YD

and expanded in Taylor series with respect to the coordinates Z and z. For each
value of y; one thus obtains a series of the form

HO=7v) =Y howZ""pypp) 4)

m,nN

where m = (m;,m;) and n = (n;,n;). By expanding each vector hE,'l)nN
(i=1,...,imax) in Fourier series with respect to 6 = v and rewriting cos(n0)
in terms of (cos8)", and likewise sin(n0) in terms of (sin 0)(cos 8)", the initial
Hamiltonian H is cast in the form

H=3" huwenZ"™ 2" (cos 8" ply p (sin(0)pe) p3" (5)
m,nM PN

where P = 0 or P = 1. A two-dimensional cut in the (Z, 8) plane of the potential
energy part of this expression is plotted in Fig. 1 (right) for m; + my < 12 and
M < 24. Wilson’s GF formalism [9] is then applied to Eq. (5), in order to rewrite
the Hamiltonian of the system in terms of the dimensionless normal coordinates
(p1,q1) and (ps,q3) for the stretch degrees of freedom (for HCN « CNH,
indexes 1 and 3 stand for the H-CN and C-N stretches, respectively).

At last, a few steps are necessary to make the expansion of Eq. (5) amenable
to quantum CPT procedures: The dimensionless normal coordinates for the
stretch degrees of freedom are expressed in terms of the ladder operators

@=%m+mx ¢=%w‘w> (6)



272 MARC JOYEUX ET AL.

where i = —1 and k = 1,3 (the convention % = 1 is assumed throughout the
manuscript), while p3 is replaced by the operator J2, where

1 d d 1@
2 _ _ - MG -~
7= 050" %~ oy ae? @)

and ¢ describes the rotation of the molecule around the axis with the smallest
moment of inertia. One obtains

H= " Huurn(ai)™ (@)" (af)™ (as)" (cos0)" " (/H)Y  (8)

mnM PN

where o stands for the differential operator sin0/06. Note that all of the
operators that appear in Eq. (8) have simple matrix elements in the bases of the
harmonic oscillator and of the spherical functions. Note also that symmetrization
of Eq. (8), which is made necessary by the canonical transformations of Eq. (3),
is postponed to an ulterior step (see below).

Following Van Vleck [10] Jordah! [11], and Kemble [12], the CPT procedure
itself consists of a series of unitary transformations of increasing order s
(s=1,2,3,..)

K = exp(S)H exp(—S) 9)

where the initial operator H at order s = 1 is the expansion of Eq. (8) and the
transformed Hamiltonian K obtained at order s serves as the initial operator H at
order s + 1. The operator S, which appears in this equation, is anti-Hermitian.
Reference to the current perturbation order s (in the form of subscripts or
superscripts) will not be used, in order to avoid too complex notations. For the
same reason, no artificial small parameter A is introduced. The basic idea of CPT
is to expand, at each order s, H, and K in the form

H HO

e I[V]s

I
o

(10)

K k@

where the H¥) and K¥) become smaller and smaller with increasing values of the
order i. Actually, the ordering of the successive operators H (at s > 1) and K (at
s > 1) is uniquely determined by the ordering of the initial operator H at order
s = 1—that is, of Eq. (8). The choice of H® is particularly important, because
the ability to solve the cohomology equation (see below) depends crucially on
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this choice. Moreover, the number of terms to handle, and therefore the size of
the required computer memory, depends on the ordering of the other Hs
(i > 0). The best choice consists in retaining in H®, at first order of the
theory, only the sum of the harmonic oscillators for the stretch degrees of
freedom, that is,

H(O) = Z coia;rai (11)

i=13

while the terms with m; + m3 + ny +n3 + P + 2N = k are retained in H® if
M # 0and in H*=2) if M = 0. An exception occurs for the pure bending terms in
J% and (cos 0), which are retained in H(!) rather than H%), in order to satisfy Eq.
(11). Each term H*) is then symmetrized independently.

If one further assumes that, at order s of the perturbation procedure, the
operator S is of the same order of magnitude as H® and K®, then the
relationship between the K and the H®) is simply obtained by expanding
the exponential operators in Eq. (9) and equating the terms of the same order.
One gets

fi<s,  K9=HY
ifi=s,  KY=HY4+]s, H(°>]

If i > s, K9 = H ’)4_2 H{’”)] ]

n umes

In the last equation, the summation runs over all integers m, for which there
exists another integer n larger than or equal to 1, such that m + ns = i. The
second equation of Eq. (12) is used to determine S by requiring that (at order s of
the perturbation procedure) K () contains only the “physically important” terms
of H® . In other words, if R contains the terms of H®), which are not wanted in
K —that is, R = H®) — K)—then S is determined by solving the so-called
cohomology equation

[S,H?] = —R (13)

Straightforward calculations show that the choice of H © in Eq. (11) implies that
an operator R of the form

R="5" Ruuwrv(a)™(@)"(af)"™ (as)" (cos 0)" 5" (J%)" (14)

mnM,PN
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is canceled from K©) if S is taken as

Rm mi n 3 3
S A (@) @) (@) (@) o) N (15)

where Apy = (m; — n1)®; + (m3 — n3)w;. The terms of K of order i higher than
s are finally obtained from the third equation of Eq. (12) (note that the terms of
order / smaller than s are not changed by the transformation at order s).
Practically, the only tedious point in setting up a computer program consists in
rewriting products of two terms (aj )™ (a1)™ (a3)™ (a3)"™ (cos 0)" 6P (J2)V as
linear combinations of terms of the same form. This is achieved by using Sibert’s
formula [see Eq. (11) of Ref. 13) for stretch operators and the recurrence
relations in Eq. (5) of Ref. 1 for bend operators.

The key of any CPT procedure is actually the choice, at each order s of the
theory, of the terms of H®) to be kept in K*) and of those to be put in R, so that
they are canceled by the unitary transformation at order s. The simplest
perturbative Hamiltonian is obtained when only the terms, which are diagonal
with respect to the stretch degrees of freedom, are kept in K*), while all the
other ones are assigned to R. In other words, all the terms of H*) such that
m #n are canceled. When performing s unitary transformations with this
criterion for the definition of R and then neglecting the terms K such that
[ > s, one is left with a Hamiltonian of the form

K= m;NKmMPN(aT)’"I (al)m] (a;)ms (a3)m3 (COS e)MGP(Jz)N (16)

which is called the “perturbative Hamiltonian of order s.” The most useful
expression for this Hamiltonian is obtained by expanding each product
(@)™ (a;)™ in terms of the (a;"a;)™ = v, where the v; are the stretch quantum
numbers. One gets

K= Z kmen Vi VI (cos 0)M P (72)Y (17)
mM PN

where the knypyv are real coefficients. K is formally a one-dimensional
Hamiltonian in the bending angle 6 and its conjugate momentum. It depends
only parametrically on the good quantum numbers for the stretch degrees of
freedom.

Figure 2 shows the convergence of the CPT procedure described above, when
it is applied to the ab initio surface for HCN «» CNH computed by Tennyson
and co-workers [7,8]. This figure indicates, for each order s of the perturbation
procedure, the average arithmetic error between the energies of the lowest 101
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Figure 2. Plot, as a function of the order s of the perturbation procedure, of the average
arithmetic error between the energies of HCN « CNH obtained for the ab initio surface of Refs. 7
and 8 and the perturbative Hamiltonian of Eq. (17). The lowest 101 rotationless states of the system
are taken into account (see Tables VI and VII of Ref. 7). These states have up to 18 quanta of
excitation in the bend degree of freedom and 12,400 em~! of vibrational energy above the quantum
mechanical ground state.

rotationless states reported in Tables VI and VII of Ref. 7 and the corresponding
energies computed with the perturbative Hamiltonian of order s [Eq. (17)]. The
states taken into account have up to 18 quanta of excitation in the bend degree
of freedom and 12,400cm™' of vibrational energy above the quantum
mechanical ground state. Practically, the PES and the kinetic energy operator
were initially Fourier expanded up to (cos B)M'““‘ with Mp. = 10, because
expansion to higher orders does not change significantly the results. Note,
however, that all the trigonometric terms of higher order, which appear upon
application of the CPT procedure, must be taken into account, so that the
successive Hamiltonians remain Hermitian [if one orders the initial expansion
of Eq. (8) as described in (and below) Eq. (11), then the trigonometric term with
highest power one has to consider at order s of the perturbation procedure is
(cos 9)(542>M"““]. It is well known that CPT leads to asymptotic series—that is,
to series that converge for a certain number of iterations and then fluctuate or
diverge. One therefore has to check somehow the convergence of the series of
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perturbative Hamiltonians after each canonical transformation. It is seen in
Fig. 2 that the best agreement with variational calculations is obtained for the
sixth-order perturbative Hamiltonian, for which the average error is as low as
about 10 cm™".

Pseudo-potential energy curves are extracted from the perturbative
Hamiltonian of Eq. (17) by retaining only the terms with P = N = 0—that is,
the terms without differential operator. One obtains a one-dimensional pseudo-
potential curve V,, ,,(0) for each pair of quantum numbers v, (H-CN stretch)
and v3 (C-N stretch)

Virs (0) = KmarooV}" v (cos 0) (18)
mM

The lowest 11 pseudo-potential curves are drawn in Fig. 3. These curves can be
used to determine, for example, if there is any chance to detect the system in the
CNH well following its excitation to a given (v, vy, v3) state of HCN [14]—that
is, if state (vi,v;,v3) lies above or below the isomerization barrier for these
values of v; and v3. Figure 3 shows that, for HCN « CNH, an increase in the
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Figure 3. Plot of the lowest 11 pseudo-potential energy curves Vi v;(8) obtained by applying
sixth-order CPT to the HCN «— CNH surface of Refs. 7 and 8. The stretch quantum numbers v,
(H-CN stretch) and v3(C-N stretch) are indicated for each curve as (vi,v3).
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stretch quantum numbers essentially results in the shift of the energies of the
HCN and CNH minima, as well as the isomerization threshold, by the
corresponding linear combination of the fundamental frequencies. However, in
other systems, like Cz [6], variations of the stretch quantum numbers have a
much more dramatic influence on the pseudo-potential energy curves. Moreover,
the tunneling effect, which takes place slightly below the top of the isomerization
barrier, is clearly seen when plotting, on the same graph, the wave functions of
the states with given values of v, and v3 and the corresponding pseudo-potential
energy curve (see Fig. 4). We shall come back to this point in more detail in
Section II.B.

Before concluding this section, let us just mention that, while all of the
equations above refer explicitly to the Van Vleck quantum procedure [10-
12,15], they are most straightforwardly adapted to the classical procedure
based on Lie algebra [16-18] by replacing quantum commutators with
Poisson brackets. Most of the concepts remain also valid for the classical
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Figure 4. Plot of the pseudo-potential and the probability density for the pure bending states
(v; = v3 = 0) of the HCN «» CNH system versus bending angle 8. These results were obtained by
applying sixth-order CPT to the ab initio surface of Tennyson and co-workers [7,8]. The vertical
scale is the same for all probability plots, and the baseline for each plot coincides with the energy of
the corresponding state.
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Birkhoff-Gustavson procedure [19-21], although Eq. (12) has a slightly
different form in this latter case [3].

B. Adiabatic Versus Nonadiabatic Delocalization in
Isomerizing Systems

The theory described in Section IL.A applies to the progressions of quantum
mechanical “adiabatic” states. A state is adiabatic in the Ehrenfest sense, if the
two perpendicular stretch quantum numbers v, and v remain unchanged as the
angle 0 varies between 0° and 180°. As is known from the quantum mechanical
calculations, all localized eigenstates of the non-rotating HCN and CNH
molecules, trapped below the barrier on their respective adiabatic pseudo-
potential curves (see Figs. 3 and 4), satisfy this definition. Moreover, many
delocalized states located above their respective adiabatic barriers V", have the
same assignment v; and v3 on both HCN and CNH sides. Thus, the adiabatic
approximation is realistic for a significant portion of the spectrum, including
many of the delocalized states. The states belonging to the HCN and CNH well
are usually assigned as (vi,vy,v3)ycn and (v1,v2,V3)cnps TESPectively. Alter-
natively, one might organize these states into adiabatic progressions (vi, vz, v3),4,
by counting the bending quanta over the whole range of 0 between 0° and 180°.

In view of the hitherto unsuccessful experimental search for eigenstates
delocalized between the HCN and CNH isomers [14,22-28], the analysis of the
mechanisms and spectral signatures of delocalization becomes central to
theoretical studies. According to the adiabatic theory presented in Section II.A,
states with excitation (v;,v3) in the perpendicular stretching coordinates are
expected to remain localized even above the lowest adiabatic pseudo-potential
barrier V. Indeed, in the adiabatic picture, these states become delocalized
only if they are located close to or above the corresponding adiabatic potential
barrier le vy» Which can be located far above Vi, (see Fig. 3). This might
explain the fact that no delocalized states were detected in the experiments that
pumped energy in HCN through a combination of the bending and stretching
modes [14,23,24]. Figure 5 illustrates more quantitatively the correlation
between V¥ and the extent of delocalization. Each eigenstate can be ascribed
probability densities in the HCN and CNH wells, Ppcen and Peyy, respectively.
Delocalization Py of a normalized eigenstate is defined as the lesser of the two
probabilities

Pyer = min{Pucn, Penn) (19)

Figure 5 shows Py, for bending states in the pure and several combination
progressions as a function of energy. The vertical solid line in each frame marks
the position of the adiabatic barrier V). It is clear that full delocalization
Pael = 50% is reached only at and above the top of the adiabatic barrier,
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Figure 5. Plot of delocalization Pg (in %), defined in Eq. (19), as a function of the energy E
above the ground vibrational state, for six bending progressions (vi,v2,v3),y. The stretching
quantum numbers v; and v; remain constant within each frame. The vertical solid lines indicate the
position of the adiabatic barrier, V' | for each progression. The energy of the PES’ saddle point,

viwvy?

close to v = 80°, is marked with vertical dotted lines.

especially for low perpendicular excitations. Note that, due to couplings between
the bending mode and the H-CN stretch, the height of the adiabatic barriers V:T 0
decreases with growing v. For example, the barrier ng o (measured relative to the
CNH minimum on the pseudo-potential curve) is only half as high as the barrier
Vyo- The higher the value of vy, the lower the amount of bending excitation
needed to achieve a certain degree of adiabatic delocalization.

At higher energies, it becomes increasingly difficult to organize delocalized
eigenstates in adiabatic progressions. Quantum calculations show that, for
many states, quantum numbers v, and/or v3 are not conserved along 6. The
stretching excitations instead change upon traversing the barrier separating
HCN from CNH. Figure 6 illustrates this point. In the left-hand frame, the
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Figure 6. Wavefunctions of states 315 and 206 of the HCN « CNH system, with respective
energies E = 18,069 cm™" and E = 15,750 cm™" above the quantum mechanical ground state. The
figures show one particular contour |U(R,r, ) 2= const, where (R, r,7y) are the Jacobi coordinates.
(Left) The adiabatically delocalized state 315, which is assigned as (1,40, 1),,. (Right) The non-
adiabatically delocalized state 206, which can be assigned as (1,16, 1)y but displays the nodal
structure of (0, 24,0)yy on the CNH side.

three-dimensional (3D) wavefunction of an adiabatically delocalized state is
shown. It has one quantum of excitation in each perpendicular mode all the way
from HCN to CNH. The theory of Section II.A can be applied to it. In the right-
hand frame, another delocalized state is shown. On the HCN side, it has the
same nodal pattern as the adiabatically delocalized state shown in the left-hand
frame of Fig. 6. On the CNH side, the state has instead no node in the stretching
coordinates. This is an example of a “nonadiabatically” delocalized eigenstate.
Note that nonadiabatic delocalization is due to small terms belonging to one of
the K® (i > s) which, in Section IL.A, were neglected after the desired number
s of transformations was performed. These small terms therefore do not appear
in the expression of the effective Hamiltonian of Eq. (17), so that this
Hamiltonian cannot reproduce the nonadiabatic delocalization effect.

In the remainder of this section, we consider the properties of the
nonadiabatically delocalized states of HCN < CNH in more detail. We argue
that this type of delocalization becomes dominant and responsible for
HCN « CNH isomerization above the top of the potential barrier. Our analysis
is based on numerically exact quantum mechanical calculations for the
HCN < CNH system performed using the PES of Bowman et al. [29], which
reproduces the experimental vibration and vibration—rotation eigenenergies to
within 60cm™" or better even at high energies. For the present study, we
calculated the energies of the first 600 states of the nonrotating molecule—that
is, up to about 22,200cm~' above the vibrational ground state—using
successive truncation-diagonalization [30,31]. The eigenstates are converged
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to within 0.5 cm™" or better. The first 455 eigenstates and some of the states at
higher energies were assigned using visual inspection of their wavefunctions, in
order to provide an as complete as possible characterization of the localized and
delocalized states.

The correlation between the height of the adiabatic barrier and the onset of
delocalization is clearest in the pure bending progression (0,v,0) shown in
Fig. 5. Delocalization patterns in other progressions are more involved. An
example is provided by the progression (1, v2,0), for which full delocalization,
P4e; = 50%, is achieved only at E > Vlf o- However, several states below this
barrier are also delocalized to some extent, with Py ranging from 1% to 10%.
A closer look indicates that the first weakly delocalized states (Pgel = 1.2%)
appears near the top of the barrier of the lowest adiabatic curve V. In other
words, weakly delocalized states in the progression (1,v;,0) appéar in the
vicinity of the fully delocalized states of the progression (0,v,0). A similar
behavior is found for other progressions shown in Fig. 5. Visual inspection of
the three-dimensional eigenfunctions shows that the majority of the states
with Pge) < 10% are nonadiabatically delocalized. For these nonadiabatically
delocalized states, vi(HCN) # v;(CNH) and/or v3(HCN) # v3(CNH). Their
assignment to pure progressions is based on the nodal structure of the strongest
component of the wavefunction.

Visual inspection of the wavefunctions reveals another feature of the
nonadiabatically delocalized states, which is crucial for rationalizing the effect
and building up a model. Namely, the perpendicular quantum numbers v and v;
of the weak component of these states systematically coincide with the
perpendicular quantum numbers of an adjacent adiabatically delocalized state.
This suggests that weak delocalization is induced by coupling between a certain
zero-order localized state |¢,) and a neighboring adiabatically delocalized state
|x,). Suppose that both |¢,) and |x,) are known. Then, a nonadiabatically
delocalized state |¥;) can be expressed as

[Wi) ~ ol dy) + Bielxw) (20)

where |¢,) is assumed to be completely localized in one of the potential wells,
while |x,) is delocalized between the HCN and CNH isomers. By construction,
one has Py = |B;|*Paei(%, ), Where Pgei(,) is the probability density of |y, ) in
the potential well where |¢,) = 0. The wavefunctions |¢,) and |x,) are nor-
malized, but they are in general not orthogonal. Their overlap Sy, = (],
controls the coefficients o, and B, and, hence, the extent of delocalization Py:

o = (1 - Siv)71/2
By = — oSk (21)
Pger = Paar(%,)S5,/ (1 — 5,
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If the zero-order basis is properly chosen, the model of Eq. (20) is a sensi-
tive indicator of those couplings in the molecule that lead to delocalization.
This in turn can be used to describe the delocalization mechanisms in
HCN < CNH.

The states |¢,) and [x,) in Eq. (20) can be chosen in a variety of ways. For
example, the delocalized states calculated in Section ILA using the one-
dimensional pseudo-potential curves can in principle be used as functions %) -
The states |¢,) localized in each potential well can also be determined using the
same pseudo-potential curves (eventual tunneling contributions should be
neglected). Unfortunately, the accuracy of the adiabatic pseudo-potentials of
Section IL A, although sufficient for predicting the positions of the energy levels
to within a few tens of reciprocal centimeters (compared to the variationally
calculated energies), is not high enough to describe the subtle effects of weak
delocalization. For this reason, it is more appropriate to construct the basis
states using three-dimensional quantum mechanical calculations. We define the
localized basis states |, as solutions of the “restricted”” Schrodinger equation
in the isolated wells. The dividing surface between the HCN and CNH parts of
the PES is determined in molecular coordinates. The potential energy along the
dividing surface in the restricted calculations is set to some large number which
guarantees that wavefunctions are localized in one of the potential wells. Thus,
solutions in one well are independent of the solutions in the other and can be
used as |¢;). Next, this basis is augmented by the adiabatically delocalized
eigenstates |x,) of the original unrestricted Schrédinger equation: This is in
accord with our conjecture that adiabatically delocalized states are the main
perturbers causing weak delocalization.

The wavefunctions |¢;) and |y,) solve different Schrodinger equations and
therefore are not orthogonal. Since the overlap integrals between them are the
measure of nonadiabatic delocalization, one first calculates S, between all
localized and delocalized states. This identifies the most important couplings in
the system, as well as the states that can be nonadiabatically delocalized. Next,
the weakly delocalized eigenstates are reconstructed using Eq. (20) and
compared to the exact results. Note that this procedure is somewhat reminiscent
of the well-known tier model widely used in the investigations of intramolecular
energy redistribution [32]. State (2, 16, 0),,-y provides a typical example (see
Fig. 7). Its nonadiabatic delocalization is entirely due to the coupling with the
adiabatically delocalized state (0,56,0),;, which lies only 11cm™' below
(2,16,0)ycy- This is confirmed by reconstructing the weakly delocalized state
using Eq. (20) and comparing the obtained nodal structure with the exact one.
The extent of delocalization of the reconstructed wavefunction, P = 3.4%, is
in excellent agreement with the exact result, Pg; = 3.6%. The eigenenergy and
the rotational constant of this state are also accurately reproduced within the
simple approximation of Eq. (20).
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241 (0,56,0),4

(0,28,0)cn (0:26.0)cnn 242 (2,16.0)cn

(2,16,0)cn (0,26,0)cnm

11 em!

Figure 7. Simple two-state coupling scheme in HCN «— CNH, according to Eq. (20). (Left)
Wavefunction of the adiabatically delocalized state 241 (E = 16,612 cm™"), which is assigned as
(0,56,0),4. This is state |x,) of Eq. (20). (Right) Wavefunction of the resulting nonadiabatically
delocalized state 242 (E = 16,623 cm™"), which can be assigned as (2, 16,0)ycn but displays the
nodal structure of (0,26,0)ny on the CNH side. This is state |¥;) of Eq. (20). The various
assignments refer to the adiabatic description (upper) and to the nodal structures in the isolated wells
(lower). The value of the overlap integral Sy, is indicated along the line connecting the two states.
The wavefunctions are shown in the same representation as in Fig. 6.

Some of the localized basis functions couple to more than one adiabatically
delocalized states. In this case, the model of Eq. (20) should be generalized to
accommodate these couplings:

Ny
T4) ~ ol dy) + > Brolt) (22)
v=1

where the coefficients o and B,, and the delocalization Py, are given by
N —1/2
u=[1-Y S,
v=1
Bkv = _akSkv (23)

Ny
2
Pgel = E B | Pacr (%)
v=]
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This model can be used to uncover the complicated network of interstate
couplings leading to nonadiabatic delocalization. An example of such a coupling
scheme is presented in Fig. 8a. These states lie approximately 16,000 em™!
above the ground vibrational state. The energy interval of about 900 cm !
comprises 37 states, of which only three are adiabatically delocalized. They
belong to the progression (0, v,, 0) and are collected in the left column of Fig. 8a.
The adiabatically delocalized states lie above the respective barrier V. All
other states belong to progressions, which are adiabatically trapped below the
respective adiabatic barriers V! . Nevertheless, all the trapped states are
nonadiabatically delocalized. Th1s 1s clearly seen in Fig. 8b, which shows some
of the corresponding wavefunctions. Nonadiabatic delocalization of two states,
224 and 228, is particularly strong, with respective values Pge) = 20.0% (224)
and Py = 6.9% (228). These states are shown in the middle column of the
diagram in Fig. 8a. The states in the right column are more weakly delocalized
(Pge1 = 1.1%). Strong and weak couplings between eigenstates are indicated by
the solid and dotted lines, respectively. The numbers above the lines are the
values of the overlap integrals Sy, for the pair of states in question. This scheme
can be considered as a pictorial guide to the choice of the coupling model for a
particular state. For example, states 205 and 206 are perturbed only by the
adiabatically delocalized state (0, 52,0),, in the left column. For them, Eq. (20)
is appropriate. For most other states in the right and middle columns, the multiple
perturber model of Eq. (22) appears to be more adequate.

Figure 8 demonstrates how the delocalization, initially carried by three
adiabatically delocalized states, spreads over the adjacent eigenfunctions. Note
that one can distinguish between direct and indirect interactions of eigenstates.
Delocalization of states 205 and 206 is a result of the direct coupling with the
adiabatically delocalized state 209. More complicated is the example of state
229 (right column in Fig. 8). In the zeroth-order approximation, this state is
assigned as (2,12, 1),y- Its (weak) nodal structure in the CNH well coincides
with that of the adiabatically delocalized state 220 (left column), although the
direct overlap between these two states is vanishingly small. In fact, the nodal
structure of state 229 in the CNH well is due to its coupling to the neighboring
state 228 (middle column), which, in turn, is strongly coupled to the adiabatic
state 220. The coupling scheme in Fig. 8 contains even more complicated
coupling chains, which develop between the localized and delocalized states,
thus leading to spreading of the weak delocalization over the entire spectrum.
Adiabatically delocalized eigenfunctions play the role of critical nuclei
necessary to initiate this process. The avalanche-like expansion of weak
delocalization, initiated by the adiabatically delocalized states, is the main
reason for the increase in the density of states with Pg > 1% with growing
energy. This is illustrated in Fig. 9, where the total density of states is compared
with the density of delocalized states.
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Figure 9. The density of states in the HCN « CNH system as a function of energy above the
ground vibrational state. The upper curve shows the full density of states. The lower curve
corresponds to the density of delocalized states with Py > 1%.

IIl. RESONANTLY COUPLED ISOMERIZING AND
DISSOCIATING SYSTEMS

Section II dealt with the system HCN < CNH, for which the various degrees of
freedom can be nearly separated. Section III is instead devoted to the description
of the dynamics of the isomerizing and dissociating systems HCP «s CPH,
HOC1 — HO + Cl and HOBr — HO + Br, for which there exists a strong
coupling (namely, a 1:2 Fermi resonance) between the reactive degree of
freedom and a perpendicular one. A feature that is common to isomerization and
dissociation reactions is the large anharmonicity along the reaction pathway.
Based on the analysis of two integrable models—the Dunham expansion and the
Fermi resonance Hamiltonian—Section III.A describes how the folding of the
polyads (i.e., the closely spaced groups of states coupled by the Fermi resonance)
caused by these large anharmonicities combines with the Fermi nonlinear
coupling to produce a saddle-node bifurcation, where quantum states, which
stretch along the reaction pathway, are created. These saddle-node bifurcations
are, however, just the first step of the subtle pattern of bifurcations, which these
systems must undergo in order to reach the reaction threshold. Relying mostly on
the classical analysis of the ab initio PESs, Section III.B describes this pattern in
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more detail, particularly emphasizing the correspondence between the quantum
mechanical and classical descriptions.

A. Polyad Folding and Saddle-Node Bifurcations

It has been shown recently that the vibrational spectra of HCP [33-36], HOC1
[36-39], and HOBr [40,41] obtained from quantum mechanical calculations on
global ab initio surfaces can be reproduced accurately in the low to intermediate
energy regime (75% of the isomerization threshold for HCP, 95% of the
dissociation threshold for HOCI and HOBr) with an integrable Fermi resonance
Hamiltonian. Based on the analysis of this Hamiltonian, this section proposes an
interpretation of the most salient feature of the dynamics of these molecules,
namely the first saddle-node bifurcation, which takes place in the intermediate
energy regime.

The Fermi resonance Hamiltonian consists of two terms. The first one, Hp,
is the Dunham expansion, which characterizes the uncoupled system, while
the second term, Hp, is the Fermi resonance coupling, which describes the
energy flow between the reactive mode and one perpendicular mode. For
the three systems, HCP « CPH, HOCI — HO + Cl and HOBr — HO + Br, the
reactive degree of freedom is the slow component of the Fermi pair and will
therefore be labeled s, while the fast component will be labeled f. Thus, the
resonance condition writes w; ~ 2m,. More explicitly, for HCP the slow
reactive mode is the bend (mode 2) and the fast one is the CP stretch (mode 3),
while for HOCl and HOBr the slow mode is the OX stretch (X =Cl1,Br)
(mode 3) and the fast one is the bend (mode 2). The third, uncoupled mode—
that is, the CH stretch (mode 1) for HCP and the OH stretch (mode 1) for HOCI
and HOBr—will be labeled u. With these notations, the Dunham expansion
writes in the form

Hp= Y i+ Y xulili+ Y Yimlilidy + - -- (24)
i=s.fu ik ik,m
where
1 d; d;

In Eq. (25), (pi, ¢:) is the set of conjugate dimensionless normal coordinates for
mode i, a;" and a; are the corresponding creation and annihilation operators, v; is
the quantum number for this degree of freedom, and d; is its degeneracy (d; is
equal to 2 for the bend in HCP and equal to 1 for all other degrees of freedom
considered here). I; is the classical action integral for mode i and Eq. (25) just
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expresses the Einstein—Brillouin—Keller (EBK) quantization rule [42—45] for this
mode. Quantum mechanically, the Fermi resonance term is written as

Hr = (asa,af + ajaf ay) <k0 + Z kil + - ) (26)
i=s,fu
while its classical expression involves the angles ¢; = — tan™'(p;/q;) conjugate

to the I;’s, that is,

HF = 2COS((Pf — 2([):)15\/17(’(0 + Z kiI,' + - ) (27)

i=s,fu

See Table I of Ref. 34, Table II of Ref. 39 and Table I of Ref. 41 for numerical
values of the coefficients ®;, Xik, Yitm, ki, - - .. Note that there are two misprints
in Table II of Ref. 39: One should read y;33 = +0.2503 cm~ ! and Vi3 =
—0.4304 cm™".

Let us first neglect the Fermi resonance and analyze the dynamics of the
uncoupled systems described by the Dunham expansion alone [Eq. (24)].
Because of the resonance condition ®y =~ 20, quantum states are organized in
clumps, or “polyads.” Each polyad is defined by two quantum numbers, namely
the number v, of quanta in the uncoupled degree of freedom and the so-called
polyad number P:

P =2vs 4+ v (28)

A polyad with quantum numbers v, and P is labeled [v,,P]|. Polyads are
separated by large energy gaps at low energies but overlap more and more widely
as energy increases. It turns out that for the three molecules HCP, HOCI, and
HOBr, the difference 2m; — @y is small (resonance condition) and positive.
Therefore, at low P values, polyad [v,, P] organizes as follows. The state with
lowest energy has quantum numbers (v,,vs) = (0,P/2) (if P is even) or
(vi,vr) = (1, (P — 1)/2) (if P is odd). The state with highest energy has quantum
numbers (v, vs) = (P,0). In between, the energies of the int(P/2) + 1 states of
the polyad increase monotonously with the number of quanta v, in the reactive
degree of freedom. Because of the large (negative) anharmonicity along the
reaction pathway, this description does not hold for large values of P. Indeed, if P
(and therefore v;) becomes sufficiently large, then the /inear harmonic energy
gap 2m; — oy between two successive states of the polyad can become smaller
than the quadratic (or higher-order) anharmonic corrections. For these higher
values of P, the energies of the int(P/2) + 1 states of the polyad are an increasing
function of v, up to a certain value of vy, and then a decreasing function of v,.
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Figure 10. Density probability in the (g3, g,) plane for the eight states of “uncoupled” HOBr
belonging to polyad {v,, P| = [0, 14]. The Hamiltonian is the Dunham expansion of Eq. (24) with
parameters from Table I of Ref. 41. g3 (OBr stretch) ranges from to —6.5 to 6.5, and g, (bend) ranges
from ~5.0 to 5.0. The energy (in cm ') above the quantum mechanical ground state, as well as the
good quantum numbers (v, vr) = (v3, vz), are indicated for each state.

Stated in other words, the polyad folds. The wavefunctions for the eight states
belonging to polyad [v,, P] = [0, 14] of uncoupled HOBr (H = H)) are plotted in
Fig. 10 as an example. It is seen that the energy of the states is an increasing
function of v, from v; = 0 to v, = 8, but a decreasing one from v; = 8 to v, = 14.
As a result, the polyad appears rather scrambled.
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Numerically, this is most easily analyzed by rewriting the Dunham expansion
of Eg. (24) in terms of coordinates, which are adapted to the polyad structure of
the spectrum. One defines new sets (J,,, V), (Jp, V¥p), and (Jy, V) of conjugate
action-angle-like coordinates, according to

(‘Iua\l’u) = (Iu»(pu)
(JPv"le) = (21f + IS? (ps) ) (29)
(Jo, Vo) = (2Ir, 0, — (Pf/2>

which are connected to the (I;,®;) (i =u,f,s) ones by a linear canonical
transformation. In terms of these new variables, the Hamiltonian of Egs. (24) and
(27) is rewritten in the form

Hp= Y Qi+ Y XadiJi+ Y Yimdilidu+ -
ik

i=u,P,0 ik.m

30
Hy = cos(2U0) (I — o WTo(K + 37 Kifi+ ) (0

i=u,P,0

with trivial linear relationships between the spectroscopic coefficients of Egs.
(24) and (27) and those of Eq. (30). According to Eq. (25), the quantized values
of J, and Jp associated with the quantum mechanical polyad [v,, P| are

d
Ju ="y +7"

d (31)
h:P+¢+§

Clearly, polyad [v,, P] of the uncoupled system H = Hp is folded if equation

OHp
e 0 (32)
has a real solution Jy = Jr, such that 0 < Jy < Jp (JF is a function of J, and Jp).
The result is displayed in Fig. 11 (top) for the states of HOBr with no excitation
in the OH stretch (v, = 0). This figure shows the energy of (i) the pure bending
trajectory [b], that is, Hp(Jo = Jp), (ii) the pure stretching trajectory [s], that is,
Hp(Jo = 0), and (iii) the folding point [F], that is, Hp(Jy = JF), as a function of
P (more precisely, as a function of Jp, but the abscissa scale is converted to
artificially continuous values of P according to Eq. (31)). The energies are
plotted relative to the energy of [b], because they are all nearly degenerate
(because of the resonance condition) and essentially linear functions of P. It is



DYNAMICS ALONG REACTION PATHWAYS 291

T M T T T T T
400 | uncoupled system 7
200 /.T.._LF_]___ 3
E o
W
> -200
B A
2
S -400
-600
400
200
£
2 0 2 D2y
W E/1000 (cm™") SN2
> -200 I 10 §
= i
(1}
& 400 S §
[ o P DI\ |
600 T 0 65 10 15 20 25 ,

0 5 10 15 20 25
polyad number P

Figure 11. (Top) Plot, as a function of the polyad number P, of the energies of the pure
bending trajectory [b], the pure stretching trajectory [s], and the folding point [F] for the states of
“uncoupled” HOBr with no excitation in the OH stretch (v, = v; = 0). The Hamiltonian is the
Dunham expansion of Eq. (24) with parameters from Table 1 of Ref. 41. All energies are plotted
relative to the energy of the bending trajectory [b]. (Bettom) Plot, as a function of the polyad
number P, of the energies of the periodic orbits for the states of HOBr with no excitation in the OH
stretch (v, = v; = 0). The Hamiltonian is the Fermi resonance model of Egs. (24) and (27), with
parameters from Table I of Ref. 41. The small insert depicts the energies of the PDs relative to the
energy of the quantum mechanical ground state. In the main figure, the energies are plotted relative
to the energy of the pure bending periodic orbit {y]. The heavy dots marked SN1, SN2, and PD
indicate the two saddle-node and the period-doubling bifurcations, respectively. Stable periodic
orbits are indicated by solid lines, while unstable periodic orbits are represented by dashed curves.

seen that polyads are folded above P = 5 and that the energy of the pure
stretching trajectory [s] becomes smaller than the energy of the pure bending
trajectory [b] at P ~ 15. The energies of quantum states always occur between
the energies of the two outermost lines, that is, [b] and {s] up to P = 5, [b] and [F]
from P = 5to P = 15, and [s] and [F] above P = 15. Therefore, pure stretching
states are located at the top of the polyads up to P = 5; they then migrate from
the top to the bottom of the polyads between P = 5 and P = 15, and they finally
reach the bottom of the polyads above P = 15. Conversely, pure bending states
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are located at the bottom of the polyads up to P = 15 and then migrate inside the
polyad. It is also emphasized, as can be checked in Fig. 10, that the states located
at the top of the polyads above P = 5 are not associated with any particular
motion, but are instead just combination states with P — Jp + 1 (or the integer
closest to this value) nodes along the slow reactive coordinate and (Jr — 1)/2
nodes along the fast one. Similar features are observed for HOCI and HCP (in the
later case, the CP stretch plays the role of the HOBr bend, and the HCP bend
plays that of the OBr stretch).

Let us now consider the dynamics of the coupled system with Hamiltonian
H = Hp + Hp. J, and Jp remain good quantum numbers for this Hamiltonian
and are quantized according to Eq. (31). It is known that the dynamics of the
coupled system is governed by the shape of its stable periodic orbits (POs) in the
subspace (ps,qs,ps,qr) of the normal coordinates involved in the Fermi
resonance. The reason for this is that these POs act as the “backbones” (or
nodal lines) of the quantum mechanical wavefunctions. Moreover, it is not
necessary to consider the POs in the full six-dimensional space as long as the
third mode u remains decoupled from s and f. The four-dimensional POs are
most easily obtained in terms of the conjugate coordinates of Eq. (29). Indeed,
they consist of the line Jy = Jp, plus the fixed points in the (Jo, ) space. These
fixed points satisfy

dlo _ _OH _
dt Oy
dy, OH OHp OHp

d 3y oy o

0
(33)

Note that the first equation has trivial solutions y, = 0 and {, = n/2 (sometimes
it also has less trivial solutions). Moreover, the derivative of Hf, in the second
equation, is always much smaller than the derivative of Hp, except in the
neighborhood of Jo = 0, where 0Hf/0Jy goes to infinity, and in the neighbour-
hood of Jo=Jr (if the polyad folds), where OHp/0Jy goes to zero.
Consequently, the coupled system has at least one fixed point with Jo ~ 0 and
another one with Jy ~ Jr. Since, as stated above, the Jy = Jp line also
corresponds to a PO in the (p;, g5, pr, gr) subspace, one can conclude that the
coupled system H = Hp + HF necessarily has periodic orbits, which remain
energetically close to the bend [b] and the stretch [s] trajectories, as well as the
folding line [F], of the uncoupled system, for all values of P (the coupled system
can have additional principal families of POs, see below). One therefore expects
the continuation/bifurcation (C/B) diagram [46—48] of the coupled system—that
is, the plot of the energies of the POs as a function of the polyad number P, not to
be too different from the plot of the energies of [s], [b], and [F] for the uncoupled
system. This point can be checked in the case of HOBr by comparing the top and
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bottom plots of Fig. 11. At first glance, they are indeed rather similar. There are,
however, important discrepancies that will now be discussed.

At low P values (P < 7.4), the coupled system H = Hp + Hp has two stable
POs, called [y] and [R], which coincide, respectively, with the bend [b] and
stretch [s] trajectories of the uncoupled system H = Hp. Since both [b] and [v]
satisfy Jo = Jp, their energies coincide through the whole range of P values. In
contrast, starting with the P value where the polyad first folds (i.e., P = 5), the
[R] PO deviates from [s] and follows instead the folding line [F]. In agreement
with the conclusions of the preceding paragraph, a stable PO, which remains
close to the [s] line, that is which is essentially pure OBr stretch in the case of
HOBr, however appears at P = 7.4. This PO, which is called [D] in the case
of HOBr and HOCI, is born at a saddle-node bifurcation, which is indicated in
Fig. 11 (bottom) as a black dot labeled SNI1. Saddle-node bifurcations are
singularities of the phase space, where a stable and an unstable PO are created
simultaneously [45,49-51] (the unstable PO [D*] is indicated with a dashed line
in Fig. 11). From the preceding discussion it should be clear that the saddle-
node bifurcation SN1 represents the nonlinear response of the coupled system to
the folding of the polyads of the uncoupled system. Stated in other words, it is
the consequence of the coexistence of the Fermi resonance and the strong
anharmonicity along the reaction pathway.

Saddle-node bifurcations taking place for the reasons just described have
been observed for HOBr [41], HOCI [36,38,39], and HCP [34-36]. For HOBr
and HOCI, the stable PO born at the saddle-node bifurcations is called [D] for
“dissociation,” because this PO stretches along the dissociation pathway and
scars OBr- or OCl-stretch quantum mechanical wavefunctions (see Fig. 11e of
Ref. 38, Figs. 3b and 3g of Ref. 41, or Section III.B). In the case of HCP, the
stable PO born at the bifurcation is better called [I}, for “‘isomerization,”
because this PO stretches along the isomerization pathway and scars bending
quantum mechanical wavefunctions (see Figs. 6b and 6d of Ref. 35 or Figs. 7b
and 7d of Ref. 36).

Despite the general resemblance of the energy curves in Fig. 11, the Fermi
resonance has a dramatic effect on the wavefunctions, as can be checked by
comparing Fig. 10 and Fig. 12, which show the wavefunctions of the eight states
of polyad [v,, P] = [0, 14] for “uncoupled” (H = Hp) and “coupled” (H =
Hp + Hr) HOBT, respectively. The principal reason for this striking difference
is that, in addition to the OH stretch, the uncoupled system has only two degrees
of freedom (the bend [b] and the OBr stretch [s]), while the coupled system has
three possible types of motion above the saddle-node bifurcation: the bend [vy],
an almost pure OBr stretching motion along the [D] PO, and a resonant-type
motion along the [R] PO (the pronounced horseshoe shape of this later PO
reflects a strong energy transfer between the OBr stretch and the bend). As a
consequence, the polyads of the coupled system can no longer be described,
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Figure 12. Density probability in the (g3,¢») plane for the eight states of “coupled” HOBr
belonging to polyad [v,,P] = [0, 14]. The Hamiltonian is the Fermi resonance Hamiltonian of
Egs. (24) and (26) with parameters from Table T of Ref. 41. g3 (OBr stretch) ranges from to —6.5
to 6.5 and g, (bend) from —5.0 to 5.0. The energy (in cm™') above the quantum mechanical ground
state, as weil as approximate quantum numbers (vy,vy) = (v3,v,), are indicated for each state. The
three periodic orbits for this polyad, [R], [D], and [y], are plotted on top of some of the density
probabilities.
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above P =5, as the folding of regular sequences of states that evolve from a
pure bending state (along [b]) to a pure OBr stretching state (along [s]). They
are instead better described as sequences of states, which evolve from pure
bending states (scared by the [y] PO) to resonant-type states (scared by the [R]
PO) and are perturbed, above the saddle-node bifurcation, by the birth and
proliferation of OBr-stretching states (scared by the [D] PO).

The most detailed understanding of the evolution of the polyads of the
coupled system is obtained by plotting the third action integral of the system as
a function of energy E for given values of J, and Jp. This action integral is
expressed as

1

S = S(E, Ju, Jp) = —J JodVrg (34)
T Jype(o.n]

while the corresponding EBK quantization rule reads

S=n+3 (35)

where 7 is an integer, either positive or negative. Figure 13 provides examples of
such plots for polyads [v,, P} = [0,7], [0, 14] and [0, 30] of HOBr. The plot for
polyad [v,, P] = [0,7], which is located below the bifurcation, contains only one
branch, which extends from the energy of the [y] PO to the energy of the [R] PO
and is denoted by (a). According to Eq. (35), the semiclassical energies are the
values of E at which < is half-integer. These values are indicated with filled
circles in Fig. 13. It is emphasized that the quantum and semiclassical energies
are in very good agreement, with the difference between the two sets of values
never exceeding a few cm~!. Branch (a) contains members of the normal
progression of states, which evolve from a state aligned along [y] to a state
aligned along [R]. At the SN bifurcation, the branch (a) of the action integral
splits into two branches (a) and (b). These two branches again support quantum
states belonging to the normal progression. However, one state of this
progression disappears each time the energy gap between (a) and (b) becomes
sufficiently wide to encompass an additional half-integer value of . For
example, it can be checked in Fig. 12 that the third state of the normal
progression (i.e., the state with four nodes along the [R] PO) is missing from the
normal progression, because the half-integer value & = —11/2 lies in the gap
between (a) and (b) (see Fig. 13). Still, the number of states in polyad P remains
equal to int(P/2) + 1, because each state, which disappears from the normal
progression, is replaced by a member of the new progression of “‘dissociation”
states, which is supported by branch (¢). This third branch also appears at the
saddle-node bifurcation SN1 and extends between the energies of the stable [D]
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Figure 13. Plot of the action integral 3 as a function of the absolute energy E for polyads
{vus P) = [0,7], [0, 14], and [0, 30] of HOBr. The Hamiltonian is the Fermi resonance Hamiltonian of
Egs. (24) and (27) with parameters from Table I of Ref. 41. The vertical lines indicate the energies of
the various periodic orbits. The quantum mechanical states belonging to the normal and the “new”
progression are indicated by fitled circles and open diamonds, respectively. Note that the horizontal
energy scale for polyads P = 7 and P = 14 is expanded twice compared to P = 30.

and unstable [D*] POs born at the bifurcation (see P = 14 in Fig. 13). One
additional dissociation state appears in the quantum spectrum each time branch
(¢) widens sufficiently to encompass an additional half-integer value of <. For
example, it can be checked in Figs. 12 and 13 that the dissociation state of polyad
[vu, P] = [0, 14] (i.e., the second lowest state) corresponds to S = 1/2 on branch
(¢). It should be realized that the number of states in polyad P remains equal to
int(P/2) + 1, because branches (b) and (c) are parallel in the energy interval
where they overlap (the classical frequency is the same for the two branches).

B. Bifurcations at Higher Energies

The saddle-node bifurcations discussed in Section IIL.A play a crucial role in the
dynamics of the molecules investigated, because the stable PO born at the
bifurcation follows the reaction pathway over a large energy range. Conse-
quently, the quantum states that are scarred by this PO stretch further and further
along the reaction pathway and can be considered as the precursors of the
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isomerization and dissociation reactions. Nonetheless, increasing the energy
deposited in the vibrational degrees of freedom of these molecules results in
additional bifurcations, which are discussed in this section.

Part of these additional bifurcations are reproduced by the Fermi resonance
Hamiltonian. For example, the C/B diagram of HOBr in Fig. 11 displays, in
addition to SN1, two further bifurcations, PD and SN2, which take place at
P =15.8 and P = 21.4, respectively. PD is a period-doubling bifurcation,
where the bending-type PO [v], defined by Jo = Jp, becomes unstable, while the
double-period daughter PO remains stable. This stable PO with double period,
called [2y], is found in a rather restricted interval of P values, since it disappears
at the second saddle-node bifurcation SN2. In contrast with SN1, where the
stable [D] and the unstable [D*] POs were born simultaneously, SN2
corresponds to a discontinuity of the classical phase space, where the stable
{27] and the unstable [D*] POs are destroyed simultaneously. At SN2, branch
(b) disappears from the plot of the action integral < as a function of energy E.
Therefore, for polyads [v, = 0, P] where P > 22, the accessible classical phase
space extends between the two remaining stable POs—that is, [D] and [R]—
with the unstable PO [yx] playing the role of a separatrix between the two kinds
of motion (see Fig. 13, P = 30). Quantum mechanically, all the members of the
new progression are located below [yx], on the (c) branch, while all the
remaining members of the normal progression are located above [yx], on the (a)
branch (see Fig. 13, P = 30). The question regarding why polyads [v,, P] with
22 < P < 35 look simpler than polyads at lower energies is explained by the
following facts: (i) There remain only two stable POs, and therefore two
possible backbones for quantum mechanical wavefunctions, and (ii) members of
the normal and new progression can no longer be interwoven. This point can be
checked in Fig. 5 of Ref. 41, which shows the wavefunctions for the 16 states
belonging to polyad [v,, P] = [0, 30] of HOBT.

To conclude this analysis based on the Fermi resonance Hamiltonian, let us
mention that HOC), behaves very much like HOBr. Indeed, Fig. 10b of Ref. 36
shows that for this molecule the saddle-node bifurcation SN1 takes place at
P =21.8, (for v, = 0), the period-doubling bifurcation PD occurs at P = 24.6,
and the second saddle-node bifurcation SN2 takes place at around P = 38, very
close to the dissociation threshold. In contrast, the dynamics of HCP is
somewhat simpler, in the sense that the first saddle-node bifurcation SN1 is
indeed observed at P = 14.3, but PD and SN2 do not take place (see Fig. 13 of
Ref. 35 or Fig. 10a of Ref. 36).

Most of the bifurcations, which take place in the high-energy regime, are
however not reproduced by the Fermi resonance Hamiltonian, essentially
because they result from the superposition of the 1:2 Fermi-resonance and
higher-order ones. In order to gain information on the dynamics close to the
reaction threshold, one therefore has to analyze the dynamics on the PES by
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Figure 14. Plot, as a function of the absolute energy E, of the frequencies of the classical
periodic orbits belonging to various families. The frequencies of the [v]-type POs are divided by
two, whereas the frequencies of the [R1A] family are multiplied by two. The energy scale is shifted
to higher energies by 0.23 eV—that is, the zero-point energy of the OH stretch mode. See the text for
more details.

classical mechanics. These studies have been performed for the three molecules
already discussed—that is, HOBr [41], HOCI [38], and HCP [35,36]. It turns out
that cascades of saddle-node bifurcations seem to be the rule when approaching
the reaction threshold. One can distinguish between two different types of
cascades, according to the types of motion involved in the bifurcations.

The first type of cascade has been observed for all three of the molecules,
HOBr, HOCI, and HCP. Figure 14 shows, for example, the classical C/B
diagram obtained for HOBr (see Fig. 5d of Ref. 38 for the classical C/B diagram
of HOCI and Fig. 9b of Ref. 35 or Fig. 8b of Ref. 36 for the classical C/B
diagram of HCP). Since there is no conserved quantity, except the energy F,
classical C/B diagrams necessarily represent the evolution with respect to E of a
given property of the POs, like, for example, their frequencies, as in Fig. 14. In
this diagram it is seen that the SN1 bifurcation and the smooth [D] curve of the
Fermi resonance model in Fig. 11 are replaced by a series of SNiA bifurcations
and corresponding [SNiA] curves (i = 1,2,3,...), which all exhibit the same
pattern, namely, a short segment with a relatively large anharmonicity and a
second segment for which the slope is very small. The nearly flat segment of
each curve is probably due to a resonance between motion along the successive
[SNiA] POs and the OH stretch [41]. Roughly speaking, the [D] line of the
Fermi resonance model in Fig. 11 is just the smooth interpolation between
successive segments with large anharmonicities. Since the POs that scar
dissociating quantum states (i.e., states stretching along the dissociation
pathway) all belong to the more anharmonic segments of the [SNiA] curves,
the more harmonic segments of the C/B diagram in Fig. 14 are not essential to
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understand the features of the quantum mechanical spectrum: The [D] line
joining the more anharmonic segments contains all the important information.

The successive [SNiA] POs follow closely the dissociation pathway up to
[SN7A], while they acquire a pronounced S-type shape and ultimately avoid the
dissociation pathway for i > 8, as is illustrated in Figs. 15b and 15f. This
happens in the same energy range where a second cascade of saddle-node
bifurcations SNiB and related stable POs [SNiB] are first observed (see Fig. 14).
This is not by chance. What one observes here is indeed just the repetition—
with a different ratio of the classical frequencies—df the scheme, which gives
rise to the SNiA family of saddle-node bifurcations at lower energies. More
precisely, in Section IIL.A it was seen that the 1:2 Fermi resonance between
motions along [R] (OBr stretch) and [y] (bend) is responsible for (i) the
pronounced U shape that [R] acquires with increasing energies (see Fig. 15c¢),
and (ii) the occurrence of the saddle-node bifurcations SN1 (or SNiA), where a
new motion along [D] (or [SNiA]) is born, which follows the reaction pathway
(see Fig. 15b). Because of the large anharmonicity along the reaction pathway,
the frequency of the motion along [SNiA] however steadily decreases with
increasing energies, so that at a certain point a 1:3 resonance with the motion
along the bending type PO [y] is established. As happened for the 1:2 resonance
between [R] and [y], the 1:3 resonance between [SNiA] and [y] is responsible
for (i) the pronounced S-shape that [SNiA] aquires above SN7A (see Fig. 15f)
and (i) the occurrence of a second family of saddle-node bifurcations, SNiB,
where a new motion along the [SNiB] POs is born, which follows the reaction
pathway (see Fig. 15g). Note that because of resonances with the OH-stretch
degree of freedom, each [SNiB] curve has the same pattern as the [SNiA] ones,
namely, a short segment with a relatively large anharmonicity and a second
segment for which the slope is very small.

From the classical point of view, the high-energy bifurcation pattern of HOBr
thus consists of two nested cascades of saddle-node bifurcations. The principal
cascade, R — SNiA — SNiB — ..., results from the successive 1:2, 1:3, and
so on, resonances between the OBr stretch and the bend. Each member of the
principal family, in turn, consists of a cascade of bifurcations,
SNIA — SN2A — SN3A — ... and SN1B — SN2B — SN3B — ..., because
of resonances between the OBr stretch and the OH stretch. From the quantum
mechanical point of view, one observes, above the onset of the 1:3 resonance,
states that are scared by the three possible “stretching”-type POs, that is, [R]
(U-shaped wavefunctions), [SNiA] (S-shaped wavefunctions), and [SN/B]
(wavefunctions stretching along the dissociation pathway).

Two points are worth noting before concluding. First, the ab initio PES for
HOBr [40,41] is the only realistic molecular model, for which such a subtle
pattern of bifurcations has been detected so far: For HOC! [38] and HCP [35],
the SNiB family of saddle-node bifurcations could not be found. Moreover, both
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Figure 15.  Contour plots of wavefunctions for different types of quantum mechanical states as
functions of R and y. The OH-stretch coordinate r is integrated over. The solid lines represent
corresponding classical periodic orbits calculated at comparable energies.
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HOCI and HOBr display a couple of additional bifurcations, which were not
discussed here because they are not directly related to the dissociation reaction.
The interested reader is referred to Refs. 38 and 41 for more details.

IV. SUMMARY

The character of vibrational states of a polyatomic molecule is expected to
drastically change with increasing internal energy. This has been demonstrated in
this review for several triatomic molecules: HCN, HCP, HOC], and HOBr. For
the first two examples, increasing the energy gradually “drives” the molecule
toward the isomerization barrier, while for the other two examples it pushes the
molecule toward the dissociation channel. In both cases, the types of vibrational
motion are very different from the motion at low energies. Exact quantum
mechanical, classical, and semiclassical methods have been utilized to discuss
this development from low to high energies.

For HCN, a molecule with no resonance between the three fundamental
frequencies, we have demonstrated that a sequence of canonical transformations
leads to a nearly separable Hamiltonian, the diagonalization of which quanti-
tatively predicts the eigenenergies. Moreover, this approximate Hamiltonian is
well suited to describe the localized as well as part of the delocalized states of
the system and leads to a consistent assignment of most of the states.
Nevertheless, the remaining couplings, which are ignored in the transformed
Hamiltonian, lead to interesting delocalized states, which require a full quantum
mechanical description. These states, which have different stretching excitations
in the HCN and the CNH wells, have been termed ‘nonadiabatically
delocalized” states, because they are due to couplings between states belonging
to different adiabatic channels.

The other three molecules are different in that they show already at low
energies a 1:2 Fermi resonance between the reaction (isomerization or
dissociation) coordinate and another coordinate. This resonance, together with
the polyad folding due to the strong anharmonicity in the isomerization or
dissociation mode, leads to saddle-node bifurcations, at which new types of
states come into existence and members of progressions characteristic for the
lower-energy regime disappear. The new family of states advances the molecule
toward the isomerization barrier or the dissociation channel. The existence of
saddle-node bifurcations usually makes the spectrum of eigenenergies and the
organization in terms of polyads quite complex. However, we have also shown
how a detailed analysis of the structure of the classical phase space in terms of
periodic orbits and continuation/bifurcation diagrams can be used to understand
the quantum mechanical spectrum. Saddle-node bifurcations seem to be
characteristic features of many molecules. However, up to now an experimental
example has only been observed for HCP [35].
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A detailed understanding of the intramolecular motion of highly excited

molecules is important for understanding the dissociation dynamics, because the
sequences of bound states just below the dissociation threshold continue as
resonances to energies above the threshold [52]. Whether the dynamics around
the threshold is chaotic or whether the eigenstates show characteristic features
will have consequences for the lifetime of the excited complex and therefore on
the dissociation rate. The same is true, of course, also for the inverse process—
that is, the stabilization of complexes in collisions with gas atoms.

NS R WS —

oo

References

. M. Joyeux and D. Sugny, Can. J. Phys. 80, 1459 (2002).

- D. Sugny, M. Joyeux, and E. L. Sibert III, J. Chem. Phys. 113, 7165 (2000).

- D. Sugny and M. Joyeux, J. Chem. Phys. 112, 31 (2000).

. K. Efstathiou, M. Joyeux, and D.A. Sadovskii, Phys. Rev. A, 69, 032504 (2004).

. M. Joyeux, D. A. Sadovskii, and J. Tennyson, Chem. Phys. Lett. 382, 439 (2003).
. J. Robert and M. Joyeux, J. Chem. Phys. 119, 8761 (2003).

- T. van Mourik, G. J. Harris, O. L. Polyansky, J. Tennyson, A. G. Csaszar, and P. J. Knowles, J.
Chem. Phys. 115, 3706 (2001).

. G. J. Harris, O. L. Polyansky, and J. Tennyson, Spectrochim. Acta A 58, 673 (2002).

9. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, Dover, New York, 1955,

10.
11.
12.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27
28

Chapter 4.
J. H. Van Vleck, Phys. Rev. 33, 467 (1929).
O. M. Jordahl, Phys. Rev. 45, 87 (1934).

E. C. Kemble, The Molecular Principles of Quantum Mechanics, McGraw-Hill, New York, 1937,
Section 48¢.

- E. L. Sibert III, J. Chem. Phys. 88, 4378 (1988).

. D. Lessen, J. S. Baskin, C. M. Jones, T. He, and E. Carrasquillo-Molina, J. Chem. Phys. A 107,
5697 (2003).

L. Shavitt and L. T. Redmon, J. Chem. Phys. 73, 5711 (1980).

A. J Dragt and J. M. Finn, J. Math. Phys. 17, 2215 (1976).

A. ] Dragt and J. M. Finn, J. Marh. Phys. 20, 2649 (1979).

A. J Dragt and E. Forest, J. Math. Phys. 24, 2734 (1983).

G. D. Birkhoff, Dynamical Systems, Vol. 9, AMS colloquium, AMS, New York, 1966.

F. G. Gustavson, Astron. J. 71, 670 (1966).

R. T. Swimm and J. B. Delos, J. Chem. Phys. 71, 1706 (1979).

A. M. Smith, S. L. Coy, W. Klemperer, and K. K. Lehmann, J. Mol. Spectrosc. 134, 134 (1989).
X. Yang, C. A. Rogaski, and A. M. Wodtke, J. Opt. Soc. Am. B 17, 1835 (1990).

D. M. Jonas, X.Yang, and A. M. Wodtke, J. Chem. Phys. 97, 2284 (1992).

S. C. Farantos, J. M. Gomez Llorente, O. Hahn, and H. S. Taylor, J. Chem. Phys. 93, 76 (1990).
D. Romanini, and K. K. Lehmann, J. Chem. Phys. 102, 633 (1995).

- A. Maki, W. Quapp, S. Klee, G. C. Mellau, and S. Albert, J. Mol. Spectrosc. 180, 323 (1996).
- E J. Northrup, G. A. Bethardy, and R. G. Macdonald, J. Mol. Spectrosc. 186, 349 (1997).



29.
30.
31.
32.
33,
34.

35.

36.
37.
38.

39.
40.
41.

42.
43.
44.
45.
46.
47.

48.
49.
50.
S1.

52.

DYNAMICS ALONG REACTION PATHWAYS 303

J. M. Bowman, B. Gazdy, J. A. Bentley, T. K. Lee, and C. E. Dateo, J. Chem. Phys. 99,308 (1993).
Z. Bacic, R. M. Whitnell, D. Brown, and J. C. Light, Comput. Phys. Comm. 51, 35 (1988).
A. J. Dobbyn, M. Stumpf, H.-M. Keller, and R. Schinke, J. Chem. Phys. 103, 9947 (1995).
D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).

C. Beck, R. Schinke, and J. Koput, J. Chem. Phys. 112, 8446 (2000).

M. Joyeux, D. Sugny, V. Tyng, M. E. Kellman, H. Ishikawa, R. W. Field, C. Beck, and R. Schinke,
J. Chem. Phys. 112, 4162 (2000).

H. Ishikawa, R. W. Field, S. C. Farantos, M. Joyeux, J. Koput, C. Beck, and R. Schinke, Annu. Rev.
Phys. Chem. 50, 443 (1999). )

M. Joyeux, S. C. Farantos, and R. Schinke, J. Phys. Chem. A 106, 5407 (2002).
S. Skokov, K. A. Peterson, and J. M. Bowman, J. Chem. Phys. 109, 2662 (1998).

J. Weiss, J. Hauschildt, S. Yu. Grebenshchikov, R. Diiren, R. Schinke, J. Koput, S. Stamatiadis,
and S. C. Farantos, J. Chem. Phys. 112, 77 (2000).

R. Jost, M. Joyeux, S. Skokov, and J. M. Bowman, J. Chem. Phys. 111, 6807 (1999).
K. A. Peterson, J. Chem. Phys. 113, 4598 (2000).

T. Azzam, R. Schinke, S. C. Farantos, M. Joyeux, and K. A. Peterson, J. Chem. Phys. 118, 9643
(2003).

A. Einstein, Verh. Dtsch. Phys. Ges. 19, 82 (1917).

L. Brillouin, J. Phys. 7, 353 (1926).

J. Keller, Ann. Phys. 4, 180 (1958).

M. Tabor, Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons, New York, 1989.
S. Wiggins, Global Bifurcations and Chaos, Springer, Berlin, 1988.

S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, New York,
1990.

S. C. Farantos, Int. Rev. Phys. Chem. 15, 345 (1996).
P. Berge, Y. Pomeau, and C. Vidal, Order Within Chaos, John Wiley & Sons, New York, 1984.
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990.

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields, Springer, Berlin, 1983.

S. Yu. Grebenshchikov, R. Schinke, and W. L. Hase, State-Specific Dynamics of Unimolecular
Dissociation, in N, J. B. Green, ed., Comprehensive Chemical Kinetics, Vol. 39, Part I, Elsevier,
Amsterdam, 2003.



