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Classical and quantum-mechanical plane switching in CO2
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Classical plane switching takes place in systems with a pronounced 1:2 resonance, where the degree
of freedom with the lowest frequency is doubly degenerate. Under appropriate conditions, one
observes a periodic and abrupt precession of the plane in which the doubly degenerate motion takes
place. In this article, we show that quantum plane switching exists in CO2. Based on our analytical
solutions of classical Hamilton’s equations of motion, we describe the dependence on vibrational
angular momentum and energy of the frequency of switches and the plane switching angle. Using
these results, we find optimal initial wave-packet conditions for CO2 and show, through
quantum-mechanical propagation, that such a wave packet indeed displays plane switching at
energies around 10 000 cm−1 above the ground state on time scales of about 100 fs. © 2006
American Institute of Physics. �DOI: 10.1063/1.2167747�
I. INTRODUCTION

The resonant swing spring—a system which consists of
a spring with one end fixed, a mass attached at the other end,
and which is submitted to a constant vertical gravitation
field—has recently received much attention from mathema-
ticians and theoretical physicists.1–6 When the physical pa-
rameters are chosen such that the stretching motion and the
doubly degenerate swinging motion are in 1:2 resonance, the
swing spring has some remarkable features, including energy
exchange, monodromy,3,5–8 and precession or switching of
the swing plane.2–4 By “precession of the swing plane” we
mean the following. Suppose that the system is initially ex-
cited almost exclusively in the stretch degree of freedom.
One observes that the system periodically evolves into a pla-
nar swinging motion before returning back to its original
springing motion. Most interestingly, the orientation of the
swinging plane changes by a constant amount from one
swinging phase to the next one, the size of the step depend-
ing on the initial conditions.2–4 Under appropriate conditions,
the orientation of the plane remains nearly constant for a
time of several pendular oscillations and then changes
abruptly. Such behavior is called “plane switching.”

While most earlier studies investigated the properties of
the classical swing-spring model, the aim of our present pa-
per is to uncover this plane switching phenomenon in a real
microscopic, i.e., quantum system, and to determine whether
such a phenomenon can be observed experimentally. As
pointed out in Ref. 5, the CO2 molecule is a nearly perfect
quantum analog of the swing-spring model. To analyze this
real system, we should, however, take into account the de-
tuning from the exact 1:2 bend:stretch Fermi resonance, an-
harmonicities and/or other degrees of freedom �antisymmet-
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ric stretch and rotation�, and the last but not the least, the
quantum nature of this system. The standard method to
tackle this latter aspect of the problem relies on the study of
nonstationary quantum states, i.e., wave packets, which in
the limit of �→0 evolve along the classical trajectories.
More specifically, we are going to center a Gaussian wave
packet of minimal uncertainty � on the classical trajectory
which exhibits the classical plane switching phenomenon.
We want to find out whether and, especially, under which
conditions this wave packet is capable of following the cen-
tral trajectory for at least several steps and thus display quan-
tum plane switching.

As in Ref. 5, we construct and use an integrable approxi-
mation, which describes explicitly only the three relevant
vibrational degrees of freedom of CO2, namely, the symmet-
ric stretch �mode 1� and the doubly degenerate bend �mode
2�. We verify that this Hamiltonian is valid up to at least
10 000 cm−1 above the ground state, that is, 14 quanta of
excitation in the bend. In order to understand the dependence
of the phenomenon on the parameters of this system, the
vibrational angular momentum L, the value of the action in-
tegral I associated with the 1:2 polyad number P, and the
internal polyad energy, we solve the classical equations of
motion for the fourth-order Hamiltonian �Sec. II�. This solu-
tion relies on the early work in Refs. 9 and 10 and extends
the work in Refs. 2–4, where a third-order model without
detuning was considered. We discuss classical plane switch-
ing in Sec. III. Construction of optimal wave packets begins
in Sec. IV. The average total energy of the wave packet is
roughly determined by P. We choose this energy to be as
high as possible �within the validity of our Hamiltonian� to
maximize the density of states. At fixed P, the obtained ex-
pressions for the classical frequencies of the system and the
swinging plane precession angle are then used to conjecture

in Sec. IV what the optimal values of L and energy for the
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central trajectory are, in order for the plane switching phe-
nomenon to show up as clearly as possible in the quantum-
mechanical system. By explicitly propagating the wave
packet, we finally show in Sec. V that quantum CO2 indeed
displays plane switching.

While the main body of this article is hopefully of inter-
est to the broad community of spectroscopists and
chemists—and has consequently been written using adapted
vocabulary and skipping a large part of the geometrical
background—we feel that a number of aspects of Secs. II–V
should be discussed in more detail, in order to make this
article also more accessible to the community of theoretical
physicists and mathematicians and to relate it to preceding
work in these fields. This more complete discussion is pro-
posed in Appendix C.

II. ANALYTICAL RESOLUTION OF HAMILTON’S
EQUATIONS

The Hamiltonian of the integrable approximation used in
Ref. 5 was obtained by applying sixth-order canonical per-
turbation theory11 �CPT� to the potential-energy surface of
Zuniga et al.12 Such an approximation reproduces experi-
mental data to within a few wave numbers up to more than
10 000 cm−1 above the quantum-mechanical ground state. In
the present study, we stopped at second order of CPT and
obtained a Hamiltonian H, which is a polynomial of degree 4
in dimensionless normal coordinates. Of course, the agree-
ment with experimental energies is consequently less quan-
titative, but the dynamics of the classical system is still cor-
rectly described qualitatively and, most importantly,
Hamilton’s equations can be solved analytically, while this is
no longer possible at higher orders. On the other hand, nu-
merical calculations in Secs. IV and V can be performed with
Hamiltonians of any order, but the differences with the re-
sults obtained using the second-order CPT Hamiltonian are
so slight that we chose, for the sake of consistency, to present
only these later ones throughout the paper. Note also that
excitation of the uncoupled third mode of CO2 �the antisym-
metric stretch� essentially shifts all quantities upwards by the
corresponding amount of energy. The results shown below
were obtained by freezing this degree of freedom and setting
the corresponding action integral to 1/2. The working
Hamiltonian is thus written as

H = HD + HF,

HD = �1I1 + �2I2 + x11I1
2 + x12I1I2 + x22I2

2 + xLLL2, �2.1�

HF = 2k�I1�I2
2 − L2� cos��1 − 2�2� ,

where �1=1343.85 cm−1, �2=666.67 cm−1, x11=−2.88
cm−1, x12=−5.71 cm−1, x22=1.74 cm−1, xLL=−1.50
cm−1, and k=26.69 cm−1 �note that �1�2�2�, HD is the so-
called Dunham expansion, and HF is the lowest-order cou-
pling term, which describes the 1:2 Fermi resonance between
the symmetric stretch �mode 1� and the doubly degenerate
bend �mode 2�. The variables �I1 ,�1� are the action-angle
variables of the nondegenerate harmonic oscillator associ-

ated with the symmetric stretch, �I2 ,�2� are the total action
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and conjugate angle of the doubly degenerate harmonic os-
cillator associated with the bend, and L is the bending vibra-
tional angular momentum. Since the system is axially sym-
metric, L is strictly conserved and H does not depend on its
conjugate angle. Relations between these quantities, the po-
lar coordinates and momenta, and the dimensionless Carte-
sian normal-mode coordinates and momenta
�p1 ,q1 , p2x ,q2x , p2y ,q2y� are detailed in Appendix A. Note
that, as shown in the same Appendix, this Hamiltonian is a
higher-order analog of the one in Eq. �29a� of Dullin et al.3 It
is also similar to the one in Eq. �4� of Ref. 6.

The system with Hamiltonian in Eq. �2.1� is integrable.
To show this, we rewrite H in terms of the conjugate vari-
ables �I ,�I� and �J ,�J�, where

I = 2I1 + I2, J = 2I1,

�2.2�

�I = �2, �J =
�1

2
− �2.

One obtains

E � H = �I + �J + xIII
2 + xIJIJ + xJJJ

2 + xLLL2

+ K�J��I − J�2 − L2� cos�2�J� , �2.3�

with trivial linear relationships between the parameters of
Eq. �2.1� and those of Eq. �2.3�. It can be seen that Eq. �2.3�
depends neither on the angle conjugate to I nor, of course, on
that conjugate to L. Therefore, both I and L are constants of
the motion and the system is integrable.

Recall that we want to describe analytically the period
and the angle of the plane switching as functions of dynami-
cal constants L, I, and E. To that end, we consider the Hamil-
tonian in Eq. �2.3� as the Hamiltonian of the one degree of
freedom reduced system with conjugate coordinates �J ,�J�.
We note that J=2I1 is non-negative and bound from above
by I. Therefore, J is a periodic function. In fact, J describes
the energy in the stretch degree of freedom; the period T of
J�t� is the period of energy transfer between the two modes
and, consequently, the period of plane switching. The posi-
tion of the swinging plane is described by the angle conju-
gate to L in Eqs. �2.1� and �2.3�, as has been demonstrated in
Ref. 3. It is emphasized that this angle, which is denoted by
� in the rest of this article, is not the polar angle
tan−1�q2y /q2x�. The expression for � is provided in Appendix
A. Simple calculations show that this definition is identical
to the one in Eq. �54� of Ref. 3. The angle of plane switching
can be defined as ��=�t

t+T�d� /dt�dt. Note that, as function
of parameters L, I, and E, �� is defined modulo � and spe-
cial arrangements may be needed if one wants to define it
continuously at certain given values of these parameters �see

below�.
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Hamilton’s equations of motions are solved along the
same lines as in Refs. 9 and 10. Using the Hamiltonian in Eq.
�2.3�, we obtain the equation for dJ /dt in the form

	dJ

dt

2

= 	−
�H

��J

2

= 4K2J��I − J�2 − L2�

− 4�− E + �I + �J + xIII
2 + xIJIJ + xJJJ

2 + xLLL2�2

= − 4xJJ
2 �J − ���J − 	��J − 
��J − �� , �2.4�

where the roots �, 	, 
, and � depend on E, I, and L and
satisfy the inequalities

0 � � � J � � � 	 � 
, � � I − L . �2.5�

Equation �2.4� corresponds to Eq. �39� of Ref. 3. Since we
took first anharmonicities into account, the polynomial in the
right-hand side of Eq. �2.4� is of degree 4 with respect to J,
while it is of degree 3 in Ref. 3. Moreover, Dullin et al.
consider only the case with no detuning ��=0�. The solution
of Eq. �2.4� is

J�t� = 	 +
� − 	

1 − 
 sn2��t���
, �2.6�

where sn� � is the Jacobian elliptic function13 and


 =
� − �

	 − �
,

� = 

	 − 


� − 

, �2.7�

� =
1

2
�− 4xJJ

2 �� − 
��	 − �� .

To simplify the choice of the integration constant, we sup-
pose in Eq. �2.6� that J is at maximum �J=�� at time t=0. As
already stated above, J�t� is periodic. From Eq. �2.6�, its
period T is

T =
2K���

�
�2.8�

and its angular frequency

�* =
2�

T
=

��

K���
, �2.9�

where K��� is the complete elliptic integral of the first
kind.13 Equation �2.6� can now be used to find ��t�. Using
Eq. �2.3�, Hamilton’s equation for � is recast in the form

d�

dt
=

�H

�L
= �2xLL + xJJ�L −

1

2

E − EI−L

I − L − J
+

1

2

E − EI+L

I + L − J
,

�2.10�
where the two energies
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EI�L = �I + ��I � L� + xIII
2 + xIJI�I � L�

+ xJJ�I � L�2 + xLLL2 �2.11�

are obtained by setting J= I�L in Eq. �2.3�. The solution of
Eq. �2.10�,

��t� = r0t + r1���;�t��� + r2���;�t��� , �2.12�

is written in terms of elliptic integrals of the third kind,13

where

r0 = �2xLL + xJJ�L −
1

2

E − EI−L

I − L − 	
+

1

2

E − EI+L

I + L − 	
,

r1 = −
1

2�
�E − EI−L�	 1

I − L − �
−

1

I − L − 	

 ,

�2.13�

r2 =
1

2�
�E − EI+L�	 1

I + L − �
−

1

I + L − 	

 ,

� = 

I − L − 	

I − L − �
,

� = 

I + L − 	

I + L − �
.

Equation �2.12� can be expressed in the form

��t� = �r0 +
2r1

T
������ +

2r2

T
������
t + r1����;�����

−
2�

T
������
 + r2����;����� −

2�

T
������
 ,

�2.14�

where �=mod�t ,T�, which clearly shows that ��t� is the sum
of a linear contribution �first term� plus a periodic contribu-
tion of period T �second and third terms�. The angle of plane
switching is therefore obtained as ��=��T�−��0�, that is,

�� = r0T + 2r1������ + 2r2������ . �2.15�

It is important to realize that the �J dependence was re-
moved from Eqs. �2.4� and �2.10�. Therefore, potential prob-
lems related to the ill definition of �J at the J= I and L=0
singularity of Eqs. �2.12� and �2.14�, which corresponds to
the unstable relative equilibrium discussed later in Sec. III,
are circumvented. Approximations for J, �*, �, and �� can
even be obtained in the neighborhood of this singularity, by
expanding the roots � and 	 for energies E close to EI−�L� and
replacing the Jacobi sn� � function in Eq. �2.6� by the hyper-
bolic tangent function in the time interval �−T /2 ,T /2�. It can
be shown in this way that, close to the singularity and for
vanishing detuning and anharmonicities, �� has the form

�� = − sgn�E − EI−�L���tan−1 �u + 1

u − 1
− tan−1 �u − 1

u + 1

 ,

�2.16�
where
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u =�1 +
�E − EI−�L��2

K2IL2 . �2.17�

This asymptotic expression is equivalent to the one in Eq.
�72� of Ref. 3 �see also Ref. 14�. Finally, note that in the case
without Fermi coupling �k=K=0�, ��t� equals 2xLLLt. The
corresponding trivial contribution 2xLLLT will be subtracted
from �� in Sec. III.

III. CLASSICAL PLANE SWITCHING IN CO2

The expressions derived in Sec. II are singular at J= I
and L=0. Since these conditions imply that p2x= p2y =q2x

=q2y =0 and E=EI, the singularity takes place when all en-
ergy is put in mode 1, that is, for CO2, in the symmetric
stretch degree of freedom. In the original system, it corre-
sponds to the unstable short periodic orbit, which is at the
origin of monodromy and plane switching.3,5 The singularity
corresponds to an unstable equilibrium of the reduced one
degree of freedom system with dynamical variables �J ,�J�
and Hamiltonian in Eq. �2.3�, where L and I are considered
as parameters. Classically,2–4 plane switching manifests itself
most clearly for trajectories approaching closely this short
periodic orbit, together with its stable and unstable mani-
folds, i.e., for trajectories with L close to 0 and energy close
to EI. In consequence, this section presents a qualitative de-
scription of what happens for such trajectories.

When L=0, the classical frequency �* goes logarithmi-
cally to zero when the energy approaches that of the unstable
equilibrium,10 as illustrated in Fig. 1, which displays the
variation of �* as a function of energy E for a fixed value of
I and several values of L. In contrast, the period does not
diverge when L�0. Furthermore, variations of �* become
smoother and smoother with increasing values of �L�.

The angle of plane switching ��−2xLLLT as function of
E, I, and L can be analyzed throughout the allowed energy
range in a similar way, see Fig. 2. Since �� is an odd func-

FIG. 1. �Color online� Variation of the classical angular frequency �* �in
cm−1� as a function of energy E �in cm−1� for CO2 at I=13.5 and various
values of L.
tion of L, ��−2xLLLT remains zero for L=0. For L�0, ��
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in Eq. �2.15� jumps by � at the two specific points of the
parameter space for which E=EI−�L�. As we said above, this is
insignificant to our analysis because �� is modulo � anyway,
and it can be made artificially continuous by adding � to the
value given by Eq. �2.15� in the case E�EI−�L�. However, the
discontinuity reflects the change of d� /dt, which is positive
when E�EI−�L� and negative when E�EI−�L�. As in the case
of �*, �� changes rapidly in the neighborhood of E=EI−�L�
for very small fixed values of �L�, while its evolution with E
becomes slower with increasing values of �L�.

The time evolution of � for different values of L and E
�see Fig. 3 and compare to Fig. 7 of Ref. 1 and Fig. 5 of Ref.

FIG. 3. �Color online� Variation of the angle � �in radians� as a function of
time t �in fs� for CO2 at I=13.5 and L=0.1 �top plot�, L=2 �middle plot�,
and L=6 �bottom plot�. For each value of L, the variation of � is shown for
three trajectories starting at maximum J=� and with respective energies E

−1 −1 −1

FIG. 2. �Color online� Variation of the angle of plane switching ��
−2xLLLT �in radians� as a function of energy E �in cm−1� for CO2 at I
=13.5 and various values of L.
=EI−L+0.1 cm , E=EI−L+40 cm , and E=EI−L+400 cm .
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3� can be understood easily on the basis of the above con-
siderations. If �L� is very small �top plot� and E very close to
EI−�L�, then ��t� looks like a stair, with sharp transitions of
amplitude ���� /2 connecting very long plateaux �T di-
verges at the relative equilibrium�. According to Eqs. �2.10�
and �2.12�, the transitions occur when J is near its maximum
�J��� I− �L��, that is, when most of the energy is localized
in the symmetric stretch degree of freedom. Each plateau
corresponds to the oscillations of the bending motion near an
almost fixed direction in the �q2x ,q2y� plane, while the sharp
transition between two successive plateaux represents the pe-
riodic abrupt change of this direction. It is precisely this
behavior which is called plane switching.1–4

If �L� is kept small while E departs from EI−�L�, the am-
plitude of the steps diminishes rapidly, while T is simulta-
neously reduced �see upper plot of Fig. 3�. When �L� be-
comes larger �middle and bottom plots of Fig. 3�, the length
of the plateaux substantially decreases, but ��t� evolves less
markedly with energy. For example, it is seen that for L=2
and L=6 the two curves at E=EI−L+0.1 cm−1 and E=EI−L

+40 cm−1 look like stairs of amplitude ���� /2 and are
almost superimposed. Whatever the value of L, the stairlike
character of ��t� disappears when energy deviates too much
from EI−�L�.

It should also be emphasized that, like for the swing
spring, the bending motion appears to be “linear” only for
very small �L�. Rigorously speaking, this motion traces el-
lipses in the �q2x ,q2y� plane.3 When �L� is larger, the eccen-
tricity of the ellipses becomes smaller, so that the bending
motion can hardly be described as taking place along a line.
Consider, for example, the �q2x ,q2y� plane projections of tra-
jectories with I=13.5, L=0.1, 2, and 6, and E=EI−L

+0.1 cm−1 shown in Fig. 4. One is tempted to conclude,
somewhat subjectively, that plane switching, that is, motion
along a line which precesses by jumps, takes place for L
=0.1 and L=2 �and thus for any L in the interval�, but not for
L=6.

IV. DETERMINATION OF OPTIMAL INITIAL
CONDITIONS FOR THE PLANE SWITCHING
WAVE PACKET

One of the principal objectives of this work is to deter-
mine the best initial conditions for a quantum wave packet to
display plane switching. First we chose the total action I for
the center of the packet in order to have a sufficiently large
density of states while remaining in the validity domain of
our Hamiltonian. According to this criterion, values around
I=14 �corresponding to energies near 10 000 cm−1 above the
quantum-mechanical ground state� appear reasonable. In-
deed, we have seen in Ref. 5 that the related phenomenon of
quantum monodromy can be well observed in this region.

It remains to determine the values of E and L. Recall
from the previous section that the plane switching phenom-
enon is most clearly seen for trajectories launched in the
vicinity of the singularity at J= I and L=0. Consequently, we
are tempted to center our wave packets on such trajectories.

*
At the same time, � and �� depend very sharply on the
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initial conditions in this region. Therefore, wave packets
launched too close to the unstable relative equilibrium will
disperse very rapidly, i.e., in a time less than T. If such rapid
dispersion takes place, quantum plane switching cannot be
observed. In other words, the rate of change of �* and ��
should not become too large on the scale of � ��=1 in the
units of this paper�. Examination of Fig. 3 suggests that the
solution might consist of centering the wave packet at some-
what larger values of L and the corresponding energy EI−L.
The good compromise for CO2 in the 10 000 cm−1 energy
range therefore appears to be a wave packet centered around
L=2 and E=EI−L.

We checked the validity of this conjecture by launching
swarms of 10 000 classical trajectories with a Gaussian dis-
tribution of width �pj =�qj =1/�2 along each degree of free-
dom �j=1, 2x, and 2y�. We propagated the trajectories nu-
merically using the Hamiltonian expressed in dimensionless
normal coordinates �Eqs. �2.1� and �A4� in Sec. II and Ap-
pendix A�. As expected, we found that a swarm centered on
a trajectory with I=13.5, L=0.1, and E=EI−L dispersed so
rapidly that the trajectories were almost uniformly spread
over all the accessible phase space in times shorter than the
period T of the central trajectory. No plane switching was
observed. The result for a distribution centered on a trajec-
tory with I=13.5, L=2, and E=EI−L, which is shown in Fig.

FIG. 4. �Color online� Projection on the �q2x ,q2y� plane of trajectories with
I=13.5, L=0.1 �top plot�, L=2 �middle plot�, or L=6 �bottom plot�, and E
=EI−L+0.1 cm−1. “0” indicates the starting point of the trajectory, “1” the
direction after the first plane switch, and “2” the direction after the second
plane switch. The trajectories with L=0.1, L=2, and L=6 were integrated
for 750, 385, and 260 fs, respectively.
5, is qualitatively different. Each vignette of this figure
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shows the projection of the trajectories on the �q2x ,q2y� plane
at given increasing times t indicated in the upper left corner
�in femtoseconds�. The position of the trajectory, around
which the distribution was centered at t=0, is indicated by a
large empty circle. The first three vignettes �t=2, 26, and
50 fs� correspond to the first round trip along the initial di-
rection of the bending motion. One observes little dispersion
during this phase, because it corresponds to the plateau of
��t� for most trajectories. Then, plane switching occurs near
t=50 fs, and the last five vignettes �t=66, 90, 102, 114, and
126 fs� correspond to one round trip along a direction almost
exactly perpendicular to the initial one. Dispersion is much
more important during this second phase, because, as dis-
cussed above, the plane switching amplitude and the exact
time where the step occurs are different for each trajectory.
Dispersion in �q2x ,q2y� is maximum at the “turning points”
of the bending motion �i.e., the extremities of the narrow
ellipses�. Nonetheless, one clearly observes that the density
of trajectories near the “central” trajectory is at all times

FIG. 5. �Color online� Projection on the �q2x ,q2y� plane, at various times t,
of the swarm of 10 000 trajectories of CO2 with initial Gaussian distribution
centered on a trajectory with I=13.5, L=2, and E=EI−L+0.1 cm−1. The
position of this trajectory is marked for each time t by an empty circle
�compare with middle plot of Fig. 4�. The time t �in femtoseconds� is indi-
cated in the upper left corner of each vignette.
significantly larger than elsewhere. Moreover, both the time
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required for the first plane switch and the switch angle cor-
respond well to those of the central trajectory. This confirms
that L=2 and E=EI−L are likely to be suitable initial condi-
tions to observe quantum plane switching in CO2.

V. QUANTUM-MECHANICAL PLANE SWITCHING
IN CO2

To investigate quantum plane switching in CO2, we con-
sidered a minimum uncertainty wave packet centered at time
t=0 on the same classical trajectory as in Sec. IV. We then
computed its time evolution quantum mechanically. More
precisely, the wave packet at time t=0 is taken in the form

�p̄,q̄�q1,q2,�,t = 0� = �p̄1,q̄1
�q1��p̄2x,q̄2x

�q2,��

��p̄2y,q̄2y
�q2,�� , �5.1�

where

�p̄1,q̄1
�q1� = �−1/4 exp�ip̄1q1 −

1

2
�q1 − q̄1�2
 ,

�p̄2x,q̄2x
�q2,�� = �−1/4 exp�ip̄2xq2 cos � −

1

2
�q2 cos �

− q̄2x�2
 ,

�p̄2y,q̄2y
�q2,�� = �−1/4 exp�ip̄2yq2 sin � −

1

2
�q2 sin �

− q̄2y�2
 , �5.2�

and p̄= �p̄1 , p̄2x , p̄2y� and q̄= �q̄1 , q̄2x , q̄2y� are the dimension-
less normal coordinates of the central trajectory at time t
=0. We projected �p̄,q̄�q1 ,q2 ,� , t=0� on the eigenvectors
�n�q1 ,q2 ,�� of the quantum-mechanical counterpart of the
classical Hamiltonian in Eq. �2.1� �see Appendix B�, leading
to

�p̄,q̄�q1,q2,�,t = 0� = �
j

cj� j�q1,q2,�� , �5.3�

where

cj = �� j��p̄,q̄�t=0

= �
0

2�

d��
0

+�

q2dq2�
−�

+�

dq1� j
*�q1,q2,��

��p̄,q̄�q1,q2,�,t = 0� . �5.4�

The leading contributions to the quantum wave packets are

naturally due to the eigenfunctions, whose quantum numbers
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P and � �see Appendix B� are close to the values of their
classical counterparts I+2 and L for the central trajectory.
The wave packet at time t was then obtained in a standard
way from

�p̄,q̄�q1,q2,�,t� = �
j

cj� j�q1,q2,��exp�− iEjt� , �5.5�

where Ej = �� j�H�� j� is the eigenvalue associated with � j.
To visualize plane switching, we plotted the probability den-
sity of the wave packet in the �q2x ,q2y� plane

P�q2x,q2y,t� = �
−�

+�

dq1��p̄,q̄�q1,q2,�,t��2. �5.6�

The computed probability density is shown in Fig. 6 for the
same time sequence as in Fig. 5. Apart from the sharper
localization of the quantum wave packet at certain times �es-
pecially at t=50, 102, and 126 fs�, the agreement between
classical and quantum-mechanical results is striking. Thus

FIG. 6. �Color online� Contour plots of the probability density P�q2x ,q2y , t�
at different times t �t is indicated in the upper left corner of each vignette�.
At time t=0, the quantum wave packet is centered on the same trajectory
with I=13.5, L=2, and E=EI−L+0.1 cm−1 as in the case of the swarm of
classical trajectories of Fig. 5. The position of this trajectory is marked for
each time t by an empty circle.
we can conclude that the density of states is sufficiently high
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and we are close to the semiclassical limit. Most importantly,
the propagation of the quantum wave packet displays clearly
the abrupt change of the orientation of the swinging plane.

VI. CONCLUSION

In this work, we demonstrated that quantum plane
switching exists in CO2. This quantum system displays, un-
der appropriate conditions, a periodic and abrupt precession
of the plane in which the doubly degenerate bending motion
takes place. Based on our analytical solutions of the classical
equations of motion for the fourth-order Hamiltonian, we
described the dependence of the frequency of switches �*

and the plane switching angle �� on vibrational angular mo-
mentum and energy. Using these results, we found optimal
initial wave-packet conditions and showed, through
quantum-mechanical propagation, that such a wave packet
indeed displays plane switching at energies around
10 000 cm−1 above the ground state on time scales of about
100 fs. This provides concrete motivation and vital informa-
tion for further analysis of the possibility of experimental
observation of plane switching in this system.

APPENDIX A: RELATIONS BETWEEN THE VARIOUS
SETS OF COORDINATES

The action-angle variables �I1 ,�1� of the nondegenerate
harmonic oscillator associated with the symmetric stretch are
related to the set of dimensionless normal coordinates
�p1 ,q1� through

q1 = �2I1 cos �1,

�A1�
p1 = − �2I1 sin �1.

In Eq. �2.1�, the doubly degenerate bend is described by the
two sets of conjugate variables �I2 ,�2� and �L ,��, where I2 is
the total action, �2 its conjugate angle, L the bending vibra-
tional angular momentum, and � the angle conjugate to L
�remember that � is the angle which describes the position of
the “swinging plane”�. Two transformations are needed to
relate these coordinates to the �p2x ,q2x� and �p2y ,q2y� dimen-
sionless normal ones, via �p2 ,q2� and �L ,��. These transfor-
mations write

q2 = �I2 + �I2
2 − L2 cos�2�2� ,

p2 = −
1 �I2

2 − L2 sin�2�2� , �A2�

q2
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� = � +
1

2
tan−1	 Lp2q2

L2 − I2q2
2
 ,

and

p2x = p2 cos � −
L

q2
sin � ,

q2x = q2 cos � ,

�A3�

p2y = p2 sin � +
L

q2
cos � ,

q2y = q2 sin � .

The fact that the Hamiltonian of Eq. �2.1� is indeed a fourth-
order polynomial in terms of the dimensionless normal coor-
dinates follows from the relations
many researchers �including Fermi itself� focused exclu-
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I1 =
1

2
�p1

2 + q1
2� ,

I2 =
1

2
�p2x

2 + p2y
2 + q2x

2 + q2y
2 � ,

�A4�
L = p2yq2x − p2xq2y

2�I1�I2
2−L2� cos��1−2�2�= 1

�2
�q1�q2x

2 +q2y
2 − p2x

2 − p2y
2 �

+2p1�p2xq2x+ p2yq2y��.

APPENDIX B: THE QUANTUM MECHANICAL
HAMILTONIAN

The nonzero matrix elements of the quantum-mechanical
counterpart of the Hamiltonian of Eq. �2.1� in the direct
product basis �n1 ,n2 ,��= �n1� � �n2 ,�� of the one-dimensional
and two-dimensional harmonic oscillators are
�n1,n2,��H�n1,n2,�� = �1�n1 + 1
2� + �2�n2 + 1� + x11�n1 + 1

2�2 + x12�n1 + 1
2��n2 + 1� + x22�n2 + 1�2 + xLL�2

�B1�

�n1 ,n2 ,��H�n1−1 ,n2+2 ,��= �n1−1 ,n2+2 ,��H�n1 ,n2 ,��=−k�n1��n2+2�2−�2�.
The polyad quantum number P=2n1+n2 and the vibrational
angular momentum � are good quantum numbers for this
Hamiltonian. The Hamiltonian matrix factorizes in blocks for
each value of P and �. For practical purposes, we label the
eigenstates by a single index j. In computations reported in
Sec. V, �p̄,q̄�q1 ,q2 ,� , t=0� was projected on all eigenstates
� j�q1 ,q2 ,�� with P�22 and ����10.

APPENDIX C: MORE THEORETICAL AND
GEOMETRICAL ASPECTS

In this Appendix, we give relations between various sets
of dynamical variables used here and in related works3,5,6 to
describe a two-dimensional harmonic oscillator in resonance
1:1 and its perturbations. In CO2 these variables represent
bending vibrations �mode 2�, in the swing spring they de-
scribe pendular oscillations. We then comment on our treat-
ment of the whole system with three degrees of freedom and
compare it to Refs. 3,5,6.

Before we begin, we would like to draw attention to the
difference in designating resonance systems that can cause
some confusion. Near an equilibrium, the usual definition of
the resonance condition is given in mechanics �see, for ex-
ample, Appendix �7.A� in Ref. 15� in terms of the ratio of
frequencies of the linear approximation �i.e., harmonic fre-
quencies� corresponding to each degree of freedom. It is cus-
tomary to sort frequencies in ascending order. According to
such definition, the system of symmetric stretch vibration
�mode 1� and bending vibration �degenerated mode 2� of
CO2 has frequency ratio �2 :�2 :�1 which is almost exactly
1:1:2 times a common factor. Such plain notation is used in
Refs. 3,5,6 and in this Appendix. On the other hand, the tra-
ditional molecular notation is 1:2. To complicate matters,
sively on the L=0 case, which is equivalent to the planar
swing-spring system with two degrees of freedom and is also
designated 1:2. Furthermore, molecular physicists sometimes
require the presence of nonlinear coupling terms in order to
qualify the system as resonant: for example, they distinguish
1:1 and 2:2 systems. Since the axial symmetry forbids direct
coupling of the two components of the bending vibration in
CO2, they argue in favor of the 1:2 notation which we used
in the main body of the paper.

1. Coordinates and relations between them

a. Cartesian coordinates

There are two widely used sets of dimensionless Carte-
sian variables, the initial normal-mode coordinates �q2x ,q2y�
and conjugate momenta �p2x , p2y� and rotated variables
�Qk , Pk� �k=2,3�, such that

�q2x,p2x,q2y,p2y� =
1
�2

�Q3 + P2,P3 − Q2,Q2

+ P3,P2 − Q3�

as well as related complex Hamiltonian coordinates zk=qk

-ipk �k=2x ,2y� and Zk=Qk-iPk �k=2,3�, which satisfy

�zk , z̄k�= �Zk , Z̄k�=2i. The advantage of �Qk , Pk� is that in

these variables both the harmonic oscillator Hamiltonian
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H0 =
1

2
�p2x

2 + q2x
2 + p2y

2 + q2y
2 � =

1

2
�z̄2xz2x + z̄2yz2y�

=
1

2
�P2

2 + Q2
2 + P3

2 + Q3
2�

=
1

2
�Z̄2Z2 + Z̄3Z3� �C1�

and the angular momentum

L = q2xp2y − p2xq2y =
i

2
�z̄2xz2y − z2xz̄2y�

=
1

2
�P2

2 + Q2
2� −

1

2
�P3

2 + Q3
2�

=
1

2
�Z̄2Z2 − Z̄3Z3� �C2�

have diagonal representation.

b. Polar coordinates

In the presence of axial symmetry, many prefer using
polar coordinates and conjugate momenta

r = q2 = �q2x
2 + q2y

2 , � = tan−1 q2y

q2x
,

pr = p2 = p2x cos � + p2y sin �, p� = L ,

because in these coordinates the Hamiltonian of an axially
symmetric system �such as CO2� does not depend on the
cyclic variable �, L can be immediately treated as a constant
of motion with value �, and the system can thus be reduced
to one degree of freedom with reduced phase space R2 and
coordinates �q2 , p2�.16 In particular,

H0 =
1

2
	p2

2 + q2
2 +

L2

q2
2
 .

The major disadvantage of this very traditional approach is
that the singularity of polar coordinates at q2= p2=0 distorts
the geometry of the system. In fact, the true topology of the
reduced phase space obtained after reduction of the axial
symmetry SO�2� is not that of R2 but that of a cone with
vertex at q2= p2=0. Polar coordinates are inconvenient in the
analysis of monodromy and plane switching because in these
studies we are interested in the dynamics near the hyperbolic
equilibrium q2= p2=0.3,8,17 In this paper, we do not use polar
coordinates except for some intermediate results and for rep-
resentation of quantum wave functions �which is yet another
well-established tradition�.

c. Action-angle coordinates

There are two varieties of action-angle variables for the
two oscillators in 1:1 resonance. One is simple one-
dimensional oscillator action variables Ik and conjugate
angles �k,

Ik =
1

�q2k
2 + p2k

2 � =
1

z̄kzk,

2 2
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�k = − tan−1 pk

qk
= arg zk,

where k=2x ,2y, for the bending mode 2. Notice that similar
variables �I1 ,�1� are used in this paper for the nondegenerate
stretching mode 1. The other variety is the pair �I2 ,L�, where
I2=H0 is the total mode 2 action, and conjugate angles
��2 ,�L�. This latter case comes up naturally when �i� the
zero-order Hamiltonian, which defines approximate dynami-
cal symmetry of the perturbed system, is H0, and �ii� the
system is axially symmetric and L is the first integral. As can
be easily seen from the Cartesian definitions in Eqs. �C1� and
�C2�,

�2 =
1

2
�arg Z2 + arg Z3�

=
1

2
tan−1 P3Q2 + P2Q3

P2P3 − Q2Q3

=
1

2
tan−1 q2x

2 + q2y
2 − p2x

2 − p2y
2

2�p2xq2x + p2yq2y�
,

�L =
1

2
�arg Z3 − arg Z2�

=
1

2
tan−1 P3Q2 − P2Q3

P2P3 + Q2Q3

=
1

2
tan−1 q2y

2 + p2y
2 − q2x

2 − p2x
2

2�q2xq2y + p2xp2y�
.

At this point it is instructive to notice that �2 is not �
= ��2x+�2y� /2 as one could naively assume looking at Eq.
�C1� �check: �� ,H0�=1 but �� ,L��0 and so � is not the
required angle variable�. For similar reasons, �L��. Instead
one verifies easily that

� = �L +
�

4
= � −

1

2
tan−1 Lp2q2

L2 − q2
2H0

.

The angle � plays the central role in the description of plane
switching because it gives the instantaneous position of the
plane �or more precisely, of the major axis of the ellipse
which the trajectory traces in the �x ,y� plane�.3 Notice that in
Ref. 3 this angle is denoted as �.

d. Angular momentum analogy for the 1:1 oscillator
system

In physical applications, the S1 dynamical symmetry of
the 1:1 resonance is often approximate and the original
Hamiltonian should be first normalized. If the original sys-
tem has other degrees of freedom which are not in resonance,
they can be averaged out at the same time. The resulting
normal form Hamiltonian H describes such other degrees
effectively and is S1 symmetric, i.e., H0 becomes a constant
of motion and �H ,H0�=0. In practical interpretations of ex-
perimental data one often skips normalization and introduces
phenomenological model systems with exact S1 symmetry
and with model effective Hamiltonians whose parameters are

adjusted to reproduce the data. In molecules, vibrational
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states with the same H0 are often called polyads, hence the
terminology “polyad Hamiltonian,” “polyad quantum num-
ber,” etc. Instructive examples of such polyads can be found
in the literature on the triatomic molecules O3 and H3

+.
To represent H, we notice that the ring of all invariants

of the S1 action of the dynamical symmetry of the 1:1 oscil-
lator system is generated multiplicatively by four quadratic
invariants of the general form z̄kzm. They can be chosen as

j =
1

4
�z̄2xz2x + z̄2yz2y� =

H0

2
,

j1 =
1

4
�z̄2xz2x − z̄2yz2y� ,

�C3�

j2 =
i

4
�z̄2xz2y − z̄2yz2x� =

L

2
,

j3 =
1

4
�z̄2xz2y + z̄2yz2x� ,

and are subject to the sole algebraic relation of degree 2

j1
2 + j2

2 + j3
2 − j2 = 0. �C4�

The widely used analog of this construction in quantum me-
chanics is the boson representation of angular momentum
operators which is introduced by Schwinger18 and which is
based on the isomorphism of the algebras su�2� and so�3�.

It can be seen that �as any S1 invariant� the classical
polyad Hamiltonian H is a function of �j1 , j2 , j3� and j. Since
j is a constant of motion, we fix j and consider it as a dy-
namical parameter thus reducing the original 1:1 oscillator
system to one degree of freedom. The reduced Hamiltonian
Hj�j1 , j2 , j3� is defined on the reduced �or polyad� phase
space Pj. From Eq. �C4� we see that for any j�0 this space
is a sphere S2 and indeed is often called “polyad sphere.” At
this point we can appreciate the advantage over any approach
with one fixed system of canonical coordinates as any such
system for S2 would have singularities. In fact, to work on S2

we should use �at least� two symplectic charts or run into
trouble. Thus in the presence of axial symmetry �which acts
on �j1 , j2 , j3� as rotation about axis j2�, one is often tempted
to use L=2j2, known as “vibrational” angular momentum,
and the corresponding conjugate angle

1

2
� j2

=
1

2
tan−1 j1

j2
= �L,

which follows for the three-vector j= �j1 , j2 , j3� and is, of
course, the same as in Appendix C 1 c. It can be seen that
coordinates �L ,�L� with �L��2j and 0��L�2� define a
cylindrical chart of S2 with obvious problems at the poles
L= ±2j. Consequently, �L ,�L� should be used with appropri-
ate caution.

Finally notice that canonical polyad coordinates are sim-
ply unnecessary. Their purpose in typical polyad studies
seems to be the derivation of Hamilton equations of motion
for the reduced system. However, for any given classical
polyad Hamiltonian Hj =Hj�j1 , j2 , j3�, the dynamics of the

reduced system, i.e., the internal polyad dynamics, is de-
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scribed by the Euler-Poisson equations djk /dt= �jk ,H� with
k=1,2 ,3. These are similar to the equations for rotating non-
rigid bodies and can be found easily once we compute the
Poisson algebra generated by �j1 , j2 , j3�. Not surprisingly, the
latter is an su�2��so�3� algebra with standard structure

j2 j3

j1 j3 − j2

j2 j1

�C5�

and Casimir j.

2. Reduced CO2 Hamiltonian and reduced phase
space

The plane switching phenomenon in CO2 and the swing
spring are studied after reducing the original system with
three degrees of freedom both with respect to the axial sym-
metry SO�2� of rotations of plane �q2x ,q2y� already men-
tioned above and the dynamical symmetry S1 defined by the
flow of the zero-order Hamiltonian

I = 2I1 + I2 = J + I2 = p1
2 + q1

2 +
1

2
�p2x

2 + p2y
2 + q2x

2 + q2y
2 � ,

which represents a three-dimensional harmonic oscillator
with frequencies in 1:1:2 resonance. The original CO2

Hamiltonian is, of course, not strictly S1 invariant. It is made
so by normalization �the particular method used in Ref. 5 and
in this work is CPT �Ref. 11�� and truncation at the desired
order.

a. Geometry of singular reduction

The truncated normal form H in Eq. �2.3� Poisson com-
mutes both with I and �since normalization preserves the
axial symmetry� with L. In other words, I and L are first
integrals of the system with Hamiltonian H. Reduction of the
respective degrees of freedom means reduction of the com-
bined action of the dynamical 1:1:2 symmetry S1 and the
axial symmetry SO�2�. As a result we obtain a system with
one degree of freedom and two-dimensional reduced phase
space PI,L. There is a one-to-one correspondence between
points of spaces PI,L and orbits of the S1�SO�2� action.

As we show later in Appendix C 2 c, the space PI,L does
not always have the same topology: for �L�= I it is just a
point, it is diffeomorphic to a sphere S2 for all L�0 and
�L�� I �see Fig. 7, right�, while PI,0 is a singular sphere with
one conical point for maximum J= I �see Fig. 7, left�. The
geometric reason for the singularity of PI,0 is fundamental.
The 1:1:2 action S1 on the original phase space Rq,p

6 of the
Fermi system is not free because its circular orbits defined by
p1

2+q1
2=2I in the plane �*= �p2x= p2y =q2x=q2y =0� are, obvi-

ously, two times shorter than all others �for CO2 these are
trajectories of the symmetric stretch normal mode 1�. The
SO�2� action is not free either because points in �* �and only
these points� are its fixed points. It follows that for fixed I
�0 and L=0, the combined S1�SO�2� action has one non-
regular circular orbit SI

1��* with J= I, while all other orbits
are regular two-tori. Reduction of the S1�SO�2� symmetry
sends these orbits to points of the reduced spaces PI,L. Every

2
point of PI,L with L�0 represents a particular regular T
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orbit, while PI,0 has one isolated point which represents the
singular circle. Such point on PI,0 must necessarily be singu-
lar. The situation described above is characteristic of reduc-
tion of nonfree symmetry actions or singular reduction pio-
neered by Cushman8,17 as a generalization of regular
reduction of Lie symmetries.19 Singular reduction is particu-
larly common in applications such as systems with reso-
nances other than 1:¯:1.

b. Reduction using action-angle variables

To represent the normalized Hamiltonian H in this paper,
we use action variables �I ,L ,J�, such that �L�� I and 0�J
� I− �L�. Of the three corresponding conjugate angles, �I and
�L are, obviously, cyclic variables not present in H
=H�J ,�J , I ,L�, where �J is conjugate to J �see Eq. �2.2��.
Replacing I and L for their values, we obtain the reduced
Hamiltonian HI,L�J ,�J�.

Coordinates �J ,�J� are “polar coordinates in disguise:17”
as illustrated in Fig. 7, they give a cylindrical chart PI,L

= �0, I− �L�� � S1 of the actual reduced phase space PI,L. The
situation is similar to that discussed in Appendix C 1 d albeit
now PI,L has not always the S2 topology and can itself be
singular. Worst of all, the singularity of PI,0 is masked by the
singularity of the chart PI,L→PI,L and it remained for this
reason unrecognized in a number of studies of the polyads of
the 1:2 Fermi systems.

One might argue that coordinates �J ,�J� are inappropri-
ate for studying monodromy and plane switching in our sys-
tem because in such study we are interested in the dynamics
near the “combined” singularity of these coordinates at J= I
and the underlying phase space PI,0 and should have discon-
tinuities in the solution for �J�t�. However, following the
derivation of Eqs. �2.4� and �2.10�, one realizes that �J�t� is
of no value to our analysis and that we have circumvented
this difficulty by excluding �J�t� completely from our con-
sideration. In particular, Eq. �2.10� is obtained by combining
d� /dt=�H /�L and H=E in order to eliminate the Fermi term
with cos�2�J�.

c. Poisson reduction

We now briefly survey the way to reduce the symmetries
of the 1:1:2 system while preserving its geometry3,5,6 in order

FIG. 7. Singular �left� and regular �right� reduced phase spaces PI,L and their
cylindrical charts PI,L.
to show that our Eqs. �2.4� and �2.10� are indeed direct
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higher order analogs of the ones studied previously for the
resonant swing spring.3 The reduced system can be described
fully using three dynamical variables

R =
1

4
�z̄2z2 + z̄3z3� =

1

2
�I − J� ,

S =
1

4
�z̄1z2

2 + z1z̄2
2 + z̄1z3

2 + z1z̄3
2� , �C6�

T =
i

4
�z̄1z2

2 − z1z̄2
2 + z̄1z3

2 − z1z̄3
2� ,

which are all invariants of the combined action of the 1:1:2
oscillator symmetry S1 and axial symmetry SO�2� and obey

2�I,L = T2 + S2 − �4R2 − L2��I − 2R� = 0 �C7�

and inequalities 0� �L� /2�R� �I� /2. We should also notice
that the reduced system inherits additional finite symmetry
properties from the original system, notably the invariance
with respect to T→−T and L→−L. Taking these extra dis-
crete symmetries and Eq. �C7� into account, we can show
that the reduced Hamiltonian HI,L is an arbitrary polynomial
in just two invariants R and S and that it includes only even
degrees in L. The trio of functions �R ,S ,T� generate the
Poisson algebra of the reduced system. By a direct compu-
tation we find the structure of this algebra

S T

R T − S

S 12R2 − 4IR − L2

Note that function �I,L in Eq. �C7� is the Casimir and

��a,�b� = �abc
��I,L

��c
�C8�

for �= ��1 ,�2 ,�3�= �R ,S ,T�. We can now define the Poisson
structure on PI,L and find equations of motion for dynamical
variables �R ,S ,T� of the reduced system. For the second-
order Hamiltonian of degree 4 in �pk ,qk�

H = aS − b�I�R + cR2 − h0�I,L2� = h �C9�

we have

dR

dt
= �R,H� = aT ,

dS

dt
= �S,H� = �b − 2cR�T ,

dT

dt
= �T,H� = − 12aR2 + 4aIR − �b − 2cR�S + aL2.

Solving Eq. �C7� for T2�S ,R , I ,L� and Eq. �C9� for S�R ,h�
2
and substituting in �dR /dt� give the equivalent of Eq. �2.4�
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	dR

dt

2

= − c2R4 + �2bc − 8a2�R3 + �4Ia2 + 2hc − b2�R2

+ 2�L2a2 − hb�R − h2 − IL2a2. �C10�

Similarly, we can obtain the second-order ordinary differen-
tial equation �ode� from d2R /dt2=adT /dt which corresponds
to Eq. �59� in Ref. 3. Notice that the reduced Hamiltonian
remains linear in S up to order 3 and that the same approach
can be used to find equations of motions at this order.

When c=0, solution R�t� of Eq. �C10� can be expressed
in terms of the Weierstrass elliptic function �,20

R�t� = c0 + c1��t + it0;g2,g3� . �C11�

This kind of solution �for b=0� was used previously in the
studies of the model 1:1:2 resonant swing-spring system.1–4

Solution for the case c�0 is given in Ref. 10 in terms of
Jacobi elliptic function sn�t� and is used in this paper. This
solution is a rational function of �. In our case of c�a it can
be written as a sum of solution in Eq. �C11� �with modified
parameters� and a small correction which is a rational func-
tion of � and which vanishes in the limit c→0.

Finally, we derive equation for d� /dt which is easier to
obtain in the action-angle variables as �HI,L�J ,�J� /�L. Here
we notice that �L Poisson commutes with R by definition.
Furthermore,

0 = ���L,S�,L� + ��S,L�,�L� + ��L,�L�,S�

= ���L,S�,L� + �0,�L� − �1,S�

= ���L,S�,L�

and it is also clear that ���L ,S� , I�=0. Therefore d� /dt is a
function on the reduced phase space and can be expressed in
terms of �R ,S ,T�. Direct computation using the �pk ,qk� defi-

nition of �L in Appendix C 1 c gives

Downloaded 22 Feb 2006 to 193.48.255.141. Redistribution subject to
d�

dt
= ��,H� = a��L,S� −

�h0

�L
= a

LS

L2 − 4R2 −
�h0

�L
.

Replacing S for solution S�R ,h� of Eq. �C9� we obtain the
equivalent of Eq. �2.10�.
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