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The mechanical model based on beads and springs, which we recently proposed to study nonspecific
DNA-protein interactions �J. Chem. Phys. 130, 015103 �2009��, was improved by describing
proteins as sets of interconnected beads instead of single beads. In this paper, we first compare the
results obtained with the updated model with those of the original one and then use it to investigate
several aspects of the dynamics of DNA sampling, which could not be accounted for by the original
model. These aspects include the effect on the speed of DNA sampling of the regularity and/or
randomness of the protein charge distribution, the charge and location of the search site, and the
shape and deformability of the protein. We also discuss the efficiency of facilitated diffusion, that is,
the extent to which the combination of 1D sliding along the DNA and 3D diffusion in the cell can
lead to faster sampling than pure 3D diffusion of the protein. © 2009 American Institute of Physics.
�doi:10.1063/1.3216104�

I. INTRODUCTION

Although great advances have been made in genetics in
the past decades and the genomes of several species are now
completely mapped, there is still a lot of discussion on how
gene expression takes place. This process is regulated by
transcription factors, which are proteins that first connect to
the DNA chain at specific sites and then promote transcrip-
tion by RNA polymerase. The means by which these proteins
find their targets are, however, not very well understood.
Some of the first studies in this field suggested that the LacI
repressor of Escherichia coli connects to its specific site at a
rate that is much faster than could be expected by normal
diffusion in the cell.1 This triggered the development of a lot
of theoretical models,2–8 which aimed at understanding the
results of these experiments and at describing the mechanism
of nonspecific �sequence independent� as well as specific �se-
quence dependent� DNA-protein interactions. Most of these
models rely on the hypothesis that the sampling of DNA is
accelerated by a reduction of dimensionality,9 in the sense
that part of the sampling is done in only one dimension, with
the protein sliding along the DNA chain. This process is
known as “facilitated diffusion:” the protein connects ran-
domly on the DNA chain and then slides along it in search of
its target. If it does not find it after a certain amount of time
it disconnects, diffuses in the cell and then reconnects some-
where else. Sampling may be greatly accelerated if random
walks are interrupted before too many half turns, thereby
diminishing the redundant part of the process.

The development of new techniques for in vivo micros-
copy has recently permitted the direct visualization of the
motion of proteins inside the cell and the precise determina-
tion of their diffusion coefficients.10–19 Nonetheless, the ex-
act mechanism of nonspecific DNA-protein interactions still

remains unclear, because proteins come into a multitude of
shapes and sizes, and each of them interacts with DNA in a
particular manner. We recently proposed a dynamical model
for the description of nonspecific DNA-protein interaction,
which we hope is sufficiently general to grab the traits that
are common to all of these systems.20 This model is based on
the “beads and springs” description of the DNA chain, with
elastic, bending and Debye–Hückel electrostatic interactions
between the beads,21 while the protein interacts with DNA
through electrostatic and excluded volume forces. We stud-
ied the properties of this model using a Brownian dynamics
algorithm that takes hydrodynamic interactions into account
and obtained results that agree fairly well with the experi-
mental results,10–19 as well as the assumptions and predic-
tions of kinetic models.2–8 For example, the protein samples
DNA by a combination of three-dimensional diffusion �3D�
in the cell and one-dimensional �1D� sliding along the DNA
chain. This model evidences the presence, in a certain range
of values of the effective protein charge, of facilitated diffu-
sion, that is a combination of the two types of diffusion that
leads to faster-than-3D diffusion sampling of DNA. More-
over, the analysis of sliding events showed that the number
of base pairs visited during sliding increases with the square
root of time and is comparable to those deduced from single
molecule experiments. At last, the model suggests that, for
the global �1D+3D� motion of the protein, this number in-
creases linearly with time until it reaches a value that is close
to the total number of DNA base pairs in the cell.

To our opinion, the weakest feature of this model is the
oversimplified description of the protein, which was modeled
as a single rigid sphere.20 The purpose of the present work is
to update this model with a more decent description of the
protein and to check to what extent this affects the conclu-
sions drawn in Ref. 20. More precisely, we model the protein
as a set of 13 beads, which carry different electrostatica�Electronic mail: marc.joyeux@ujf-grenoble.fr.
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charges and are interconnected by springs, and discuss
whether the improved model still displays facilitated diffu-
sion. We also study how different parameters—such as the
total protein charge, the charge and location of the search
site, the randomness of the charge distribution, and the
shape, and the deformability of the protein—affect the effi-
ciency of the sampling process.

The remainder of this article is organized as follows. The
improved model is described in Sec. II, paying special atten-
tion to the geometries and charge distributions of the various
protein configurations which dynamics are studied in this
paper. Section III reinterprets to some extents the results ob-
tained in Ref. 20 in the light of what is known as the “vol-
ume of the Wiener sausage” in the mathematical literature,
while the results obtained with the improved model are pre-
sented in Secs. IV–VI. More precisely, the laws governing
the time evolution of the number of different DNA beads
visited by the protein search site during 1D sliding and 3D
motion in the cell are discussed in Sec. IV. The relevance of
the concept of facilitated diffusion for the new model is next
analyzed in some detail in Sec. V. Section VI finally de-
scribes the effect on the speed of DNA sampling of several
protein properties that could not be taken into account within
the single bead protein model of Ref. 20, like the shape and
deformability of the protein, the regularity or randomness of
its charge distribution, and the charge and position of the
search site. We conclude in Sec. VII.

II. MODEL AND SIMULATIONS

The system consists of DNA and a protein enclosed in a
sphere, which models the cell or its nucleus. As discussed in
Ref. 20, DNA is not modeled as a single long chain, in order
to avoid excessive DNA curvature at the cell walls. It is
instead modeled as a set of m=50 disconnected smaller
chains �hereafter called segments�, each segment consisting
of n=40 beads, which are separated at equilibrium by a dis-
tance l0=5.0 nm. Each bead, which represents 15 base pairs,
has a hydrodynamic radius aDNA=1.78 nm and an effective
charge eDNA=−0.243�1010l0ē�−12ē placed at its center
�ē is the absolute charge of the electron�. The radius of the
sphere, R0=0.169 �m, was chosen in order that the density
of bases inside the cell is close to the experimentally ob-
served one. Indeed, as pointed out in Ref. 5, the volume V
of the cell or the nucleus is connected to the total DNA
length L according to V=w2L, where w represents roughly
the spacing of nearby DNA segments. m and n must there-
fore fulfill the relation 4

3�R0
3�w2mnl0, where the average

value w=45.0 nm holds for both prokaryote and eukaryote
cells. Moreover, the length of each DNA segment is approxi-
mately equal to the radius of the cell, that is nl0�R0, so that
�i� the cell is rather homogeneously filled with DNA, �ii� end
effects are negligible, and �iii� excessive curvature of DNA
segments touching the cell wall is avoided.

While proteins were taken as single beads in Ref. 20,
they are modeled in the present work by sets of 13 beads
with hydrodynamic radius aprot=3.5 nm interconnected by
elastic bonds. We essentially investigated two different pro-
tein geometries, namely, “spherical” and “linear” proteins.

The simplest spherical protein is obtained by placing 12
beads at the vertices of a regular icosahedron and a thirteenth
bead at its center �21 beads would have been required for a
regular dodecahedron�. A bond connects the central bead to
the 12 other beads, and each bead at a vertex is connected to
its five nearest neighbors by a similar bond. The distance
between the central bead and those at the vertices is equal to
the bead radius aprot=3.5 nm, so that the radius of the pro-
tein at rest is close to 7.0 nm and the distance between two
nearest neighbors placed at vertices is L0=4aprot /�10+2�5
�3.68 nm. Linear proteins are taken as flexible and exten-
sible chains of 13 beads separated at equilibrium by a dis-
tance aprot=3.5 nm. Because no bending interaction among
protein beads is taken into account �see below�, linear pro-
teins generally assume bent geometries with average end-to-
end distances of the order of 17.0 nm. We fixed the number
of beads of linear proteins to 13 for the sake of an easier
comparison with spherical proteins.

All beads, except for those at the center of spherical
proteins, are assigned electrostatic charges ep placed at their
centers �note, however, that electrostatic interactions be-
tween protein beads are neglected, see below�. We consid-
ered several protein charge distributions, namely, �i� uniform
distributions with increasing total charge eprot=�pep, �ii� gra-
dients of charges with fixed total charge eprot and increasing
values of the maximum charge emax, �iii� gradients of charges
with fixed maximum charge emax and increasing total charge
eprot, and �iv� random distributions. For spherical proteins,
gradient distributions are based on sets of four equally
spaced charge values emax−k�, where k varies from 0 to 3
and �= �12emax−eprot� /18. Charges emax and emax−3� are
carried by two beads placed at opposite vertices of the icosa-
hedron, while the five beads closest to the bead with charge
emax carry a charge emax−� and the five beads closest to the
bead with charge emax−3� carry a charge emax−2�. For lin-
ear proteins, instead of a single bead with charge emax−3�,
we placed the charge �emax−3�� /2 at the center of two
beads, in order to compensate for the fact the bead placed at
the center of the icosahedron is not charged. We usually in-
creased the total charge eprot, as well as the maximum charge
emax, up to −5eDNA, that is approximately 60ē, which covers
a wide range of experimental values for both prokaryote and
eukaryote transcription factors.22,23 At last, all the results pre-
sented below were obtained by considering that the protein
search site corresponds to a single bead. In most cases, and
unless otherwise specified, this bead had the highest positive
charge emax, but we also ran simulations were this was no
longer the case.

The potential energy Epot of the system is composed of
four terms

Epot = VDNA + Vprot + VDNA/prot + Vwall, �2.1�

where VDNA describes the potential energy of the DNA seg-
ments and the interactions between them, Vprot refers to in-
teractions among protein beads, VDNA/prot stands for the in-
teractions between the protein and the elements of the DNA
chain, and Vwall models the interactions with the cell wall,
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which maintain the protein and the DNA inside the cell �con-
finement energy�. We used for VDNA the same expression as
in our previous work �see Eq. �2.2� of Ref. 20 and the dis-
cussion below this equation�. VDNA is therefore modeled as
the sum of stretching, bending and repulsive electrostatic
terms.21,24,25 In contrast, we considered that the beads that
compose proteins interact with each other only by means of
harmonic stretching potentials. More precisely, for linear
proteins

Vprot =
1

2
C

kBT

aprot
2 �

j=0

11

�Lj,j+1 − aprot�2. �2.2�

In Eq. �2.2�, the 13 beads are labeled from j=0 to j=12 and
Lj,j+1= �R j −R j+1� denotes the distance between two succes-
sive beads �R j is the position of bead j�. A distance aprot

separates two neighboring beads at equilibrium. For spheri-
cal proteins, we instead assumed that

Vprot =
1

2
C

kBT

aprot
2 �

j=1

12

�L0,j − aprot�2

+
1

2
C

kBT

L0
2 �

j=1

12

�
k�V1�j�
k�j

�Lj,k − L0�2. �2.3�

In Eq. �2.3�, index 0 refers to the bead located at the center of
the icosahedron and indices 1–12 to those placed at the ver-
tices, Lj,k= �R j −Rk� denotes the distance between protein
beads j and k, and k�V1�j� means that the sum runs over the
five beads k that are the nearest neighbors of bead j at equi-
librium. At equilibrium, the central bead is separated by aprot

from the beads placed at the vertices of the icosahedron,
while two neighboring beads located at vertices are separated
by L0. Unless otherwise specified, all the results shown be-
low were obtained with a constant C in Eqs. �2.2� and �2.3�
equal to C=100, like for the DNA elasticity constant h, in
order to get very small displacements of the average bond
length without precluding the use of sufficiently large time
steps. Still, we also ran simulations where C was varied be-
tween 5 and 225 to study how the deformability of proteins
affects facilitated diffusion.

The confinement potential Vwall is taken, as in Ref. 20, as
a sum of repulsive terms that act on the beads that trespass
the radius R0 and repel them inside the sphere:

Vwall = kBT�
j=1

m

�
k=1

n

f��r j,k�� + 10 kBT�
j=0

12

f��R j�� , �2.4�

where r j,k denotes the position of bead k of DNA segment j
and f�x� is the repulsive wall function defined in Eq. �2.5� of
Ref. 20. Finally, and most importantly, the interaction be-
tween a protein and a DNA bead is described as the sum of a
repulsive excluded volume term and an electrostatic Debye–
Hückel potential, which might be either repulsive or attrac-
tive, depending on the sign of the electrostatic charge ep

placed at the center of the protein

VDNA/prot = �
p=0

12

�Ee
�p� + Eev

�p�� ,

Ee
�p� =

eDNAep

4��
�
j=1

m

�
k=1

n exp	−
1

rD
�r j,k − Rp�


�r j,k − Rp�
, �2.5�

Eev
�p� = 1.86 kBT� ep

eDNA
��

j=1

m

�
k=1

n

F��r j,k − Rp�� ,

where the function F�x�, which is defined in Eq. �2.7� of Ref.
20, is the repulsive part of a Lennard-Jones-like potential
function. Note that charges are taken as signed quantities in
Eq. �2.5�, while they were considered as positive quantities
in Eq. �2.6� of Ref. 20. This is the reason why there was a
minus sign in the expression for Eev

�p� in our first study, while
there is none in the present work. The reader can refer to Ref.
20 for a discussion concerning the choice of the excluded
volume potential Eev

�p�. However, it is important to emphasize
that, when the charges placed at the center of the DNA and
protein beads have opposite signs, the interaction between
the two beads must be minimum at some value close to
�=aDNA+aprot=5.28 nm, i.e., the sum of the radii of the
DNA and protein beads, in order for 1D sliding to take place.
The expression for Eev

�p� in Eq. �2.5� ensures that this is, in-
deed, the case and that the position of the minimum does not
depend on the charge ep. It should however be mentioned
that, in this study, the interaction potential is minimum not
when the centers of the two beads are separated by exactly �,
as in Ref. 20, but rather when this distance is equal to
�+0.5 nm �this was achieved by introducing the factor 1.86
in the expression of Eev

�p��. The minimum of the potential well
was shifted by this small amount in order to better agree with
recent theoretical models26 and experimental results for com-
plexes of EcoRV �Ref. 27� and the Skn1 and Sap1 proteins.28

As in Ref. 20, we use the Brownian dynamics algorithm
of Ermack and McCammon29 to integrate numerically the
equations of motion for the 13 protein beads and the 100
DNA beads that are located closest to them �see Eq. �2.8� of
Ref. 20�. The hydrodynamic interactions tensor D�n�, on
which this algorithm is based, is built using a modified form
of the Rotne–Prager hydrodynamic interaction tensor30 for
beads of unequal sizes31–33 �see Eqs. �26�–�28� of Ref. 33�.
The CPU time required for the Choleski factorization of D�n�

in the Ermack and McCammon algorithm increases as the
cube of the number of beads that are taken into account in
D�n�, so that this turns out to be the limiting step for the
investigation of the dynamics of large systems. This is the
reason why we use the diagonal approximation of this algo-
rithm, that is Eq. �2.10� of Ref. 20 to compute the motion of
the 1900 other DNA beads. As discussed in Ref. 20, this is
sufficient to ensure that Choleski factorization slows down
calculations by only 10% without affecting the results of the
present simulations, which essentially aim at studying the
interactions between DNA and the protein. This procedure
is therefore an interesting alternative to Fixman’s
approximation.34–36
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At last, let us mention that we checked that simulations
performed with respective time steps �t of 25, 100, and
200 ps lead to similar results. All the results discussed below
were consequently obtained with a time step �t=100 ps.
Moreover, all these results were averaged over six trajecto-
ries with different initial configurations.

III. 1D AND 3D WIENER SAUSAGES

The purpose of this section is to reinterpret to some ex-
tent the results presented in our previous study20 in the light
of what is known as the “volume of the Wiener sausage” in
the mathematical literature.

We showed in Ref. 20 that, when the protein is modeled
by a single bead, the portion of time �1D during which it
interacts with the DNA chain increases sharply and continu-
ously with the electrostatic charge eprot placed at its center
�see Fig. 4 of Ref. 20�. We also showed that the number N�t�
of different DNA beads visited by the protein after some
given amount of time t also increases with eprot up to about
eprot��eDNA�. However, it then remains approximately con-
stant up to eprot�3�eDNA�, before decreasing again rapidly for
larger values of eprot �see Fig. 9 of Ref. 20�. The maximum
speed up of the search time due to facilitated diffusion was
found to be of the order of 2. Moreover, we observed that,
for eprot��eDNA�, N�t� increases as the square root of time
during 1D sliding events �see Fig. 8 of Ref. 20�. In contrast,
when considering the global motion �1D+3D� of the protein,
N�t� was found to increase linearly with time �as long as it
remains small compared to the total number of DNA beads�
for the whole range of investigated values of eprot �see Fig.
13 of Ref. 20�. We concluded from these observations that
the model predicts that 1D sliding is a diffusive process,
while 3D motion of the protein in the cell or its nucleus is
not. It turns out that the second conclusion is erroneous, in
the sense that a linear increase of N�t� during 3D motion is
actually characteristic of a diffusive behavior. Indeed, if we
assume that both the 1D and 3D motions of the protein are
pure Brownian processes characterized by diffusion coeffi-
cients D1D and D3D, such that


R2��t� = 2D1Dt �3.1�

for 1D motion, and


R2��t� = 6D3Dt �3.2�

for 3D motion, then the number N�t� of different DNA beads
visited by the protein after time t is closely related to the
length ��t� �1D motion� or the volume V�t� �3D motion�
visited by the bead after the same time. These quantities
were called the volume of the Wiener sausage by Donsker
and Srinivasa.37 Analytical expressions for their long time
asymptotics are known.38,39 For 1D motion, one has

��t� ��16

�
D1Dt , �3.3�

while for 3D motion

V�t� � 4�	D3Dt , �3.4�

where 	 is the maximum distance away from the central
Brownian motion. Most importantly, V�t� increases linearly
with time, which implies that N�t� also does, because N�t�
and V�t� can be related with good approximation through
N�t�=cV�t�, where c is the concentration of DNA beads in-
side the cell �this expression is based on the assumption that
DNA motion can be neglected compared to the protein one�.
Therefore, the linear increase of N�t� observed in Ref. 20
indicates that our model predicts that the 3D motion of the
protein is essentially diffusive, just like 1D sliding, which
agrees with the basic assumption of kinetic models. One can
use Eq. �3.4� to estimate the rate of linear increase 
 of N�t�

N�t� = 
t �3.5�

as long as it remains sufficiently small compared to the
total number of DNA beads. In our model it is sufficient
that the protein bead touches a DNA bead to interact with
it. Parameter 	 in Eq. �3.4� must therefore be taken as
	=aprot+2aDNA. By combining these equations, one there-
fore gets


 � 4��aprot + 2aDNA�D3Dc . �3.6�

When plugging in Eq. �3.6� the actual concentration of DNA
beads, c=9.89�1022 beads /m3, and the 3D diffusion coef-
ficient at 298 K of a sphere of radius aprot,

D3D =
kBT

6��aprot
� 0.7 � 10−10 m2/s �3.7�

one obtains 
�0.61 beads /�s, which is less than a factor 2
away from the value 
�1.09 beads /�s we observed for a
purely repulsive potential between the protein and the DNA
beads,20 and coincides almost perfectly with the value which
is obtained when hydrodynamic interactions are furthermore
disregarded, that is, when the positions of all the beads are
updated according to Eq. �2.10� of Ref. 20.

Similarly, one can use Eq. �3.3� to estimate the diffusion
coefficient of the protein during 1D sliding events along the
DNA chain. We indeed observed that for eprot= �eDNA� and for
sufficiently long sliding events, N�t� increases according to
N�t�=��t where ��6.34 beads �s−1/2 �see Fig. 8 of Ref.
20�. Since N�t�=��t� / l0, one consequently obtains

D1D =
�

16
l0
2�2 � 2.0 � 10−10 m2/s, �3.8�

or, equivalently, D1D�7.9 beads2 /�s, or D1D

�1800 bp2 /�s, which is, as already discussed in Ref. 20,
about two orders of magnitude too large compared to experi-
mental values.11,14

IV. TIME EVOLUTION OF N„t… during 1D
and 3D motions

As discussed in some detail in Sec. III, for single bead
proteins N�t� increases like �t during 1D sliding events and
like t for the global 3D motion at short times, that is as long
as N�t� remains small compared to the total number of DNA
beads. Is this still the case for 13 beads proteins?

105102-4 A.-M. Florescu and M. Joyeux J. Chem. Phys. 131, 105102 �2009�

Downloaded 10 Sep 2009 to 193.48.255.141. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



We investigated a large number of different spherical
and linear 13 beads protein models and found that, for all the
examples with reasonable charge distributions, N�t� follows
the law we proposed in Ref. 20 for single bead proteins, that
is

N�t�
2000

= 1 − exp	− 

t

2000

 . �4.1�

This is illustrated in Fig. 1, which shows the time evolution
of log�1−N�t� /2000� for selected linear and spherical pro-
teins with uniform and gradient distributions of charges. It is
seen that Eq. �4.1� remains valid for very long times and for
values of N�t� very close to the total number of DNA beads.
Equation �4.1� of course reduces to Eq. �3.5� at short times.
According to the formula for the volume of the Wiener sau-
sage, this indicates that, like for single bead proteins, the
global motion of 13 beads proteins is essentially diffusive.
Figure 1 also points toward a very general result, namely that
N�t� increases significantly more rapidly for linear proteins
than for spherical ones �at least as long as the search site is
located at one of the extremities of the chain, see Sec. VI�.

The rationale for this observation is that, according to Eq.
�3.6�, 
 increases linearly with D3D and the 3D diffusion
coefficient of linear proteins is significantly larger than that
of spherical ones �0.35�10−10 against 0.20�10−10 m2 /s at
C=100�.

In contrast, it might seem at first sight that 13 beads
proteins differ more substantially from single bead ones as
far as 1D sliding along DNA is involved. For example, Fig. 2
shows log-log plots of N�t� for long sliding events of spheri-
cal proteins with uniform and gradient distributions of
charges. It is seen that the time evolution of N�t� approxi-
mately corresponds to straight lines in these plots,
which implies that N�t� increases as a power of t, that is
N�t�=�t
, but the exponent 
 is now smaller than 1/2. Stated
in other words, 1D sliding is subdiffusive. This is not really
surprising, because subdiffusion is often encountered in
dense media and has recently been experimentally reported
for the global motion of proteins in the cytoplasm or the
nucleus.40–42 By looking more closely at sliding events, it
can be noticed that 13 beads proteins spend large amounts of
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dient distribution of charges with total charge eprot=−1.2eDNA and maximum
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tion of charges with total charge eprot=−0.8eDNA and maximum charge
emax=−1.2eDNA, and four values of the elastic constant C ranging from 10 to
200 �bottom�. In order to improve the signal/noise ratio, it was assumed for
this plot that the protein is attached to bead k of DNA segment j if any of the
protein beads �and not a given one� satisfies the condition �r j,k−Rp���.
Each curve was averaged over a number of sliding events that varied be-
tween 50 and 200. Each sliding event lasted more than 1 �s, during which
the protein neither separated from the DNA segment by more than � during
more than 0.07 �s nor reached one of the extremities of the DNA segment.
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time attached to the same DNA bead and the time intervals
during which they actually slide are substantially shorter
than for single bead proteins with eprot=−eDNA. This is an
important observation, because it is well known that large
average waiting times between random-walk steps are suffi-
cient to induce subdiffusion �see, for example, 43�. The rea-
son why waiting times are longer for 13 beads proteins than
for single bead ones is that in this model sliding is driven
uniquely by thermal noise and this process is less efficient
for 13 beads proteins than for single bead ones, because part
of the energy received from collisions is used to deform pro-
teins instead of being converted into sliding impulsions. Still,
it should be mentioned that the average number of beads
visited during each sliding event �five to ten beads, that is
from 75 to 150 base pairs� is in fairly good agreement with
experimental results, which lie in the range of 30–170 base
pairs.18,19

If the depth of the attractive well between DNA and the
protein is smaller than the energy kBT of thermal noise, then
the protein does not spend enough time connected to DNA
for actual sliding to take place. On the other hand, if attrac-
tion is too strong, then the protein remains attached to a
particular DNA bead instead of sliding. One therefore ex-
pects that waiting times become longer and longer for in-
creasing values of the protein charge eprot and, consequently,
that the exponent 
 decreases. It can be checked in the top
plot of Fig. 2 that this is indeed the case. While values of 

close to 0.40 were obtained for most of the investigated pro-
teins �see Fig. 2�, 
 was found to decrease down to about
0.20 for uniform charge distributions with eprot=−4.8eDNA

�see the top plot of Fig. 2�.
At that point, we however checked that single bead pro-

teins actually behave just like 13 beads ones with that re-
spect. More precisely, we performed simulations with single
bead proteins with charge eprot=−5eDNA and obtained

�0.30. The diffusive character of 1D sliding reported in
our previous work �
=0.50 for eprot=−eDNA� therefore does
not extend to proteins with too large values of eprot.

To summarize this section, the time evolution of N�t� is
rather similar for single bead and 13 beads proteins. For the
global 3D motion, N�t� evolves according to Eq. �4.1�, which
reduces to the linear law of Eq. �3.5� at short times. The
expression for the volume of the 3D Wiener sausage �Eq.
�3.4�� and the expression for 
 derived there from �Eq. �3.6��
therefore apply to both models. For moderate protein
charges, the motion during 1D sliding is diffusive for single
bead proteins �
=0.5� and slightly subdiffusive for 13 beads
proteins �
�0.40�. The subdiffusive character of the motion
increases with eprot for both models. Strictly speaking, the
expression for the length of the 1D Wiener sausage �Eq.
�3.3�� applies only to diffusive motion.

V. FACILITATED DIFFUSION AND SPEED UP
OF DNA SAMPLING

In Ref. 20, the value of the electrostatic charge placed at
the center of the protein bead was increased in order to vary
the portion of time �1D during which the protein is attached
to DNA and check whether certain combinations of 1D and

3D motions lead to faster DNA sampling than pure 3D dif-
fusion. In this section, we will follow the same general idea,
except that the protein is now modeled by 13 interconnected
beads instead of a single one, so that there are several differ-
ent ways to modify �1D.

The most natural way to compare the dynamics of the
present model to that of the previous one consists in placing
identical electrostatic charges at the center of the 12 beads
located at the vertices of the icosahedron �uniform charge
distributions� and letting these charges vary. Results for such
spherical proteins with uniform charge distributions are pre-
sented in Fig. 3. This figure displays the evolution, as a func-
tion of the total protein charge eprot, of three quantities,
namely N�100 �s�, the number of different DNA beads vis-
ited by the protein search site after 100 �s �top plot�, �1D,
the portion of time that the protein search site spends at-
tached to a DNA bead �middle plot�, and nsim, the average
number of DNA beads that are simultaneously attached to
the protein search site when it interacts with DNA. Circles
correspond to results obtained by considering that protein
bead p is attached to bead k of DNA segment j if
�r j,k−Rp���, while lozenges correspond to the criterion
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FIG. 3. Plot, as a function of the total protein charge eprot, of N�100 �s�
�top�, �1D �middle�, and nsim �bottom� for spherical proteins with uniform
charge distributions. N�100 �s� is the number of different DNA beads vis-
ited by the protein search site after 100 �s, �1D is the portion of time that
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average number of DNA beads that are simultaneously attached to the pro-
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obtained by considering that protein bead p is attached to bead k of DNA
segment j if �r j,k−Rp���, while lozenges correspond to the criterion
�r j,k−Rp��1.5�. Error bars indicate the standard deviations for the six tra-
jectories over which each point was averaged �note that error bars are
masked by circles and lozenges whenever the size of these symbols is larger
than the computed standard deviation�. Points at eprot=0 denote results ob-
tained with purely repulsive interactions between DNA and the protein.
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�r j,k−Rp��1.5�. Error bars indicate the standard deviations
for the six trajectories over which each point was averaged.
The point at eprot=0 corresponds to purely repulsive DNA-
protein interactions, that is, more precisely, when keeping
only the repulsive part of the interaction potential with
ep=−0.1eDNA. It can safely be considered that, for repulsive
DNA-protein interactions, the motion of the protein inside
the cell is rather similar to pure 3D diffusion.

Examination of the middle and bottom plots of Fig. 3
shows that both �1D and nsim increase with eprot like for
single bead proteins. Large values of nsim indicate that the
protein charge is sufficiently large for the protein to attract
and attach simultaneously to several DNA segments, which
form a cage around it. As in Ref. 20, it is emphasized, that
this phenomenon is probably not relevant from the biological
point of view, because only a few proteins are known to have
more than one “reading head”44 �an example is precisely the
Lac repressor, which has two binding sites45�. This implies
that one should consider only those charge distributions,
which are associated with moderate values of nsim, say,
smaller than 3 for the 1.5� threshold.

When comparing the top plot of Fig. 3 of this article
with Fig. 9 of Ref. 20, one first notices that N�t� increases
more slowly for 13 beads proteins than for single bead ones.
For example, for the repulsive potential, the number of DNA
beads visited by 13 beads proteins is only about 50% of the
number of DNA beads visited by single bead proteins. This
is again essentially due to the difference in the values of the
3D diffusion coefficient at 298 K, which is equal to D3D

=0.70�10−10 m2 /s for single beads and to D3D�0.20

�10−10 m2 /s for 13 interconnected beads. Nonetheless, the
key point is certainly that, as for single bead proteins, there
exists a range of values of eprot for which N�t� increases more
rapidly than for repulsive DNA-protein interactions. This
range extends roughly up to eprot=−2eDNA. Still, it can be
noticed that N�t� is increased at maximum by about 50%
compared to the repulsive potential, while a maximum in-
crease close to 70% was obtained for single bead proteins.20

This is probably connected to the point, already discussed in
the previous section, that 1D sliding is slower and less effi-
cient for 13 beads proteins than for single bead ones.

Needless to say that these conclusions drawn from the
dynamics of proteins with uniform charge distributions must
be confirmed by results obtained for more complex distribu-
tions. We postpone the case of random charge distributions
until Sec. VI and focus now on the results obtained for
spherical proteins with gradient distributions of charges. For
such gradient distributions, we either fixed the value of the
maximum protein charge emax and varied the total charge
eprot, or fixed eprot and varied emax. It turns out that the results
obtained for these gradient distributions are quite similar to
those discussed above, at least as long as eprot and emax re-
main moderate. For example, the results for emax=−0.8eDNA

are shown in Fig. 4 and those for eprot=0 in Fig. 5. It is seen
that, in both cases, �1D increases with increasing charge and
N�100 �s� goes through a maximum for values of �1D com-
prised between 0.3 and 0.7 for the 1.5� threshold. Moreover,
the increase of N�t� relative to the case of purely repulsive
interactions between DNA and the protein does not exceed
40%, which again agrees with the results obtained for uni-
form charge distributions.
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Things are however noticeably different for larger values
of emax or eprot. For example, we checked that for gradient
distributions with eprot=−2.4eDNA, the total protein charge is
sufficiently large for proteins to spend all the time attached to
a DNA segment, irrespective of emax �and consequently of
the charge of the search site: we assumed so far that the
search site is the protein bead with highest positive charge�.
As a consequence, N�100 �s� varies little with increasing
values of emax.

Conclusion therefore is that, even for rather rigid spheri-
cal protein models �remember that C=100 for all the results
presented above�, facilitated diffusion increases DNA sam-
pling speed by about 20%–50% compared to 3D diffusion,
which is substantially less than the 70% increase observed
for single bead proteins.20 Still, the efficiency of the facili-
tated diffusion mechanism is even lower for linear proteins,
as can be seen in Fig. 6, which shows results obtained for
linear proteins with uniform charge distributions �similar re-
sults were obtained for gradient distributions with eprot=0�. C
was also fixed to 100. Since no clear increase of N�100 �s�
is observed when the total charge is increased from zero, in
spite of the fact that �1D does increase significantly, it must
be admitted that no combination of 1D and 3D motions is
more efficient than pure 3D diffusion. This can be under-
stood by noticing that, for identical values of C, spherical
proteins are much more rigid than linear ones, because each
bead at the vertices of the isocahedron is connected to the
central bead and to its five nearest neighbors, while each
bead of linear proteins is connected to only one or two near-
est neighbors. 1D sliding of linear proteins is therefore still
less efficient than that of spherical ones.

VI. WHICH OTHER PARAMETERS DO AFFECT
THE SPEED OF DNA SAMPLING?

The purpose of this section is to discuss the effect of
several parameters, namely, the value of the elastic constant
C, the randomness of the charge distribution and the charge
and position of the protein search site, on the speed of DNA
sampling.

Let us first consider the effect of the protein elastic
constant C. The time evolution of the number N�t� of
different DNA beads visited by the protein search site for
spherical proteins with a gradient distribution of charges with
eprot=−0.8eDNA and emax=−1.2eDNA and values of C ranging
from 10 to 225 is shown in the bottom plot of Fig. 2 for long
sliding events and in Fig. 7 for the global �1D+3D� motion.
While 1D sliding depends little on C, for the global motion
N�t� instead decreases significantly and rapidly with C for
values of C comprised between 10 and 100 before remaining
nearly constant for larger values of C. It can be checked in
Fig. 8 that this is essentially due to the evolution with in-
creasing values of C of the diffusion coefficient, in agree-
ment with Eq. �3.6�. The top plot indeed shows that D3D

decreases from about 0.32�10−10 m2 /s for C=5 to about
0.20�10−10 m2 /s for values of C larger than 100. These
values of D3D were obtained from Eq. �3.2� by launching
simulations that took only the protein into account and dis-
regarded both DNA segments and cell boundaries. The aver-
age protein radius 
L0,j� was also computed during these
simulations. Results are shown as filled circles in the bottom
plot of Fig. 8. It is seen that 
L0,j� decreases with increasing
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values of C in the range C=5–100, so that the increase of
D3D in this range is not in contradiction with Eq. �3.7�. This
decrease of 
L0,j� with increasing C is rather counterintuitive
but agrees with preceding work.32 It is actually due to hydro-
dynamic interactions. Indeed, if hydrodynamic interactions
are neglected in the simulations aimed at estimating D3D,
then the more intuitive result that 
L0,j� slightly increases
with C in the range C=5–100 is recovered �see the empty
squares in the bottom plot of Fig. 8�. Note that Kirkwood
formula for estimating the equivalent hydrodynamic radius
of the protein46 totally fails to reproduce this behavior. Con-
clusion therefore is that, like the shape discussed in Sec. IV,
the deformability of the protein essentially affects the speed
of DNA sampling through the associated variations of the
diffusion coefficient.

Let us next turn to the effect of the regularity/
randomness of the protein charge distribution. While all re-
sults presented up to now involved proteins with either uni-
form or gradient distributions of charges, Fig. 9 indicates
how these results are affected when the charges of a gradient
distribution are redistributed randomly. More precisely, Fig.
9 shows the time evolution of N�t� for spherical proteins with
a gradient distribution of charges with eprot=−2.4eDNA and
emax=−1.2eDNA, as well as two distributions obtained by ran-
dom permutations of these charges �but the search site re-
mains the bead with charge emax�. It can be checked on this
example that the regular and random charge distributions

lead essentially to the same behavior for N�t�. A related ques-
tion is that of the importance of the charge carried by the
search site. It is remembered that it was assumed in all simu-
lations discussed up until now that the search site is the bead
with largest positive charge emax. However, results are not
much affected when this condition is released. For example,
the time evolution of N�t� for spherical proteins with identi-
cal gradient distributions of charges with eprot=−1.2eDNA and
emax=−1.2eDNA but search sites located either on bead 1
�with charge emax=−1.2eDNA� or bead 2 �with charge
−0.467eDNA� are compared in Fig. 10. It is seen that the
difference between the two curves is not significant. By com-
bining the two later observations, it can be surmised that the
results should be rather similar for a given set of protein
charges, whatever the exact spatial distribution of the charges
and the precise charge carried by the search site. It can be
checked in Fig. 11 that this is indeed the case. This figure
shows the time evolution of N�t� for linear proteins with a
gradient distribution of charges with eprot=−2.4eDNA and
emax=−1.2eDNA �solid line�, as well as two distributions ob-
tained by random permutations of these charges. The search
site is the central �seventh� bead of each chain. It has charge
0.13eDNA for the gradient distribution, and charges
−0.53eDNA and 0.40eDNA for the random distributions. In
spite of the large differences between these proteins, the evo-
lution of N�t� is essentially similar for the three of them.
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Conclusion therefore is that, within the validity of this coarse
grained model, the dynamics of DNA sampling is essentially
governed by the total charge of the protein or, in the case this
charge is small, by the maximum local charge, but that the
exact spatial distribution of charges and the precise charge
carried by the search site play little role. It can of course
not be excluded that this conclusion will be somewhat
moderated when the dynamics of finer grained models is
investigated.

In contrast, it should be mentioned that a factor that
certainly does play an important role is the accessibility of
the protein search site. For example, it is clear that, for linear
proteins, beads located at the extremities of the chain are
more accessible and have a higher probability to interact
with DNA than beads located inside the chain, so that one
expects DNA sampling by the former ones to be more effi-
cient. This is confirmed by the examination of Fig. 10, which
displays the time evolution of N�t� for linear proteins with
identical uniform charge distributions with total charge
eprot=−1.3eDNA, but with search sites placed either on bead 1
�extremity� or bead 7 �central bead�. It is seen that bead 1
samples DNA at a speed about 50% larger than the central
bead. This conclusion obviously agrees with the observation
that, in real life, “reading heads” are usually exposed outside
the proteins, like the two � helices of the cro repressor,
which can be inserted in the major or minor grooves of the
DNA double helix.43

VII. DISCUSSION AND CONCLUSION

To summarize, we improved the molecular mechanical
model, which we recently proposed for nonspecific DNA-
protein interactions,20 by describing proteins as sets of inter-
connected beads instead of single ones. It must first be em-
phasized that most results obtained with the improved model
agree with �i� experimental results, �ii� the assumptions and
results of kinetic models, �iii� the results obtained with our
previous model. More precisely, the improved model pre-
dicts, like our original one, that DNA sampling proceeds via
a succession of 3D motion in the cell, 1D sliding along the
DNA sequence, short or long hops between neighboring or
more widely separated sites, and intersegmental transfers.
This behavior is confirmed by recent experiments10–19 and is
one the key assumptions of kinetic models. Quite interest-
ingly, this behavior is however not an assumption for mo-
lecular mechanical models but rather a consequence of the
form of DNA-protein interactions and evolution equations.
In some sense, molecular mechanical models therefore pro-
vide a theoretical grounding for the assumption plugged in
kinetic models. The second crucial assumption of kinetic
models is that both 3D motion of the protein in the cell and
1D sliding along DNA are diffusive processes. In our previ-
ous work,20 we observed that the number N�t� of different
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FIG. 11. Time evolution of the number N�t� of different DNA beads visited
by the protein search site for linear proteins with a gradient distribution of
charges with total charge eprot=−2.4eDNA and maximum charge
emax=−1.2eDNA �solid line�, as well as two distributions obtained by random
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0.40eDNA for the random distributions. It was considered that protein bead p
is attached to bead k of DNA segment j if �r j,k−Rp���.

105102-10 A.-M. Florescu and M. Joyeux J. Chem. Phys. 131, 105102 �2009�

Downloaded 10 Sep 2009 to 193.48.255.141. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



DNA beads visited by proteins increases as the square root of
time during 1D sliding events and linearly with time for the
global 3D motion. We concluded from this observation that
1D sliding is diffusive but not 3D motion. In the present
study, we again obtained that, for the improved model, N�t�
increases linearly with time during 3D motion of the protein.
On the basis of the expression of the volume of the 3D
Wiener sausage, we however showed that the correct inter-
pretation of these results is that 3D motion is indeed diffu-
sive. Stated in other words, the results obtained with both our
original and the improved model agree with the assumption
of kinetic models and ground it to some extent. On the other
hand, we observed that 1D sliding is slightly subdiffusive
for the improved model, with an exponent 
�0.40 for
realistic protein charges, while it was found to be diffusive
�
=0.50� for single bead proteins and it is assumed to be
diffusive in kinetic models. There seems to be some experi-
mental confirmation that protein motion might indeed be
subdiffusive.40–42 At last, it should be mentioned that the
number of DNA base pairs visited during each sliding event
�from 75 to 150 base pairs� is in qualitative agreement with
both experimental results18,19 and the values usually derived
from kinetic models.5

We used the improved model to investigate several as-
pects of the dynamics of DNA sampling that were accounted
for neither by our original model nor by kinetic ones. For
example, we showed that, within the validity of this model,
the shape and deformability of proteins essentially affect the
speed of DNA sampling through the associated variations of
the diffusion coefficient. Moreover, it appears that the sam-
pling speed is governed by the total charge of the protein or,
in the case this charge is small, by the maximum local
charge, while the exact spatial distribution of the charges and
the precise charge carried by the search site seem to play
only a minor role. Simulations also confirm that the accessi-
bility of the protein search site is a key factor.

The only point for which results of molecular mechani-
cal models differ substantially from those of kinetic ones
therefore deals with the efficiency of the facilitated diffusion
process, in the sense that mechanical models predict a quite
low efficiency of facilitated diffusion. In our models, the
relative proportions of 1D sliding and 3D diffusion experi-
enced by proteins can indeed be adjusted by varying the
protein charge distribution within physically reasonable lim-
its. We found that for single bead proteins it is possible to
increase the DNA sampling rate by only about 70% com-
pared to the 3D diffusion limit upon variation of the 1D/3D
motion ratio.20 In the present work we obtained that this
maximum increase is more likely smaller than 50% when the
protein is modeled in a less crude way, that is as a set of 13
interconnected beads, because of the relative inefficiency of
the 1D sliding motion of deformable proteins compared to
single beads. This is in clear disagreement with kinetic mod-
els, which suggest that the speed of DNA sampling can be
increased by several orders of magnitude upon variation of
the ratio of 1D and 3D motions.2–8 The question that arises is
obviously to determine which of mechanical and kinetic
models are in best agreement with experimental results. It
has long been claimed that the results of Riggs, Bourgeois,

and Cohn on the LacI repressor of Escherichia coli are a
proof that binding to specific DNA sites can surpass by sev-
eral orders of magnitude the maximal rate for 3D diffusion,
in spite of the fact that Riggs, Bourgeois, and Cohn them-
selves explained that the extremely fast reaction rate they
measured is probably due to the fact that their experiments
were carried out at very low ionic strength, so that “there is
an electrostatic attraction between a positively charged site
on the repressor and the negatively charged phosphate
groups in the operator.”1 Stated in other words, at low salt
concentrations, the diffusion limit is precisely of the order of
1010 M−1 s−1 and the measurements of Riggs, Bourgeois,
and Cohn just reflect this fact. The hypothesis of Riggs,
Bourgeois, and Cohn was confirmed by subsequent studies
of the effect of salt on the kinetics of the binding of the LacI
repressor, which reported a logarithmic decrease of the
association rate constant from 1010 M−1 s−1 in the absence
of salt to the expected 108 M−1 s−1 value at usual salt
concentrations47–49 �see also Refs. 50–52�. Moreover, most
of the DNA binding proteins that were investigated at usual
salt concentrations since that time were found to have asso-
ciation rate constants close to and not larger than the diffu-
sion limit.53–59 To summarize, it can be stated, as in Ref. 60,
that “no protein that binds to a specific DNA site is known to
do so at a rate that exceeds the diffusion limit” and that
measured rate constants that exceed the usual 108 M−1 s−1

value just reflect the evolution of the diffusion limit with salt
concentration. The fact that our molecular mechanical
models predict that facilitated diffusion cannot substantially
increase the speed of DNA sampling compared to pure 3D
diffusion therefore appears to agree with experimental
results.

The model proposed here describes DNA-protein non-
specific interactions better than our original one, but it still
deserves improvement with respect to several aspects. For
example, a more realistic description should take into ac-
count the presence of histones and the fact that not all the
DNA in a cell is accessible to proteins. Moreover, the de-
scription of the DNA chain should be more detailed, by tak-
ing major and minor grooves and bubbles into consideration.
Last but not least, we should allow for heterogeneity on the
DNA charges as a first step toward the modeling of specific
interactions.
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