
August 27, 2011 11:24 WSPC/1402-9251 259-JNMP S1402925111001568

Article

Journal of Nonlinear Mathematical Physics, Vol. 18, Suppl. 2 (2011) 339–357

c© M. Joyeux
DOI: 10.1142/S1402925111001568

ON THE PSEUDO-SCHRÖDINGER EQUATION
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The Transfer-Integral (TI) operator is a powerful method to investigate the statistical physics of
1-dimensional models, like those used to describe DNA denaturation. At the cost of a certain number
of approximations, the TI equation can be reduced to a Pseudo–Schrödinger Equation (PSE),
according to which the DNA sequence is equivalent to a point particle moving in a potential well. In
this paper, I check the validity of the standard PSE approximation for two different 1-dimensional
DNA models, and show that it fails to provide correct results for both of them. I then propose
a generalized PSE, which works well for one of the two models. Finally, I discuss the particle
description of DNA denaturation that is derived from this generalized PSE.
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1. Introduction

As is well known, DNA consists of two entangled long polymers of simple units. The poly-
mers are called the strands and the monomer units the nucleotides. Each monomer consists
of a phosphate group, a sugar group, and a base. The backbones of the strands are made
of alternating phosphate and sugar groups connected by ester bonds. A base is attached to
each sugar. There are four different types of bases, namely cytosine (C) and thymine (T),
which are monocyclic, and guanine (G) and adenine (A), which are bicyclic. The genetic
information is encoded in the succession of the various A, T, G and C bases that constitute
a specific DNA sequence. The corresponding list of A, T, G and C letters is known as the
primary structure (or genome) of the DNA. At physiological temperatures, DNA is essen-
tially observed in the double-stranded structure, which results, as shown by Watson and
Crick, from the hydrogen bonds that are formed selectively between A and T and between
G and C. The association of the two strands due to base pairing is commonly referred
to as the secondary structure of DNA. In addition, DNA sequences also have well-defined
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higher order conformations, like the B-, A-, and Z- double helix forms, and they eventually
further combine with histone proteins to form chromatin. In this paper, we are however
only interested in the secondary structure of DNA and not in higher order conformations.

The two strands of DNA separate upon heating [1–4], a phenomenon called “denatura-
tion” or “melting”. Homogeneous DNA sequences denaturate abruptly at a precise temper-
ature, while the denaturation of inhomogeneous sequences occurs through a series of steps,
which can be monitored by UV absorption spectroscopy [5, 6]. At each step, large portions
of the inhomogeneous DNA sequence separate over narrow temperature intervals, so that
the whole denaturation process looks like a chain of sharp, first order-like phase transitions.

Following the pioneering work of Poland and Scheraga [7, 8], the simplest models for
denaturation assume, in analogy with the Ising model, that a base pair is either open or
closed and that its evolution can be depicted by a two-state variable (see for example [9–14]).
Some of these statistical models are still used nowadays to compute rapidly denaturation
curves of long DNA sequences that are in good agreement with experimental results.

While such statistical models were specifically derived to describe DNA melting, dynam-
ical models (that is, models based on a Hamiltonian function of continuous variables) are
in principle able to describe the whole dynamics of DNA, from small amplitude oscillations
at low temperature to large amplitude motions close to denaturation. The first dynamical
model was developed to investigate the properties of solitons in the DNA double strand.
In 1980, hydrogen-deuterium exchange experiments indeed evidenced the propagation of
base pair openings along the chain in a manner that resembles that of solitons [15]. In the
same work, the authors proposed a Hamiltonian for describing DNA, in which the degrees
of freedom are the rotation angles of the bases around the strand axes. This first model is
quite simple, but more complex models have been proposed since that time and the corre-
sponding solitonic solutions have been investigated (see for example [16–21]). These models
are, however, not aimed at describing DNA denaturation, and cannot be used to investigate
it, because denaturation involves essentially the stretching of the base pairs rather than the
rotation of the bases around the strands.

To the best of my knowledge, the first dynamical model of DNA that depends on the dis-
tance between paired bases and might therefore be expected to describe DNA denaturation
correctly was proposed by Prohofsky and co-workers [22, 23]. However, Dauxois, Peyrard
and Bishop later realized that this original model predicts a denaturation transition that
is much too smooth compared to experiments [24, 25]. They furthermore showed that the
use of an anharmonic stacking potential instead of a harmonic one leads to denaturation
curves that are in much better agreement with experiments [26–28]. More recently, other
variants of the model of Prohofsky and co-workers were proposed and shown to display the
correct sharp behaviour at denaturation (see for example [29, 30]).

All the dynamical models discussed above are mesoscopic 1-dimensional models, in the
sense that they describe DNA as a ladder, whose rungs are the paired bases, and one
coordinate is sufficient to describe the relative motion of paired nucleotides. Of course, there
exist more elaborate models. For example, the model proposed in [31] is very appealing. This
is indeed a mesoscopic model (6 sites, that is 18 coordinates, are used to model one base
pair and the associated sugar and phosphate groups), so that standard workstations are
sufficient to investigate DNA dynamics at relatively long times. Still, and in contrast with
one-dimensional models, the double helix (tertiary structure) is properly taken into account
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(including the existence of the minor and major grooves) and the molecule is free to deform
and diffuse in a three-dimensional buffer. However, the principal drawback of these more
realistic models is that the only method that can be used to investigate their dynamics
consists in integrating the equations of motion step by step. In contrast, the statistical
physics of the 1-dimensional models can be investigated using the powerful technique of the
Transfer-Integral (TI) operator method.

The TI operator method is precisely the central point of this paper. As will be described
in more detail in Sec. 2, this technique simplifies drastically the evaluation of the partition
function — as well as other quantities, like the static form factor — of systems with a
large number of degrees of freedom through the replacement of the calculation of multiple
integrals involving coupled integrands by that of products of 1-dimensional integrals (see
for example [32–34]). This technique works only for 1-dimensional systems with nearest-
neighbour interactions, but the model of Prohofsky and co-workers and other related ones
fall precisely in this category. Quite interestingly, application of this method is not limited
to infinitely long homogeneous sequences but extends instead to finite [34, 35] and inho-
mogeneous [34, 36] ones. The principal advantages of the TI method compared to the step
by step integration of the equations of motion are that it is orders of magnitude faster and
that it provides correct results closer to the critical temperature (see Fig. 4 of [37]), because
it is not affected by the slow fluctuations that take place in this temperature range [38].

An efficient algorithm to solve the TI equation numerically has been proposed by
Schneider and Stoll [33]. The principal step of this algorithm involves the diagonaliza-
tion of a matrix obtained by replacing the integrals in the TI equation by sums of discrete
increments, which yields the eigenvalues of the TI equation, as well as the values of its
eigenvectors on the grid. This method is expected to work for all temperatures and cou-
pling strengths (see however the restrictions mentioned in [34, 37]). Yet, there exists another
method, which consists in replacing, at least approximately, the TI equation by a Pseudo–
Schrödinger Equation. This later method has the advantage that it may lead to analytical
results. It has consequently been applied to a variety of systems in the low temperature and
strong coupling regime where it is expected to be valid (see [32, 39–43] for some early works).

The Pseudo–Schrödinger Equation (PSE) approximation of the TI operator has also
been used to interpret qualitatively the behaviour of DNA models at denaturation [24, 25,
44, 45]. Still, for these models very poor agreement is generally found when comparing
results obtained from the PSE approximation to exact ones (see for example Fig. 1 of [25]).
The purpose of this paper is to understand why the PSE is so bad an approximation
for 1-dimensional DNA models. More precisely, reduction of the TI equation to the PSE
involves a series of approximations. I will determine which approximation step is wrong for
two different 1-dimensional DNA models, namely the Peyrard–Bishop (PB) model [22–25],
and the model that was proposed by our group [29, 46], which will hereafter be called the JB
model. I will then check whether the PSE approach works correctly when the incriminated
approximation is discarded.

The remainder of the paper is organized as follows. The TI operator method and the
various approximations leading to the PSE are described in some detail in Sec. 2. I next
discuss in Sec. 3 the reasons why the standard PSE approach fails for the PB model,
and propose a generalized PSE that works well for this model. Section 4 deals with the
application of the PSE approach to the JB model. This model is qualitatively different
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from the PB one, in the sense that it predicts a sharp denaturation instead of a smooth
one, in agreement with experimental results. It will be shown that for this later model the
PSE approach cannot be adapted and essentially gives meaningless results. Finally, I discuss
in Sec. 5 the particle description of DNA denaturation that is derived from the PB model
using the generalized PSE.

2. The TI Operator Method and the PSE Approximation

In this section, I describe in some detail the TI operator method and the successive approx-
imation steps leading to the PSE.

2.1. The TI operator method

Let us consider a system that may be described by a set of coordinates yk (k = 1, 2, . . . , N)
and a potential energy function Epot of the form

Epot =
N∑

k=1

V (yk) +
N∑

k=2

W (yk−1, yk), (2.1)

In the case of the 1-dimensional DNA models considered in this paper, yk represents a
measure of the distance between the bases of the kth pair, V (yk) the pairing potential
that tends to keep these bases separated by a fixed distance, and W (yk−1, yk) the stacking
potential that models the interactions between neighbouring base pairs. For the sake of
simplicity, we consider in this paper only homogeneous sequences, so that functions V and
W do not depend on k (they are the same for all base pairs), but it has been shown in [34, 36]
how the TI method can be adapted to the case of inhomogeneous sequences. The explicit
expressions for V and W are model-dependent and will be provided in Secs. 3 and 4 for the
PB and JB models, respectively.

The classical canonical partition function of the system described by the potential energy
of Eq. (2.1) is

Z =
∫

exp[−βEpot]dy1dy2, . . . , dyN , (2.2)

where β = 1/(kBT ) is the inverse temperature. The TI method is a technique that allows for
the efficient computation of Z (as well as other quantities that can be expressed with similar
integrals, like the statistical average of any function h(yk) and the static form factor). The
first step for calculating Z with this method consists in rewriting Eq. (2.2) in the form

Z =
∫

exp
[
−βV (y1)

2

]
K(y1, y2)K(y2, y3), . . . ,K(yN−1, yN )

× exp
[
−βV (yN )

2

]
dy1dy2, . . . , dyN , (2.3)

where the TI kernel K(yk−1, yk) for base pair k − 1 interacting with base pair k has the
form

K(yk−1, yk) = exp
[
−β

(
V (yk−1)

2
+
V (yk)

2
+W (yk−1, yk)

)]
. (2.4)
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This kernel is symmetric (K(y, x) = K(x, y)) and strictly positive (K(x, y) > 0), but this
is not a Hilbert–Schmidt type one if the coordinates are allowed to vary from −∞ to +∞,
because the integral

∫∫
K2(x, y) dx dy diverges. For all numerical purposes, one however has

to set up a lower and an upper bound for the yk, which amounts to limiting the kernel on
a finite subspace. Whatever the bounds for the yk, the norm of the kernel on the subspace
is finite, so that the kernel limited on the subspace is of the Hilbert–Schmidt type. It can
therefore be expanded in an orthonormal basis [47]

K(yk−1, yk) =
+∞∑
i=1

λiφi(yk−1)φi(yk), (2.5)

where the {λi} and {φi} are the eigenvalues and eigenvectors of the integral operator, which
satisfy the TI equation

∫
K(x, y)φi(y)dy = λiφi(x) (2.6)

in addition to the orthonormality relation
∫
φi(y)φj(y)dy = δij . (2.7)

Note that, since the validity of the expansion of Eq. (2.5) depends on the definition of
bounds for the yk, one must investigate the case where these bounds become infinite and
check that the obtained results do not depend on the precise values of the bounds, provided
they are chosen to be sufficiently large [34, 37].

By substituting the kernel expansion of Eq. (2.5) in Eq. (2.3) and taking Eq. (2.7) into
account, one obtains that Z can be rewritten in the simple form

Z =
+∞∑
i=1

A2
i λ

N−1
i , (2.8)

where

Ai =
∫
φi(y) exp

[
−β

2
V (y)

]
dy. (2.9)

Since the free energy per base pair, f , is defined by

f = − 1
Nβ

ln[Z], (2.10)

one easily sees that, in the limit of infinitely long chains (N → +∞), f reduces to

f = − 1
β

ln[λ1], (2.11)

where λ1 is the largest eigenvalue of the integral operator.
From the practical point of view, I used the numerical method of Schneider and Stoll

[27, 33, 46] to compute the {λi} and the values assumed by the {φi} on a chosen grid of
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points. The free energy per base pair, f , was then computed according to Eq. (2.10), while
closely related quantities, like the entropy per base pair, s,

s = − ∂f

∂T
(2.12)

and the specific heat per base pair, cV ,

cV = −T ∂
2f

∂T 2
(2.13)

were estimated from finite differences.

2.2. The PSE approximation of the TI equation

The PSE may be obtained when trying to solve the TI equation (2.6) without resorting
to the discretization on which the numerical method of Schneider and Stoll relies. For this
purpose, one first defines

ψi(y) = exp
[
−β

2
V (y)

]
φi(y), (2.14)

which enables to rewrite the TI equation in the explicit form∫
exp[−βW (x, y)]ψi(y)dy = λi exp[βV (x)]ψi(x). (2.15)

At this point, one may take advantage of the fact that, for many models, the stacking
potential W (x, y) is actually an even function of z = y − x,

W (x, y) = W (y − x) = W (z), (2.16)

which increases rapidly as z departs from 0. Then, by replacing in Eq. (2.15) ψi(y) by its
Taylor series expansion around y = x, one can rewrite the TI equation in the form∑

p≥0

apψ
(2p)
i (x) = λi exp[βV (x)]ψi(x), (2.17)

where

ap =
1

(2p)!

∫ +∞

−∞
z2p exp[−βW (z)]dz. (2.18)

Note that this involves a first approximation, because it is not granted that the Taylor series
expansion of ψi(y) is convergent everywhere. At some point, it may therefore be necessary
to check that the resolution of Eqs. (2.15) and (2.17) leads to identical values of the {λi}
and the {φi}.

The approximations to come are, however, much more drastic than this first one. Indeed,
the second approximation consists in considering that

λi

a0
exp[βV (x)] = exp

[
βV (x) + ln

[
λi

a0

]]
≈ 1 + βV (x) + ln

[
λi

a0

]
(2.19)

and in replacing Eq. (2.19) in Eq. (2.17).
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At last, the third (and last) approximation consists in retaining, in the left-hand side
of Eq. (2.17), only the first two terms of the expansion, that is, the terms with p = 0 and
p = 1. As a result, one finally gets the PSE

− 1
2m

ψ
(2)
i (x) + V (x)ψi(x) = ε̃iψi(x), (2.20)

where

m =
βa0

2a1
, ε̃i = − 1

β
ln

(
λi

a0

)
. (2.21)

Needless to say, the second and third approximations must also be considered with some
caution.

3. Application to the Peyrard–Bishop (PB) Model

In this section, I first show that the standard PSE approximation in Eq. (2.20) fails to
provide correct results even for the very simple PB model [22–25]. Then, I point out that
rather accurate results are instead obtained when using Eq. (2.17) instead of Eq. (2.20).

3.1. The PB model

In the PB model [22–25], the pairing potential V is represented by a Morse potential

V (δrk) = D(1 − exp[−aδrk])2 = D +D(exp[−2aδrk] − 2 exp[−aδrk]), (3.1)

where δrk is the deviation from its equilibrium value of the distance between the bases of
the kth pair, while the stacking interaction between successive base pairs, W , is assumed
to be harmonic

W (δrk−1, δrk) =
K

2
(δrk − δrk−1)2. (3.2)

In this work, I used the numerical values of the parameters reported in [48], that is, D =
0.063 eV, a = 4.2 Å−1 and K = 0.025 eV Å−2.

However, the functions ψi must be dimensionless if they are to be considered as wave
functions. This implies, in turn, that the coordinates yk in Eq. (2.1) must also be dimen-
sionless. One therefore defines

yk = aδrk (3.3)

and rewrites V and W in the form

V (yk) = D(1 − exp[−yk])2 = D +D(exp[−2yk] − 2 exp[−yk])

W (yk−1, yk) =
K

2a2
(yk − yk−1)2.

(3.4)
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3.2. Application of the standard PSE approximation to the PB model

The coefficients ap defined in Eq. (2.18) can be evaluated analytically for the harmonic
stacking interaction of Eq. (3.4). One gets

ap =
(2p − 1)!!

(2p)!

√
π

u
(2u)−p, (3.5)

where

u =
βK

2a2
. (3.6)

Therefore, one has, from Eq. (2.21),

m =
β2K

a2
, ε̃i = − 1

β
ln[λi] +

1
2β

ln
[
2πa2

βK

]
. (3.7)

Analytical solution of the Schrödinger equation with the potential function V in Eq. (3.4)
has been known since the early work of Morse [49, 50]. What is most relevant for
1-dimensional DNA models, is that, at sufficiently low temperatures, the Schrödinger equa-
tion has a bound ground-state solution with energy

ε̃1 =

√
D

2m
− 1

8m
. (3.8)

However, at a critical temperature Tc, such that

Tc =
√

8KD
akB

, (3.9)

m becomes equal to m = 1/(8D), so that ε̃1 = D. This implies that the wave function of
the ground state is no longer confined into the well of the Morse potential but can instead
extend to infinity. Since the coordinate x in Eq. (2.20) is proportional to the distance
that separates the two strands, this implies that at Tc the DNA sequence denaturates and
switches from the double-stranded configuration to the single-stranded one.

When combining Eqs. (2.11), (3.7) and (3.8), one finally gets that the free energy per
base pair is equal to

f =

√
D

2m
− 1

8m
− 1

2β
ln

[
2πa2

βK

]
(3.10)

for the double-stranded configuration.

3.3. Comparison of the standard PSE approximation with exact results

At this point, it is quite instructive to check the accuracy of results obtained with the
standard PSE approximation. For example, Fig. 1 shows the temperature evolution of the
free energy per base pair, f , according to the PB model. The solid line shows “exact” results
estimated directly from the TI equation, while the dashed line shows results obtained from
Eq. (3.10). Exact results were computed with the numerical algorithm of Schneider and
Stoll [27, 33, 46] and a grid with irregular spacing, like that used in [46, 51]. This grid
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Fig. 1. Temperature evolution of the free energy per base pair f , expressed in eV, for the PB model. The solid
line shows the exact result obtained from the TI equation, while the dashed line shows the result obtained
from Eq. (3.10). The vertical dot-dashed line indicates the correct critical temperature Tc determined from
the TI equation.

consists of 4201 values ranging from about −40 to about 5000. The spacing between two
points of the grid increases exponentially from 0.2 at the origin to 4.0 for values close to
5000.

Figure 1 indicates unambiguously that the PSE results are completely wrong, even at
quite low temperatures. The denaturation temperature itself is also estimated with a very
large error. Equation (3.9) indeed leads to Tc = 310 K, while the exact critical temperature,
estimated as the temperature for which the correlation length ξ computed as in [29, 37, 46]
is maximum, is close to 556 K.

3.4. What is wrong in the PSE approximation?

The question therefore is: What is wrong with the PSE approximation? A rather natural
step for answering this question consists in checking whether Eq. (2.17) leads to correct
results or whether the results obtained there with are also wrong. Indeed, if such results are
correct, then the replacement in Eq. (2.15) of ψi(y) by its Taylor series expansion around
y = x is valid and the failure of the PSE approximation is attributable to one of the two
subsequent approximations. In the opposite case, the very first step of the reduction of the
TI equation to the PSE is already not valid.

We therefore need a reliable method to solve the eigenvalue problem of Eq. (2.17). Since
close to the melting temperature ψi(x) is large for large values of x, one is more or less
obliged to use the canonical basis of the harmonic oscillator, that is, the set of functions

en(q) =
1√

2nn!
√
π

exp
[
−q

2

2

]
Hn(q), (3.11)

where the Hn(q) are the Hermite polynomials. One therefore introduces the dimensionless
parameter γ, such that

x = γq, (3.12)
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as well as the functions χi(q), such that

χi(q) = ψi(γq) = ψi(x), (3.13)

and rewrites Eq. (2.17) in the form

Hχi(q) = λiχi(q) (3.14)

where

H =
∑
p≥0

bp exp[−βV (γq)]
(
∂2

∂q2

)p

, (3.15)

and

bp =
ap

γ2p
. (3.16)

The matrix representation of the differential operator ∂2/∂q2 in the basis of the en(q)
functions is built using the relation

∂2en(q)
∂q2

=
1
2

√
(n+ 1)(n + 2)en+2(q) −

(
n+

1
2

)
en(q) +

1
2

√
n(n− 1)en−2(q). (3.17)

The matrix representation of the operator H is then built from Eq. (3.15), by computing
the corresponding linear combination of products of single operator representations, and
diagonalized. Several comments are in order at that point.

(a) because of the highly oscillatory nature of the en(q) functions, it is difficult to built
accurate matrix representations of the operators exp[−βV (γq)] and H with size much
larger than about 60 by 60.

(b) the choice of the dimensionless parameter γ necessarily results from the balance between
several conflicting constraints. Indeed, given the maximum practical size n ≤ nmax ≈ 60
of the basis of en(q) functions, the larger the value of γ, the broader the interval of values
of x where the wave function ψi(x) may assume nonvanishing values, but, on the other
hand, the rougher and the more oscillatory the estimated wave functions.

(c) more dramatic from the numerical point of view is the fact that too small values of γ lead
to bp series that decrease too slowly with p. As a consequence, the off-diagonal elements
of the matrix representation of H become too large, and it is no longer possible to get
reliable estimates of its eigenvalues, that is, estimates that do not vary significantly
when the size nmax of the basis is increased.

(d) the operator H is not hermitian, so that not all of its eigenvalues are real.
(e) when the parameter γ is chosen large enough, the eigenvalue with largest real part is

real. This is an estimate of the largest eigenvalue λ1 of the integral operator, which
appears for example in the expression of the free energy f (see Eq. (2.11)).

Results obtained by taking these five points into consideration are shown in Figs. 2 to 4.
The top plot in each figure shows the temperature evolution of f and the bottom plot that
of cV . The thick solid lines show exact results obtained with the TI method, while the other
lines show results obtained from Eqs. (3.14) and (3.15) for different values of the parameter
γ, the basis size nmax, and the order pmax at which the series in Eq. (3.15) is truncated.
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Fig. 2. Temperature evolution of f , expressed in eV (top plot), and cV , expressed in units of kB (bottom
plot), for the PB model. The thick solid lines shows exact results obtained with the TI method, while the
other lines show results obtained from Eqs. (3.14) and (3.15) with γ = 30, pmax = 4, and four different
values of nmax(nmax = 30, 40, 50, and 60).

Figure 2 shows results obtained with γ = 30, pmax = 4, and nmax increasing from 30
to 60. As expected, it is seen that results become better with increasing basis size. All
subsequent calculations were therefore performed with the maximum practical basis size
nmax = 60.

Figure 3 shows results obtained with nmax = 60, pmax = 4, and γ increasing from 20
to 50. This figure illustrates clearly points (b) and (c) discussed above. Indeed, it is seen
that the convergence of the plots is uncertain for small values of γ, while the quality of
the results again degrades for larger values of γ. For the particular model studied here, the
optimum value of γ is close to γ = 30.

At last, Fig. 4 shows results obtained with nmax = 60, γ = 30, and pmax increasing from
1 to 20 (the curves with pmax = 10 and pmax = 20 superpose). As expected, again, the
best results are obtained for the largest values of pmax. Except for the fact that they vary
more smoothly close to the critical temperature, the curves for pmax = 10 and pmax = 20
are rather close to the exact ones. Still, it should be noted that results obtained with
pmax = 1 are already not so bad. Comparison of Fig. 1 with the top plot of Fig. 4 indeed
indicates that they are much closer to exact ones than those obtained with the standard
PSE approximation of Eq. (3.10). I will come back to this point in Sec. 5.

Conclusion therefore is that, in the case of the PB model, the failure of the standard PSE
approximation is essentially due to the approximation of Eq. (2.19) and, to a substantially
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lesser extent, to the truncation of the series in Eq. (2.17) or Eq. (3.15). In contrast, quite
accurate results can still be obtained with the generalized PSE formulation of Eqs. (3.14)
and (3.15), especially when accepting to deal with derivative operators with order larger
than 2.

4. Application to the Joyeux–Buyukdagli (JB) Model

In this section, I will check whether the conclusions drawn in the preceding section for the
PB model [22–25] also hold for the 1-dimensional DNA model that was recently proposed
by our group [29, 46].

4.1. The JB model

Like for the PB model, the pairing potential V of the JB model is represented by the Morse
potential of Eqs. (3.1) and (3.4). In contrast, the stacking interaction between successive
base pairs, W , is assumed to be of the form

W (δrk−1, δrk) =
∆H
2

(1 − exp[−b(δrk − δrk−1)2]) +Kb(δrk − δrk−1)2, (4.1)

that is, in terms of the yk,

W (yk−1, yk) =
∆H
2

(
1 − exp

[
− b

a2
(yk − yk−1)2

])
+
Kb

a2
(yk − yk−1)2. (4.2)

The first term in the right-hand side of these equations describes the finite stacking inter-
action and the second one the stiffness of the phosphate/sugar backbone. It was shown
in [29, 46, 52] that the introduction of finite stacking enthalpies ∆H in the expression of W
is in itself sufficient to ensure a sharp, first-order looking melting phase transition, which is
in better agreement with experimental data than the smooth transition of the PB model.

At this point, it is worth noting again that Dauxois, Peyrard and Bishop proposed an
anharmonic stacking potential, which differs from Eqs. (4.1) and (4.2) but also leads to sharp
melting curves [25–27]. However, their expression for W depends not only on yk − yk−1,
but also on yk + yk−1, so that it is no longer possible to rewrite W as an even function of
z = y−x as in Eq. (2.16). In order to get a differential expression like Eq. (2.17), one would
consequently need to replace in Eq. (2.15) both ψi(y) and W (x, y) by their Taylor series
expansions around y = x, so that the whole procedure would become more questionable
and the results even more uncertain. In this section, we thus concentrate on the JB model.

The results presented below were obtained with the numerical values of the parameters
reported in [37], that is, D = 0.048 eV, a = 6.0 Å−1, ∆H = 0.818 eV, b = 0.80 Å−2, and
Kb = 4.0 × 10−4 eV Å−2.

4.2. Failure of the PSE approximation

Results obtained for the JB model are shown in Fig. 5. As in Figs. 2–4, the top plot shows
the temperature evolution of f and the bottom one that of cV . In both plots, the thick
solid line shows exact results obtained with the TI method and the numerical algorithm of
Schneider and Stoll [27, 33, 46]. The fact that the JB model leads to a much sharper DNA
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denaturation transition than the PB one is reflected in the sudden increase of the specific
heat close to the critical temperature Tc ≈ 360 K.

The thinner lines in Fig. 5 show results obtained from Eqs. (3.14) and (3.15). In contrast
with the PB model, the coefficients ap defined in Eq. (2.18), and consequently also the
coefficients bp defined in Eq. (3.16), cannot be evaluated analytically for the anharmonic
stacking interaction of Eq. (4.2) and must consequently be estimated numerically. The
results shown in Fig. 5 were obtained with a basis size nmax = 50, an expansion order
pmax = 1, and values of γ increasing regularly from 20 to 100. It is seen that these results
are essentially meaningless for double-stranded DNA, that is, below the critical temperature
Tc. Moreover, such results become still worse when the expansion of Eq. (3.15) is truncated
at larger values of pmax and/or smaller values of γ are used.

As already emphasized, the only approximation that is made when going from the
TI equation (2.6) to the generalized PSE formulation of Eqs. (3.14) and (3.15) is the
replacement in Eq. (2.15) of ψi(y) by its Taylor series expansion around y = x. The fact
that the results obtained from Eqs. (3.14) and (3.15) are so clearly wrong (at any trunca-
tion order, and particularly at the order pmax = 1 that leads to a standard second-order
PSE) indicates that this replacement is not valid for the JB model. Since this is the very
first one of the series of approximations leading from the TI equation to the PSE, it must
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be concluded that the PSE approximation can definitely not be used to investigate the
dynamics of the JB model.

From the physical point of view, this failure is due to the complex shape of the anhar-
monic stacking potential W of the JB model, which leads to a much sharper increase of the
series of ap coefficients of Eq. (2.18) than for the PB model. For example, at 300 K, the first
terms of this series are (1.× 101, 1.× 102, 4.× 102, 1.× 103, 3.× 103, 6.× 103, . . .) for the PB
model, and (8.× 100, 1.× 103, 3.× 105, 5. × 107, 8.× 109, 9. × 1011, . . .) for the JB one.

5. Conclusion

It has just been shown that the PSE approximation cannot be used to investigate the
dynamics of the JB model for DNA. In contrast, it was shown in Sec. 3, that a generalized
PSE formulation does provide reasonable results for the smoother PB model. Still, I would
like to emphasize in this conclusive section that the description of DNA melting obtained
from this generalized PSE formulation is quite different from the one that may be inferred
from the standard PSE.

Indeed, according to the standard PSE in Eq. (2.20), DNA sequences may be considered
as single particles with a mass m given in Eq. (2.21) moving in a potential, which is just
the pairing potential V . In the case of the PB model, the mass m is explicitly related to
the parameters of the model through Eq. (3.7), while the pairing potential V is the Morse
function of Eqs. (3.1) or (3.4). The mass m decreases with increasing temperature like the
inverse of T squared. At low temperatures, the particle is very heavy and its ground state is
therefore confined deep inside the bottom of the Morse well. As temperature increases, the
particle however becomes lighter and lighter, so that its total energy increases and comes
closer and closer to the dissociation threshold D of the Morse potential. At the critical
temperature Tc, the energy of the ground state of the particle is equal to D, so that it is
no longer confined close to the origin but can instead go to infinity, which amounts to say
that the DNA sequence denaturates.

Examination of Fig. 1 indicates that this rather frequently proposed description of DNA
melting (as well as other closely related systems [53]) fails to capture the complexity of
behaviour of DNA in the terms considered here. The description obtained from the gener-
alized PSE formulation is, indeed, substantially more complex. When truncated at second
order (pmax = 1), Eq. (2.17) may be rewritten in the form

− 1
2meff(x)

ψ
(2)
i (x) + Veff(x)ψi(x) = µiψi(x), (5.1)

where

meff(x) = m exp[βV (x)]

Veff(x) =
1
β

(1 − exp[−βV (x)])

µi =
1
β

(
1 − λi

a0

) (5.2)

and m is given in Eq. (2.21). Comparison of Eqs. (2.20) and (2.21) with Eqs. (5.1) and (5.2)
indicates that m and V (x) are the lowest order approximations of, respectively, meff(x) and
Veff(x) for small values of βV (x) (that is, when the pairing energy is small compared to the
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thermal one), while µi is a low order expansion of ε̃i when λi is close to a0. None of these
two conditions (βV (x) ≈ 0 and λ1 ≈ a0) is satisfied when studying DNA denaturation, so
that it is not really surprising that the standard PSE approximation totally fails.

Plots of Veff(x) and meff(x) at T = 100 K and T = 450 K are shown in Figs. 6 and 7,
respectively. It is seen that the effective potential Veff(x) deepens and widens considerably
as temperature increases but that the energy of the DNA “particle” remains close to the
threshold for all temperatures. Most interestingly, it moreover appears that denaturation is
consequently due to a strong modification of the position dependence of the effective mass
meff(x) with increasing temperatures. It is indeed seen in Fig. 6 that, for small temperatures,
the effective mass meff(x) is orders of magnitude larger for large values of x than for x = 0,
where meff(x) = m. This, of course, tends to localize the particle close to x = 0, that is,
to keep the DNA in the double-stranded configuration. In contrast, for temperatures close
to or above the critical one, the effective mass meff(x) is only a few times larger than m at
large values of x, so that mass effects no longer prevent DNA from melting.
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