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How are bacterial genomes com-
pacted? Nucleoid-associated proteins
have been discovered that bind to the
circular genome in either a sequence-
dependent or sequence-independent
manner, thereby resulting in a compact
nucleoid that can be confined within
the bacteria and be accessed by the
cellular machinery required to tran-
scribe the genome (1,2). Dame and
co-workers performed a number of
key experiments that elucidated the
binding behavior of a particular nucle-
oid-associated protein, histone-like
nucleoid structuring protein (H-NS),
and its role in confining the genome.
Their work provided a model for
nucleoid condensation in which H-NS
protein binds randomly to one strand
and, upon meeting another strand of
DNA, induces condensation through
trans binding (3). Through optical-
tweezer experiments, they were able
to further characterize the Kkinetics
and thermodynamics of this process
(4). However, open questions remained
as the work demonstrating condensa-
tion of DNA by H-NS was performed
in two dimensions on a mica surface
and neither the effect of this spatial
confinement nor the nature of the
DNA-surface interaction itself were
fully addressed.

Seeking to better understand the
experimental findings of Dame et al.,
in their article Joyeux and Vreede (5)
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develop a representation of DNA and
H-NS dimers consisting of bead-spring
constructs. Through a careful choice
of parameters, they closely reproduce
the experimentally observed binding
behavior of H-NS to DNA. They are
able to then use this simple model to
help elucidate the rich physics ob-
served in experiments probing H-NS
mediated genome condensation. In
particular, their work gives insight
into the nature of the H-NS dimer itself
and its effect on genome condensation.
In the work of Wiggins et al. (6), pro-
tein-mediated bridging is discussed in
the context of two possible structural
motifs, an H-NS linker domain (resi-
dues 65-89) that is either rigid or flex-
ible. In the language of Joyeux and
Vreede, this corresponds to an H-NS
with a large or small value of G
(the H-NS dimer bending rigidity),
respectively. Coarse-grained simula-
tions enable Joyeux and Vreede to
test a hypothesis such as that of
Wiggins et al. by simply assigning
the dimer different physical parameters
and observing the resulting change in
behavior. They are able to demonstrate
that a difference of ~20% in binding
affinity in the cis configuration (the
result of a factor of two change in
the H-NS bending rigidity) is sufficient
to fundamentally change the dynamics
of the condensed nucleoid, with the
more flexible case resulting in a fluc-
tuating, dynamic structure exhibiting
open loops (more cis binding) whereas
the less flexible case results in a
more compact globular structure that
changes little over time (increased
trans binding). Joyeux and Vreede do
not propose a precise value for the
H-NS bending rigidity, as the experi-
mental data to which they compare
are difficult to interpret (primarily
nucleoids condensed on a two-dimen-
sional mica surface (3)); their work,
however, is of fundamental signifi-
cance in that it points the way toward
experiments that might better eluci-
date the true nature of H-NS and
its role in nucleoid condensation.
Indeed the marked difference in the
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radius of gyration of three-dimensional
condensed nucleoids reported in
their work, driven by differences in
cis binding affinity, represents a quan-
tity that can be directly accessed in
experiment to make progress in the
problem of H-NS mediated genome
condensation and the role played by
H-NS flexibility and binding affinity
therein.

Looking forward in terms of
developing molecular-level models to
further understand protein-mediated
genome compaction, the growing
availability of advanced sampling
techniques and reliable models pro-
vides the biophysics community with
tools at every level of molecular
description. The coarse-grained repre-
sentation adopted by Joyeux and
Vreede has provided valuable insights.
Building on their results, future studies
should aim to address potentially in-
teresting details of the interaction
between H-NS and DNA. Experimen-
tal data indicate that this interaction
is not, in fact, entirely sequence-agnos-
tic (as the Joyeux and Vreede represen-
tation assumes), but instead exhibits
a preference for AT-rich genomic
regions (7). Specifically, the minor
groove width in these AT-rich regions
is thought to be optimal for H-NS
binding. Coarse-grain DNA (8,9) and
protein (10) models have been devel-
oped that are capable of exploring
such shape-dependent protein-nucleic
acid interactions; approaching the
problem at this scale may yield rich
information regarding H-NS/DNA
interactions. A particular detail that
remains to be addressed is the effect
of the ionic environment on the inter-
action of H-NS with the genome. In
earlier work, Vreede and Dame used
molecular simulations to demonstrate
that the conformation of the dimeriza-
tion domain of H-NS may indeed be
sensitive to ionic conditions, with the
parallel dimer increasing in stability
with increasing salt (11). Experimental
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evidence also indicates that altering the
ionic environment can fundamentally
change the nature of the resulting
H-NS/DNA complexes and promote
either the cis or trans binding regime
(12,13).  Coarse-grained molecular
models are uniquely suited to explore
this wide range of environmental con-
ditions and assess their impact on the
mechanism of H-NS mediated nucle-
oid condensation.

A particularly exciting idea that
could now be addressed is that AT-
rich sequences that promote H-NS
bridging behavior act as domain bar-
riers in bacterial genomes (1,14). Inter-
estingly, the acquisition of genomic
islands, generally AT-rich, is believed
to potentially disrupt the three-dimen-
sional structure of the nucleoid through
the recruitment of H-NS proteins and
decrease the fitness of the bacterial
cell (14). This notion that stochastic
addition of H-NS binding domains
may drastically alter the organization
of the genome could be directly probed
in coarse-grained simulations in which
sequence-specificity in H-NS binding
is taken into account.

In their work, Joyeux and Vreede
provide a compelling example of how
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a simple and elegant molecular model
can be used to provide profound
insight into an otherwise complex bio-
physical problem. In addition to high-
lighting the large impact that small
changes in DNA-protein interactions
can have, their work suggests key
experiments that, in due course, will
provide a clearer picture of H-NS
mediated genome condensation.
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