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Abstract: Prokaryotes do not make use of a nucleus membrane to segregate their genetic material
from the cytoplasm, so that their nucleoid is potentially free to explore the whole volume of the
cell. Nonetheless, high resolution images of bacteria with very compact nucleoids show that such
spherical nucleoids are invariably positioned at the center of mononucleoid cells. The present work
aims to determine whether such preferential localization results from generic (entropic) interactions
between the nucleoid and the cell membrane or instead requires some specific mechanism, like the
tethering of DNA at mid-cell or periodic fluctuations of the concentration gradient of given chemical
species. To this end, we performed numerical simulations using a coarse-grained model based on the
assumption that the formation of the nucleoid results from a segregative phase separation mechanism
driven by the de-mixing of the DNA and non-binding globular macromolecules. These simulations
show that the abrupt compaction of the DNA coil, which takes place at large crowder density, close to
the jamming threshold, is accompanied by the re-localization of the DNA coil close to the regions of
the bounding wall with the largest curvature, like the hemispherical caps of rod-like cells, as if the
DNA coil were suddenly acquiring the localization properties of a solid sphere. This work therefore
supports the hypothesis that the localization of compact nucleoids at regular cell positions involves
either some anchoring of the DNA to the cell membrane or some dynamical localization mechanism.

Keywords: nucleoid; bacteria; DNA; proteins; segregative phase separation; coarse-grained model;
numerical simulation; Brownian dynamics

1. Introduction

This work theoretically addresses the question of the preferential localization of the nucleoid
inside bacterial cells. The nucleoid is the region of prokaryotic cells that contains their genomic
DNA [1,2]. In contrast with eukaryotic cells, this DNA is not separated from the rest of the cytosol
by a bounding membrane, but the nucleoid nevertheless occupies only a fraction of the cell. The
nucleoid is a highly dynamical entity, with sizes that fluctuate sensitively with several factors, like the
richness of the nutrients [3–7], the cell cycle step [8,9], and the concentration of antibiotics [5–7,10–14].
The question of the preferential localization of the nucleoid arises as soon as it is significantly smaller
than the cell, which is the case, for example, for cells growing in rich media [3–7] and cells treated
with chloramphenicol [5–7,11–14]. The point is to determine whether, under such circumstances,
unconstrained nucleoids tend to localize preferentially close to the cell membrane or deep inside
the cell, and why this is so. Theory indicates that a large solid sphere immersed in a sea of smaller
ones localizes preferentially close to the bounding walls [15–20]. Moreover, when these walls are not
planar, the sphere is most often found in the regions with the smallest radius of curvature [16,19].
Consequently, if the nucleoid and the surrounding macromolecules do behave like solids (with regard
to localization) and are not subject to any constraints (except for confinement), then the nucleoid is
expected to localize close to the cell membrane, and more precisely, in the hemispherical caps of rod-like
bacteria (bacilli). It has however long been known that compact nucleoids are preferentially positioned

Microorganisms 2019, 7, 204; doi:10.3390/microorganisms7070204 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0002-6282-1846
http://www.mdpi.com/2076-2607/7/7/204?type=check_update&version=1
http://dx.doi.org/10.3390/microorganisms7070204
http://www.mdpi.com/journal/microorganisms


Microorganisms 2019, 7, 204 2 of 20

at the center of mononucleoid cells and at one quarter and three quarters of the length of binucleoid
cells [21–24], and these early observations have been confirmed by several recent high-resolution
experiments [5,6,10,12–14,25,26]. A possible cause for this discrepancy between theoretical predictions
and experimental observations may of course simply be that the nucleoid and the surrounding
macromolecules do not behave like solids. More precisely, it is known that approximately 30% of the
mass of the nucleoid consists of RNA and various nucleoid associated proteins, which can penetrate
and diffuse inside DNA loops [2,27]. The nucleoid is consequently at best a soft solid, and it has recently
been suggested that softness might trigger inner cavity positioning of solid spheres [28]. Moreover,
recent simulations based on a coarse-grained model, where DNA is represented as a hyperbranched
hard-sphere polymer and crowding macromolecules as freely jointed chains of hard spheres, display
segregation of the DNA in the central part of the nucleoid, and consequently also support the hypothesis
that the nucleoid does not behave like a solid sphere [29]. However, a second plausible cause for the
discrepancy between theoretical predictions and experimental observations may be that the nucleoid
is perhaps not unconstrained, but is instead tethered to the cell membrane [2,30]. It is indeed known
that protein complexes involving PopZ, RacA-divIVA, and HubP help tether the origin of replication
of, respectively, C. crescentus, sporulating B. subtilis, and the large chromosome of V. cholerae, close
to the cell poles [31–33]. Moreover, certain transcription factors anchor, at least temporarily, their
cognate binding site to the cell membrane [34–36], and formation of a complex involving DNA, the Noc
protein, and the cellular membrane ensures that the septum does not form over the nucleoid [37]. It is
therefore reasonable to speculate that the observed preferential positioning of compact nucleoids at
regular cell positions may involve some kind of anchoring of the DNA molecule to the cell membrane,
presumably close to the center of mononucleoid cells and at one quarter and three quarters of the length
of binucleoid cells. Finally, it is well-known that the periodic oscillations of the concentrations of the
components of the Min system are responsible for the assembly of the Z-ring at mid-cell [38], and the
regular positioning of compact nucleoids may be dynamically regulated via a similar mechanism.

The present work aims precisely at shedding light on this question and at determining whether
the localization of compact nucleoids at regular positions in bacterial cells results from straightforward
interactions between the nucleoid and the cell membrane or instead requires some kind of specific
mechanism, like tethering or periodic fluctuations of concentration gradients.

Let us here emphasize that the nature of the mechanism, which is responsible for the 100- to
1000-fold compaction of the DNA inside the nucleoid compared to its expected volume in standard
saline solutions (estimated for example from the Worm Like Chain model [39]), is itself a longstanding,
but still lively debated question [40–44]. It is becoming increasingly clear that the formation of
plectonemes, the bridging of DNA duplexes by nucleoid proteins, and the action of short-range
attractive forces, which are commonly evoked to rationalize the formation of the nucleoid, actually
have a rather moderate effect on its size (see for example Ref. [43] and references therein). In contrast,
the proposition that non-binding globular macromolecules may be able to compact the genomic DNA
strongly but gradually [45–49] has recently received strong support, both from experiments [50–52]
and computational simulations [53–60]. The overall repulsion between all components of the system
can indeed induce de-mixing of the DNA and the other macromolecules, which eventually leads to the
separation of the cytoplasm into two phases [61], one of them being rich in DNA and poor in the other
macromolecules (the nucleoid), and the other one being essentially composed of crowders and almost
deprived of DNA (the rest of the cytosol).

The hypothesis that the formation of the nucleoid is triggered by repulsive interactions between the
DNA and macromolecular crowders is actually the starting point of the present work, which elaborates
on a coarse-grained model that was proposed recently to investigate this question [57,58]. According
to simulations performed with this beads-and-strings model, where each DNA bead represents 15 base
pairs, compaction of long DNA molecules by non-binding spherical crowders is governed by the
effective volume fraction of the crowders and increases sharply up to nucleoid-like values slightly
below the jamming threshold [57,58], where the components of the system cease to flow [62]. These
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previous studies moreover established that, in poly-disperse systems, the largest crowders de-mix
preferentially from the DNA [57,58]. Quite importantly, in these studies, the center of the confinement
sphere (representing the cell membrane) was repositioned on top of the center of mass of the DNA chain
after each time step, in order to make sure that the results were not affected by the slow dynamics of the
compact nucleoid inside the cell and its eventual sticking to the bounding wall for significant amounts
of time. In the present work, the centering step is instead omitted and the analysis focuses precisely
on the motion and preferential localization of the nucleoid for different crowder concentrations and
cell shapes. The goal is to understand whether purely entropic forces are, by themselves, capable of
driving the regular positioning of the compact nucleoid inside the cell or if unconstrained nucleoids
instead localize close to bounding walls like solid spheres and some specific mechanism is needed to
achieve regular inner positioning.

Before describing the model and discussing the results obtained therewith, it may be worth
emphasizing that the question addressed in this work is quite difficult to handle from a purely
theoretical point of view. First, the radius of gyration of the polymer coil (DNA) is much larger
than the diameter of the spherical crowders, which implies that the bacterial nucleoid pertains to the
so-called “protein limit”, for which the theoretical understanding [63–65] is much less satisfactory
than for the opposite “colloid limit” [66–68]. In particular, phase diagrams are rather difficult to
predict in this limit [69–72]. One of the major difficulties is that the deformations of the semi-rigid
polymer coil, which enable the DNA polymer to fit into void spaces between neighboring crowders,
must be explicitly taken into account [72,73]. Moreover, neither the crowders nor the DNA can be
considered as dilute or semi-dilute when the bacterial DNA is compacted inside the nucleoid, which
precludes the use of the corresponding simplifications in the theoretical treatment [73–75]. Similarly,
DNA–DNA self-avoidance cannot be neglected, so that the DNA cannot be considered as an ideal
polymer [76]. Finally, it is known that many-body interaction effects have to be taken into account to
describe mixtures of spherical crowders and polymers in the protein limit [72,76]. These terms are
particularly crucial for the compaction of a long DNA molecule upon an increase of the number of
spherical crowders, as is, for example, illustrated by the fact that the DNA does not coalesce inside a
compact nucleoid when it is cut into many shorter pieces. While certainly of less general purpose than
analytical predictions, the model described below and the numerical investigation thereof allow one
to cope adequately with all of these theoretical difficulties and get a tentative answer to the question
addressed in this work.

2. Materials and Methods

The model used in this study is close to the model proposed recently to investigate the compaction
of DNA by non-binding globular crowders [57]. It also shares several common points with those
proposed previously to investigate facilitated diffusion [77–79], as well as the interaction of H-NS
proteins and DNA [80–82]. The model is described briefly in this section for the sake of clarity
and completeness.

Genomic DNA is modeled as a circular chain of n = 1440 beads of radius a = 1.78 nm separated
at equilibrium by a distance l0 = 5.0 nm, where each bead represents 15 consecutive base pairs. The
DNA chain is enclosed in a confinement chamber, which volume is chosen so that the concentration
of nucleotides is close to physiological values (around 10 mM), in spite of the 200-fold reduction
relative to the length of the DNA of E. coli cells. Simulations were run with two different geometries
of the confinement chamber, namely: (i) A sphere of radius R0, and (ii) a cylinder of radius R0 and
length R0 capped at each end by a hemisphere of radius R0, which model the rigid walls of cocci and
bacilli, respectively. Choosing R0 = 120 nm for the sphere and R0 = (2/5)1/3

× 120 ≈ 88.42 nm for the
capped cylinder leads to an identical volume V for the two confinement chambers. In addition to the
DNA chain, N = 1500, 1750, or 2000 spherical crowders of radius b = 6.5 nm are also enclosed in the
confinement chamber.
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The potential energy of the system is written as the sum of four terms (Equation (1))

Epot = VDNA + VDNA/C + VC/C + Vwall, (1)

which describe the internal energy of the DNA chain, DNA/crowder interactions, crowder/crowder
interactions, and repulsion exerted by the bounding walls, respectively.

The internal energy of the DNA chain is further expanded as the sum of 3 contributions
(Equation (2))

VDNA =
h
2

n∑
k=1

(lk − l0)
2 +

g
2

n∑
k=1

θ2
k + e2

DNA

n−2∑
k=1

n∑
j=k+2

H(‖rk − r j‖), (2)

where (Equation (3))

H(r) =
1

4πε r
exp

(
−

r
rD

)
, (3)

which describe the stretching, bending, and electrostatic energy of the DNA chain, respectively.
rk denotes the position of the center of DNA bead k, lk the distance between the centers of two
successive beads, and θk the angle formed by the centers of three successive beads. The stretching term
aimed to avoid a rigid rod description and has no biological meaning. Setting h to 1000 kBT/l20, where
T = 298 K is the temperature of the system, ensures that |lk − l0| remains, on average, of the order of
0.02 l0, in spite of the compression forces exerted by the crowders. The bending rigidity constant g was set
to 9.82 kBT, in order to get the correct persistence length for DNA, ξ = gl0/(kBT) ≈ 49 nm [83]. Finally,
the electrostatic repulsion between DNA beads is written as a sum of Debye-Hückel potentials [84],
where eDNA = −12.15 e denotes the value of the point charge placed at the center of each DNA bead,
ε = 80 ε0 is the dielectric constant of the medium, and rD = 1.07 nm the Debye length inside the
medium, which corresponds to a concentration of monovalent salts close to 100 mM, as is often
assumed in bacteria. eDNA is significantly smaller than the total charge carried by the phosphate
groups of 15 base pairs (−30 e), in order to account for counter-ion condensation [85,86]. Note that l0 is
too large compared to rD to warrant that different parts of the DNA chain will never cross, but such
crossings are rather infrequent and appear to affect the geometry of the DNA chain only to a limited
extent. Finally, electrostatic interactions between nearest-neighbors are not included in Equation (2),
because it is considered that they are already accounted for in the stretching and bending terms.

DNA/crowder and crowder/crowder interactions are expressed as sums of Debye-Hückel potentials
with hard core (Equation (4))

VDNA/C = eDNA eC
n∑

k=1

N∑
K=1

H(‖rk −RK‖ − b)

VC/C = e2
C

N−1∑
K=1

N∑
L=K+1

H(‖RK −RL‖ − 2b) ,
(4)

where RK denotes the position of the center of crowding sphere K and eC the electrostatic charge placed
there. As in previous work, eC was set to eC = eDNA, which ensures that strong compaction of the
DNA chain is obtained for an effective volume fraction of the crowders (Equation (5))

ρ =
4πN(b + ∆b)3

3 V
(5)

in the range 0.60 ≤ ρ ≤ 0.70, that is close to the jamming threshold for hard spheres [57,58].
In Equation (5), b + ∆b = 8.3 nm represents the effective radius of the crowding spheres, that is
half the distance at which the electrostatic repulsion energy is equal to thermal energy. Simulations
performed with N = 1500, 1750, and 2000, crowders correspond to ρ = 0.50, 0.58, and 0.66, respectively.
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Finally, the repulsion exerted by the confinement chamber is written in the form (Equation (6))

Vwall = ζ
∑

k

(1 + dk
R0

)6

− 1

+ ζ
∑

K

(1 + DK

R0

)6

− 1

, (6)

where the sums extend only to the particles that have trespassed the limits of the confinement chamber,
dk (respectively, Dk) denotes the distance from the center of such DNA (respectively, crowder) particles
to the bounding wall, and ζ = 1000 kBT.

The dynamics of the system were investigated by numerically integrating overdamped Langevin
equations. Practically, the updated positions at time step i+1 were computed from the positions at time
step i according to (Equation (7))

r(i+1)
k = r(i)k + ∆t

6πη a f(i)k +
√

2 kBT ∆t
6πη a x(i)k

R(i+1)
K = R(i)

K + ∆t
6πη b F(i)

K +
√

2 kBT ∆t
6πη b X(i)

K ,
(7)

where ∆t = 20 ps is the integration time step, f(i)k and F(i)
K are vectors of inter-particle forces arising

from the potential energy Epot, x(i)k and X(i)
K are vectors of random numbers extracted from a Gaussian

distribution of mean 0 and variance 1, T = 298 K is the temperature of the system, and η = 0.00089 Pa
s is the viscosity of the buffer. Each trajectory was integrated for a total time duration ranging from
60 to 200 ms, depending on the geometry of the confinement chamber and the number of crowders.
The first 10 to 50 ms of each trajectory were used for equilibration and the remainder for production.
Representative snapshots of such trajectories are shown in Figures 1 and 2. We note in passing that
the time scales reported in the present work, which are in the range 1–100 ms, are by no means
representative of the corresponding time scales in real cells, because of (i) the coarse-grained nature
of the model, which accelerates the dynamics of the system by two to three orders of magnitude
compared to all-atom representations, and (ii) the fact that the model represents only ≈1/200 of an
E. coli cell, while the relaxation times of long polymers increase rapidly with their length n.
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Figure 1. Representative snapshots of simulations performed with the spherical confinement chamber 205 
and 1500N =  (panels (a) and (d)), 1750 (panels (b) and (e)), or 2000 (panels (c) and (f)) crowders. For 206 
panels (a), (b), and (c), the center of the confinement sphere was repositioned on top of the center of 207 
mass of the DNA chain after each integration time step, while the centering step was omitted for 208 
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of crowders. The confinement sphere is not shown. 211 

Figure 1. Representative snapshots of simulations performed with the spherical confinement chamber
and N = 1500 (panels (a) and (d)), 1750 (panels (b) and (e)), or 2000 (panels (c) and (f)) crowders.
For panels (a), (b), and (c), the center of the confinement sphere was repositioned on top of the center
of mass of the DNA chain after each integration time step, while the centering step was omitted for
panels (d), (e), and (f). DNA beads are colored in red and spherical crowders in cyan. Crowders are
represented at 1

4 of their actual radius, in order that the DNA chain may be seen through the layers of
crowders. The confinement sphere is not shown.



Microorganisms 2019, 7, 204 6 of 20
Microorganisms 2019, 7, x FOR PEER REVIEW 6 of 20 

 

 
Figure 2. Representative snapshots of simulations performed with the capped confinement cylinder 212 
and 1500N =  (panel (a)), 1750 (panel (b)), or 2000 (panels (c) and (d)) crowders. These simulations 213 
were run without repositioning the center of the confinement sphere on top of the center of mass of 214 
the DNA chain. DNA beads are colored in red and spherical crowders in cyan. Crowders are 215 
represented at ¼ of their actual radius, in order that the DNA chain may be seen through the layers 216 
of crowders. The capped confinement cylinder is not shown. 217 

3. Results 218 

3.1. Compaction of DNA Coils with Increasing Crowder Density 219 
Previous work investigated the behavior of a circular chain enclosed in a spherical confinement 220 

chamber, together with an increasing number N of crowding particles, under the constraint that the 221 
center of the confinement sphere is repositioned on top of the center of mass of the circular chain, 222 

CMr , after each integration step [57,58]. It was shown that the average size of the coil decreases with 223 
increasing values of N and that compaction is driven by ρ, the effective volume fraction of the 224 
crowders defined in Equation 5. Moreover, compaction increases sharply close to the jamming 225 
transition at 0.65ρ ≈  [57,58]. These results are illustrated on the top row of Figure 1, which shows 226 
representative snapshots of trajectories run with 1500N = , 1750, and 2000 crowders (corresponding 227 
to 0.50ρ = , 0.58, and 0.66, respectively), and the inset of Figure 3, which shows the evolution with 228 
N of coilR , the mean value of the average radius of the coil (Equation 8) 229 

coil CM
1

1 n

k
k

R
n =

= − r r .               (8) 230 

Simulations were performed by first letting the circular chain equilibrate in the confinement 231 
sphere, which it fills almost homogeneously. Mean radius of the DNA coil under these conditions is 232 

coil 78.8R ≈  nm. Crowders were then introduced at random, non-overlapping, and homogeneously 233 
distributed positions, and the system was allowed to equilibrate again for 20 ms (for 1500N =  and 234 

1750N = ) or 50 ms (for 2000N = ). Equilibration time is longer for 2000N =  because of the strongly 235 
reduced mobility of the crowders close to the jamming threshold. Finally, coilR  was averaged for 50 236 
ms along each trajectory. The increasing compaction of DNA coils with an increasing number of 237 
crowders is clearly seen in the inset of Figure 3. As is also illustrated in Figure 1c, compaction of the 238 
circular chain is particularly strong close to the jamming threshold, with an average radius as small 239 
as coil 55.0R ≈ nm for 2000N = . 240 

Figure 2. Representative snapshots of simulations performed with the capped confinement cylinder
and N = 1500 (panel (a)), 1750 (panel (b)), or 2000 (panels (c) and (d)) crowders. These simulations
were run without repositioning the center of the confinement sphere on top of the center of mass of the
DNA chain. DNA beads are colored in red and spherical crowders in cyan. Crowders are represented
at 1

4 of their actual radius, in order that the DNA chain may be seen through the layers of crowders.
The capped confinement cylinder is not shown.

3. Results

3.1. Compaction of DNA Coils with Increasing Crowder Density

Previous work investigated the behavior of a circular chain enclosed in a spherical confinement
chamber, together with an increasing number N of crowding particles, under the constraint that the
center of the confinement sphere is repositioned on top of the center of mass of the circular chain,
rCM, after each integration step [57,58]. It was shown that the average size of the coil decreases with
increasing values of N and that compaction is driven by ρ, the effective volume fraction of the crowders
defined in Equation (5). Moreover, compaction increases sharply close to the jamming transition at
ρ ≈ 0.65 [57,58]. These results are illustrated on the top row of Figure 1, which shows representative
snapshots of trajectories run with N = 1500, 1750, and 2000 crowders (corresponding to ρ = 0.50, 0.58,
and 0.66, respectively), and the inset of Figure 3, which shows the evolution with N of 〈Rcoil〉, the mean
value of the average radius of the coil (Equation (8))

Rcoil =
1
n

n∑
k=1

‖rk − rCM‖. (8)

Simulations were performed by first letting the circular chain equilibrate in the confinement
sphere, which it fills almost homogeneously. Mean radius of the DNA coil under these conditions is
〈Rcoil〉 ≈ 78.8 nm. Crowders were then introduced at random, non-overlapping, and homogeneously
distributed positions, and the system was allowed to equilibrate again for 20 ms (for N = 1500 and
N = 1750) or 50 ms (for N = 2000). Equilibration time is longer for N = 2000 because of the strongly
reduced mobility of the crowders close to the jamming threshold. Finally, Rcoil was averaged for
50 ms along each trajectory. The increasing compaction of DNA coils with an increasing number of
crowders is clearly seen in the inset of Figure 3. As is also illustrated in Figure 1c, compaction of the
circular chain is particularly strong close to the jamming threshold, with an average radius as small as
〈Rcoil〉 ≈ 55.0 nm for N = 2000.
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Figure 3. Plot, as a function of the number N of spherical crowders (lower x axis) or the effective
crowder volume fraction ρ (upper x axis), of the mean radius of the DNA coil, < Rcoil > (circles), and the
mean distance from its center of mass to the center of the confinement sphere, < rCM > (lozenges).
Empty circles correspond to the case where the center of the confinement sphere was repositioned on
top of the center of mass of the DNA chain after each integration time step, and filled circles to the case
where the centering step was omitted. The inset shows the plot of < Rcoil > over a broader range of
values of N, in order to highlight the abrupt decrease close to the jamming threshold. < Rcoil > and
< rCM > are expressed in units of nm. The vertical dot-dashed line at ρ = 0.65 denotes the approximate
location of the jamming threshold.

More detailed information is gained from the plots of QX(r), the enrichment in species X at a
distance r from the center of the confining sphere. QX(r) is defined so that the mean number of particles
of species X with center located in a distance interval [r, r + dr[ from the center of the confining sphere,
is equal to (Equation (9))

4πr2QX(r)
nX

V
, (9)

where nX is the total number of particles of species X (nX = n = 1440 for DNA beads and nX = N
for crowders). Note that QX(r) = 1 for a homogeneously distributed species X. The plots of QDNA(r)
obtained from trajectories where the center of the confinement sphere was repositioned on top of the
center of mass of the DNA chain after each integration time step are shown as dashed lines in Figure 4.
These plots indicate that increasing the value of N results in a strong increase of the enrichment in
DNA beads close to the center of the confinement sphere. Enrichment values as large as QDNA(0) ≈ 10
are obtained at the center of the confinement sphere for N = 2000. Periodic oscillations in the plot
of QDNA(r) are moreover observed for N = 2000. As can be checked in Figure 5, which displays
superimposed plots of QDNA(r) and QC(r) for N = 2000, these oscillations arise from the fact that,
close to the jamming threshold, crowders tend to arrange in regular concentric layers, while DNA
beads localize preferentially in the interstices between two successive layers.
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Figure 4. Plot of QDNA(r), the enrichment in DNA beads as a function of the distance r from the center
of the confinement sphere, for N = 1500 (blue curves), 1750 (green curves), and 2000 (red curves)
crowders. Dashed lines correspond to the case where the center of the confinement sphere was
repositioned on top of the center of mass of the DNA chain after each integration time step, and solid
lines to the case where the centering step was omitted. QDNA(r) is constant and equal to 1 (dot-dashed
horizontal gray line) for DNA beads distributed homogeneously all over the confinement sphere. r is
expressed in units of nm. N = 1500, 1750, and 2000 correspond to effective volume fractions of the
crowders ρ = 0.50, 0.58, and 0.66, respectively.

3.2. Free DNA Coils Acquire the Localization Properties of Solid Spheres at Large Crowder Density

One of the principal goals of this work is to understand how the conclusions summarized in the
previous sub-section are affected when the center of mass of the circular chain is not constrained to
remain at the center of the spherical confinement chamber. In order to answer this question, several
sets of trajectories were launched, as described above, except that the centering step was omitted.
Moreover, not only 〈Rcoil〉, but also 〈rCM〉 (the mean distance from the center of mass of the DNA chain
to the center of the confinement sphere), were computed during the 50 ms production time windows,
and results were averaged over eight different trajectories for the sake of better statistics.

Representative snapshots extracted from these simulations are shown in the bottom row of
Figure 1. Visually, the vignettes for N = 1500 and N = 1750 look quite similar to those in the top row,
which are extracted from simulations that included the centering step. In contrast, the vignettes for
N = 2000 are markedly different, in that the DNA coil looks significantly more compact when the
centering step is omitted and it furthermore localizes close to the bounding wall. This visual inspection
is confirmed by the plots of 〈Rcoil〉 (circles) and 〈rCM〉 (lozenges) as a function of N, which are shown
in Figure 3. While for N = 1500 and N = 1750, the values of 〈Rcoil〉 obtained with and without the
centering step almost superpose, for N = 2000, the mean radius of the DNA coil is about 10 nm smaller
when the centering step is omitted (〈Rcoil〉 ≈ 45.5 nm instead of 〈Rcoil〉 ≈ 55.0 nm). Simultaneously,
the center of mass of the DNA coil, which remains on average within 15 nm from the center of the
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confinement sphere for N = 1500 and N = 1750, jumps to 〈rCM〉 ≈ 65.2 nm for N = 2000. Examination
of the plots of QDNA(r) in Figure 4 leads to corroborating conclusions. Indeed, for N = 1500 and
N = 1750, omission of the centering step (solid lines) results in a rather limited transfer of DNA
beads towards the periphery of the confinement sphere. In contrast, for N = 2000, the center of the
confinement sphere is totally deprived of DNA beads when the centering step is omitted, because the
very compact DNA coil has migrated towards the surface of the confinement sphere and sticks to it.Microorganisms 2019, 7, x FOR PEER REVIEW 9 of 20 
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Figure 5. Plot of QDNA(r) (red curve) and QC(r) (brown curve), the enrichment in DNA beads and
crowders, respectively, as a function of the distance r from the center of the confinement sphere,
for N = 2000 crowders. The center of the confinement sphere was repositioned on top of the center of
mass of the DNA chain after each integration time step. QX(r) is constant and equal to 1 (dot-dashed
horizontal gray line) for a homogeneously distributed species X. r is expressed in units of nm. N = 2000
corresponds to an effective volume fraction of the crowders ρ = 0.66, close to the jamming threshold
for solid spheres.

The most straightforward explanation for this result is that free DNA coils acquire the localization
properties of solid spheres at large crowder density. Indeed, for values of ρ smaller than about 0.60, the
DNA chain is only moderately compacted by the segregative phase separation mechanism, so that
many crowders are able to diffuse inside the coil. As a consequence, most DNA beads experience almost
isotropic collisions with the crowders. There is therefore no preferred positioning of the DNA coil
inside the confinement sphere, which results in distributions of DNA beads with spherical symmetry
and central maximum, as observed in Figure 4 for N = 1500 and N = 1750. In contrast, for values of ρ
close to the jamming threshold for solid spheres (ρ ≈ 0.65), DNA/crowder de-mixing is significantly
more efficient than for lower crowder density, so that much fewer crowders are able to diffuse inside
the DNA coil. As a consequence, the vast majority of DNA/crowder collisions take place at the surface
of the DNA coil. When diffusion brings the compact coil close to the bounding wall, the pressure
exerted on the surface of the coil that faces the wall diminishes steadily and the DNA coil is pressed
more and more firmly against the wall. Simultaneously, the shape of the coil adapts to some extent
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to that of the bounding wall, which makes the whole process even more efficient and the DNA coil
is unable to detach from the wall. Except for the deformability of the DNA coil, this mechanism is
identical to the one that is responsible for the fact that a big hard sphere immersed in a sea of smaller
ones localizes preferentially close to bounding walls [15–20]. The results above therefore suggest that,
close to the jamming threshold, the DNA coil acquires the localization properties of a solid sphere,
because of the abrupt increase in DNA compaction that takes place at large crowder density. Note that
we did not check whether the DNA coil simultaneously acquires other properties that are specific to
solids, like for example an eventual n1/3 dependence of 〈Rcoil〉.

A few comments are in order here. First, it can be checked in Figures 1f and 2c,d that the DNA coil
is always separated from the wall of the confinement chamber by at least one layer of crowders. This is
an artifact of the model, which arises from the fact that the repulsion term in Equation (6) acts on all
particles whose center (not whose periphery) trespasses the wall. Since the radius of crowding spheres
is much larger than the radius of DNA beads, it is convenient from the entropic point of view that the
centers of as large as possible number of crowding spheres localize on the wall, because this de facto
increases the volume available to all other particles. Moreover, it may be worth emphasizing that the
concentric shells of crowders, which are clearly seen in Figures 2c and 4, are due to the homogeneity of
the crowders and fade progressively away with increasing crowder heterogeneity. However, as was
shown previously [57,58], this does not significantly affect the compaction of the DNA coil, because
the main effect of crowder heterogeneity is to let the crowders with the largest radius be expelled
preferentially from the DNA coil. Such concentric shells probably do not form in real heterogeneous
cytosol, but this does not invalidate the conclusions drawn here.

3.3. Localization of Compact DNA Coils in the Regions with Largest Boundary Curvature

As mentioned in the Introduction section, theory indicates that a big hard sphere immersed in a sea
of smaller ones and enclosed in a confinement chamber with complex geometry localizes preferentially
close to the regions of the bounding wall with the largest curvature [16,19]. If the conclusion drawn in
the previous sub-section is correct and the DNA coil indeed acquires the localization properties of
a solid sphere close to the jamming threshold, then replacing spherical confinement walls (specific
to cocci) by rod-like confinement walls (specific to bacilli) should result in the migration of the coil
towards the hemispherical caps of the confinement cylinder. In order to check this point, several
sets of trajectories were launched with the capped confinement cylinder described in the Materials
and Methods section. All trajectories with N = 1500 and N = 1750 equilibrated within less than
25 ms, while much longer equilibration time windows were again required for N = 2000 (see below).
After the equilibration step, three quantities were averaged over time windows of 75 ms, in order
to characterize the dimension and position of the DNA coil, namely 〈Rcoil〉, 〈hCM〉, and

〈
abs(xCM)

〉
,

where hCM denotes the radial distance from the center of mass of the DNA coil to the axis of revolution
of the cylinder, and xCM the position of the center of mass of the DNA coil along the axis of revolution
of the cylinder, with xCM = 0 at the center of the cylinder. For N = 1500 and N = 1750, results were
finally averaged over eight different trajectories, while for N = 2000, they were averaged over only
three different trajectories (see below).

Representative snapshots extracted from these simulations are shown in Figure 2 and the plots
of 〈Rcoil〉, 〈hCM〉, and

〈
abs(xCM)

〉
as a function of N in Figure 6. Far from the jamming threshold,

the compaction ratio of the DNA coil in the rod-like confinement chamber remains moderate and close
to the value obtained for the spherical confinement chamber (for example 〈Rcoil〉 = 62.5 nm against
63.6 nm for N = 1750). This is not really surprising, because the two confinement chambers have
the same volume V, so that for each value of N, the associated values of ρ obtained from Equation
(5) are identical. Moreover, the center of mass of the DNA coil remains close to the center of the
confinement cylinder, both longitudinally and radially. As can be checked in Figure 6, for N = 1750〈
abs(xCM)

〉
remains indeed as small as about 23 nm (compared to the half-length 2R0 ≈ 177 nm of the
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confinement chamber) and 〈hCM〉 of the order of only 8 nm (compared to the radius R0 ≈ 88 nm of the
confinement chamber).
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Figure 6. Plot, as a function of the number N of spherical crowders (lower x axis) or the effective crowder
volume fraction ρ (upper x axis), of the mean radius of the DNA coil, < Rcoil > (circles), the mean
radial distance from the center of mass of the DNA coil to the axis of the confinement chamber, 〈hCM〉

(lozenges), and the abscissa of the center of mass of the DNA coil along the axis of the confinement
chamber,

〈
abs(xCM)

〉
(squares). These simulations were run without repositioning the center of the

confinement chamber on top of the center of mass of the DNA coil. < Rcoil >, 〈hCM〉, and
〈
abs(xCM)

〉
are expressed in units of nm. The vertical dot-dashed line at ρ = 0.65 denotes the approximate location
of the jamming threshold.

As for the spherical confinement chamber, results obtained close to the jamming threshold (N = 2000)
are however very different from those obtained at lower crowder density. Indeed, three out of the eight
trajectories that were run with N = 2000 led within a 50 ms equilibration time window to an equilibrated
conformation similar to the one shown in Figure 2c. The DNA chain is compacted to the same huge ratio as
for the confinement sphere (〈Rcoil〉 = 44.4 nm against 45.5 nm) and it fills one of the hemispherical caps of the
confinement chamber. Figure 7 illustrates the sequence of events, which take place during the equilibration
step and ultimately lead to this result. Within a few tens of ms, the DNA chain first forms a thick filament
that elongates along the axis of the cylinder, which indicates that compaction is more rapid perpendicular to
this axis than along the axis. Such a difference probably arises from the fact that the persistence length of
the DNA chain (50 nm) is of the same order of magnitude as the dimensions of the confinement chamber
(R0 ≈ 88.42 nm), so that compaction of the coil perpendicular to the largest dimension of the chamber costs
significantly less bending energy than compaction along the axis of the cylinder. Compaction along the
axis of the cylinder does however continue and the DNA chain progressively acquires its final globular
conformation at the expense of the compaction ratio perpendicular to the axis, which decreases again
significantly. If the thick filament is initially in contact with only one of the hemispherical caps or diffusion
drives it close to one of these caps (snapshots at 35 and 40 ms in Figure 7e,f), then the cap behaves like
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an attractor and the DNA coil gets trapped therein. The points at N = 2000 in Figure 6 were obtained by
averaging 〈Rcoil〉, 〈hCM〉, and

〈
abs(xCM)

〉
for 75 ms (after equilibration) along these three trajectories. The

abrupt displacement of the DNA coil towards a hemispherical cap upon increase of N from 1750 to 2000 is
very clear in Figure 6.Microorganisms 2019, 7, x FOR PEER REVIEW 13 of 20 
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Figure 7. Sequence of snapshots at 0 ms (panel (a)), 5 ms (panel (b)), 10 ms (panel (c)), 35 ms (panel (d)),
40 ms (panel (e)), 45 ms (panel (f)), 50 ms (panel (g)), and 55 ms (panel (h)), extracted from a trajectory
run with the capped confinement cylinder, N = 2000 crowders, and without repositioning the center of
the confinement sphere on top of the center of mass of the DNA chain. This sequence illustrates the
equilibration phase of the system, where the DNA chain compacts progressively and migrates towards
one of the hemispherical caps. N = 2000 corresponds to an effective volume fraction of the crowders
ρ = 0.66, close to the jamming threshold for solid spheres. DNA beads are colored in red and spherical
crowders in cyan. Crowders are represented at 1

4 of their actual radius, in order that the DNA chain
may be seen through the layers of crowders. The capped confinement cylinder is not shown.

In contrast, the remaining five trajectories run with N = 2000 were transiently trapped in
conformations similar to the one shown in Figure 2d. The DNA coil displays a dumbbell-like geometry
composed of a thin filament stretching along the axis of the cylinder and connecting two globules
anchored in each of the hemispherical caps. This conformation is only metastable and thermal
fluctuations are sufficient to detach one of the globules from the corresponding hemispherical cap
within a few hundreds of ms. The DNA chain subsequently undergoes the sequence of transformations
shown in Figure 7.

Simulations performed with the rod-like confinement chamber therefore confirm the tentative
conclusion drawn in the previous sub-section that the DNA coil abruptly acquires the localization
properties of solid spheres close to the jamming threshold. This transition manifests itself through
the preferential localization of the coil close to the regions of the wall with the largest curvature.
In the simplest cases, this leads to a compact DNA globule filling one of the hemispherical caps of
the confinement chamber. However, the attachment strength of a DNA coil to a spherical wall is
large enough for the DNA chain to remain trapped for long times in a dumbbell conformation if
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thermal fluctuations do not perturb the symmetry of the coil during the initial steps of the compaction
too much.

3.4. The Bacterial Nucleoid Does Not Behave Like A “Soft Sphere”

In a recent work, Shew et al. investigated the localization of a large sphere in a cavity filled with
smaller ones and suggested that the large sphere localizes preferentially at the periphery of the cavity
when it is “rigid”, but switches into the inner region when its “softness” increases [28]. Since the
questions raised in their work and the present paper are clearly related, we performed several sets
of simulations, in order to check whether their model is relevant to understanding the preferential
localization of compact nucleoids inside bacterial cells.

The “soft sphere” model of Shew et al. [28] actually consists of a sphere, which has two different
effective radii, namely an outer radius bS that governs the interactions with the bounding wall and
an inner radius bS − δ (δ ≥ 0) that governs the interactions with the small crowding spheres. Shew et
al. showed that increasing δ, that is allowing the small crowders to penetrate more and more deeply
inside the outer radius bS of the large sphere, leads to the displacement of the average position of
the large sphere towards the center of the spherical confinement chamber. The main issue with the
simulations presented in Ref. [28] is the small size of the investigated system. Indeed, the outer radius
of the large sphere, bS, is approximately one half of the radius of the confinement sphere, R0, which
actually precludes a clear interpretation of the results. In order to clarify the results obtained with this
model, we ran several sets of simulations along the same lines as in Ref. [28], but with a significantly
larger R0/bS ratio.

More precisely, the system investigated here consists of a large sphere of radius bS = 20 nm
enclosed in a confinement sphere of radius R0 = 125 nm together with N = 1499 smaller crowding
spheres of radius b = 6.5 nm. Crowder/crowder interactions obey the VC/C potential of Equation
(4), while the interactions between the large sphere and the crowders are expressed in the form
(Equation (10))

VS/C = e2
C

N∑
K=1

H(‖RK −RS‖ − b− bS + δ) , (10)

where RS denotes the position of the center of the large sphere, in order to account for the “softness”
of the large sphere. Moreover, the repulsion exerted by the bounding wall was slightly modified
according to (Equation (11))

Vwall = ζ

(1 + DS

R0 − bS

)6

− 1

+ ζ
∑

K

(1 + DK

R0 − b

)6

− 1

, (11)

where DS denotes the distance from the center of the large sphere to the bounding wall, so that the wall
repels all the spheres as soon as their periphery (instead of their center) trespasses the wall. Effective
volume fraction of the crowders is ρ = 0.52.

The first set of simulations was performed with δ = 0, that is for a “rigid” large sphere.
As illustrated in the inset of Figure 8, which shows the time evolution of the distance r from the center
of the large sphere to the center of the confinement sphere, the large sphere spends most of the time at
rather well defined distances from the center of the confinement sphere and the transit time between
two preferred shells is quite short. This is also clearly seen in the main plot of Figure 8 (dashed blue line),
which shows the corresponding enrichment in the probability of finding the large sphere at distance r
from the center of the confinement sphere, QS(r), obtained by averaging the computed density over
80 ms time windows from eight different trajectories. The most stable conformation, associated with
the most intense peak at 105 nm, corresponds to the case where the periphery of the large sphere
with radius bS = 20 nm is in contact with the bounding wall (radius R0 = 125 nm). The next peaks,
of globally decreasing intensity, are separated by about 15.8 nm, close to 2(b + ∆b) ≈ 16.6 nm. This
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indicates that the successive preferred shells correspond to conformations, where the periphery of the
large sphere is separated from the bounding wall by an increasing number of layers of small crowding
spheres. This result is in perfect agreement with previous ones dealing with similar systems [15–20].

Microorganisms 2019, 7, x FOR PEER REVIEW 15 of 20 

 

conformation by selecting the one associated with maximum entropy. While this ultimately results 489 
in the “soft” sphere moving to some extent away from the bounding wall, it nevertheless does not 490 
lose its solid-state properties. In contrast, the circular chain investigated in the present work displays 491 
no particular affinity for the bounding wall up to crowder concentrations close to the jamming 492 
threshold, where it rather abruptly sticks to the wall. This phenomenon can consequently not be 493 
described as the transformation of the DNA coil from a “soft” sphere to a “rigid” one, according to 494 
the terminology of Ref. [28], although the DNA coil does acquire the localization properties of solid 495 
spheres close to the jamming threshold. 496 

 
Figure 8. (Inset) Time evolution of r, the distance from the center of the large “rigid” sphere with 497 
radius S 20b = nm to the center of the confinement sphere. (Main) Plot of S( )Q r , the enrichment in 498 
the probability of finding the large sphere at distance r from the center of the confinement sphere, for 499 
the “rigid” case (dashed blue line) and the “soft” case (solid red line). S( )Q r  is constant and equal to 500 
1 (dot-dashed horizontal gray line) if the probability of finding the large sphere is uniform inside the 501 
confinement sphere. Time is expressed in units of ms and r in units of nm. The effective volume 502 
fraction occupied by the 1499N =  crowders of radius 6.5b =  nm is 0.52ρ = . 503 

4. Discussion 504 
The work reported in this paper elaborates on recent simulations, which add weight to the 505 

conjecture that the formation of the nucleoid may result from a segregative phase separation 506 
mechanism driven by the de-mixing of the DNA coil and non-binding macromolecules, presumably 507 
functional ribosomes [44,57,58]. In a previous work, the center of the confinement sphere was 508 
repositioned on top of the center of mass of the DNA chain after each integration step, in order that 509 
the results depend as little as possible on the interactions between the DNA chain and the bounding 510 
wall. The present work instead focuses on the preferential localization of the DNA coil inside the 511 
confinement chamber when the centering step is omitted. While it is a general belief that the nucleoid 512 
‘remains centrally located due to entropic repulsion from the cell wall’ [87], the simulations reported 513 
here suggest that this statement is not valid at large crowder density, close to the jamming threshold, 514 
where the compaction ratio of the DNA coil increases abruptly [44,57,58]. Indeed, in this regime, the 515 

Figure 8. (Inset) Time evolution of r, the distance from the center of the large “rigid” sphere with
radius bS = 20 nm to the center of the confinement sphere. (Main) Plot of QS(r), the enrichment in
the probability of finding the large sphere at distance r from the center of the confinement sphere,
for the “rigid” case (dashed blue line) and the “soft” case (solid red line). QS(r) is constant and equal
to 1 (dot-dashed horizontal gray line) if the probability of finding the large sphere is uniform inside
the confinement sphere. Time is expressed in units of ms and r in units of nm. The effective volume
fraction occupied by the N = 1499 crowders of radius b = 6.5 nm is ρ = 0.52.

A second set of simulations was then performed with δ = b, that is, in the case where the small
crowding spheres can penetrate into the large “soft” one over a distance δ equal to their radius b. The
result is shown as a solid red line in the main plot of Figure 8. It is seen that the plot of QS(r) consists,
as for the “rigid” sphere, of a series of peaks separated by about 15.8 nm. The only difference is that
the most stable conformation, associated with the most intense peak at 95 nm, corresponds to the
case where the center of the large sphere is separated from the bounding wall by a distance of about
bS + 2(b + ∆b) − δ ≈ 30 nm, which allows for a layer of small crowding spheres to intercalate between
the inner periphery (radius bS − δ) of the large “soft” sphere and the bounding wall. This conformation
is obviously favored by entropy with respect to the conformation where the outer periphery of the
large sphere (radius bS) is in contact with the bounding wall, the reason being that in this latter
conformation, a crescent located between the inner periphery of the “soft” sphere (radius bS − δ) and
the bounding wall remains empty, which ultimately reduces the total volume available for the small
crowding spheres.

The results presented above therefore indicate that the “soft” sphere proposed by Shew et al. [28]
is fundamentally a solid, in the sense that it localizes preferentially in a series of concentric shells,
with the occupation probability being maximum in the shell closest to the bounding wall, just like
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a hard sphere does. Increasing the “softness” of the large sphere merely modifies the most stable
conformation by selecting the one associated with maximum entropy. While this ultimately results in
the “soft” sphere moving to some extent away from the bounding wall, it nevertheless does not lose
its solid-state properties. In contrast, the circular chain investigated in the present work displays no
particular affinity for the bounding wall up to crowder concentrations close to the jamming threshold,
where it rather abruptly sticks to the wall. This phenomenon can consequently not be described as the
transformation of the DNA coil from a “soft” sphere to a “rigid” one, according to the terminology of
Ref. [28], although the DNA coil does acquire the localization properties of solid spheres close to the
jamming threshold.

4. Discussion

The work reported in this paper elaborates on recent simulations, which add weight to the
conjecture that the formation of the nucleoid may result from a segregative phase separation mechanism
driven by the de-mixing of the DNA coil and non-binding macromolecules, presumably functional
ribosomes [44,57,58]. In a previous work, the center of the confinement sphere was repositioned
on top of the center of mass of the DNA chain after each integration step, in order that the results
depend as little as possible on the interactions between the DNA chain and the bounding wall. The
present work instead focuses on the preferential localization of the DNA coil inside the confinement
chamber when the centering step is omitted. While it is a general belief that the nucleoid ‘remains
centrally located due to entropic repulsion from the cell wall’ [87], the simulations reported here
suggest that this statement is not valid at large crowder density, close to the jamming threshold,
where the compaction ratio of the DNA coil increases abruptly [44,57,58]. Indeed, in this regime,
the compact DNA coil localizes preferentially close to the bounding wall, and more precisely, close
to the regions of the bounding wall with the largest curvature, as if it were a solid sphere [15–20].
Most importantly, the preferential localization of the DNA coil in the hemispherical caps of rod-like
cells reported here is in striking contrast with experimental results, which show, unambiguously, that
compact nucleoids are preferentially positioned at the center of mononucleoid cells and at one quarter
and three quarters of the length of binucleoid cells [5,6,10,12–14,21–26]. The coarse-grained model
therefore supports the hypothesis that the observed preferential localization of compact nucleoids at
regular cell positions involves either some anchoring of the DNA molecule to the cell membrane or
some dynamical localization mechanism.

At this point, it must be emphasized that, for the model discussed here, the effective volume
fraction of crowders at the jamming threshold (N = 2000) is ρ = 0.66, but the volume fraction occupied
by naked crowders, without taking electrostatic repulsion into account, is only (4πNb3)/(3 V) ≈ 0.32.
Consequently, the volume fraction, which is virtually accessible to water and smaller solutes, is of the
order of 0.7, in perfect agreement with the 0.7 water volume fraction reported for E. coli [88]. Moreover,
there is experimental evidence that the translational diffusion coefficient of macromolecules is about
one order of magnitude smaller in bacterial cells than in water and about three times smaller than in
eukaryotic cells [89], which suggests that the cytoplasm of bacteria is indeed close to jamming and that
the largest crowder concentration discussed in the present paper is indeed relevant in vivo.

On the other hand, it must be admitted that it is far from being easy to figure out what the precise
localization mechanism could be. Indeed, we are not aware of any system capable of inducing the
regular localization of compact nucleoids through the periodic oscillation of the concentration of some
chemical compounds, like the control exerted by the Min system on the position of the Z-ring [38].
Moreover, there are several well characterized examples of proteins that anchor the DNA to the poles
of the cell [31–33], but we are aware of only one protein that anchors the DNA at mid-cell (and other
regular positions), namely the Noc protein, which ensures that the septum does not form over the
nucleoid of B. subtilis by occluding the division apparatus [37]. The point, however, is that it is not
clear whether the compact nucleoid of B. subtilis localizes at mid-cell because the Noc protein is
able to tether the DNA only at this very precise position, or the nucleoid would localize at mid-cell
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even in the absence of any Noc protein. Furthermore, most experimental results were obtained with
E. coli [5,10,12–14,21,22,25,26], where the Noc protein is replaced by the SlmA protein, which provokes
depletion of the cytokinetic ring protein FtsZ at mid-cell by mediating its binding to random positions
along the DNA molecule, but does not anchor the DNA to the membrane [90,91].

Moreover, entropic demixing, which in the present model is responsible for the strong compaction
of the DNA coil close to the jamming threshold, is rather sensitive to the parameters of the model,
and in particular, to the detail of the various repulsion potentials [58]. In this regard, we note that no
preferential localization of the DNA coil close to the hemispherical caps of cylindrical confinement
chambers was observed in the simulations reported in Ref. [29]. While the reason therefore is probably
that this work did not consider sufficiently large crowder concentrations, so that only mild compaction
of the DNA chain was obtained, it cannot be fully excluded that the two models actually lead to
different results. Generally speaking, further work is certainly needed to ascertain which kind of model
is able to provide a reliable picture of the mechanisms that take place in real cells.

To conclude, it may be worth noting that the question investigated in the present work is rather
reminiscent of the tight spatial regulation of the origin of replication (oriC) of slowly growing E. coli.
Indeed, at the beginning of the cycle, oriC localizes at mid-cell, while the two daughter oriC move to
quarter cell positions shortly after the beginning of replication and remain there till the two daughter
cells separate [92,93]. The mechanism that allows for such precise positioning of oriC is also unknown,
although early biochemical experiments suggest that the region of DNA around oriC, the terminus,
and the site of ongoing replication, are able to associate with the membrane [94–96]. Owing to the
obvious link between these two questions dealing with localization, it is not unreasonable to hope that
progress along one of them will help to solve the other one.
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