

MATHÉMATIQUES POUR LA PHYSIQUE – L3 PHY

TD11 – Analyse Complexe II

http://www-liphy.ujf-grenoble.fr/Mourad-Ismail J. COLLOT, M. ISMAIL ET J. MEYER

Exercice 1

Déterminer la nature des singularités et le développement en série de Laurent au voisinage de ces singularités des deux fonctions suivantes :

1.
$$f_1(z) = \frac{\cos(2z)}{z - \pi}$$
;

$$2. \quad f_2(z) = z \sin\left(\frac{1}{z}\right).$$

Solution de l'exercice 1

1. $f_1(z)$ a une singularité en $z_0 = \pi$. On calcule d'abord la série de Taylor de $\cos(2z)$ autour de z_0 , c'est-à-dire

$$\cos(2z) = \cos(2(z-\pi) + 2\pi) = \cos(2(z-\pi)) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n} (z-\pi)^{2n}.$$

La série de Laurent de $f_1(z)$ prend donc la forme

$$f_1(z) = \frac{1}{z - \pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n} (z - \pi)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n} (z - \pi)^{2n-1}$$
$$= \sum_{n=-1}^{\infty} \frac{(-1)^{n+1}}{(2n+2)!} 2^{2n+2} (z - \pi)^{2n+1}.$$

Les coéfficients $a_{n<-1}=0$. Il s'agit donc d'un pôle du premier ordre.

2. $f_2(z)$ a une singularité en $z_0 = 0$. On pose w = 1/z. La série de Taylor de sin w est donnée par

$$\sin w = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} w^{2n+1}.$$

Donc la série de Laurent de $f_2(z)$ prend la forme

$$f_2(z) = z \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{1}{z}\right)^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-2n}$$
$$= \sum_{n=-\infty}^{0} \frac{(-1)^n}{(-2n+1)!} z^{2n}.$$

Il n'existe pas de n_{\min} tel que $a_{n < n_{\min}} = 0$. Donc il s'agit d'une singularité essentielle.

Exercice 2

Soit à calculer l'intégrale suivante par la méthode des résidus :

$$I = \int_{-\infty}^{\infty} \frac{1}{1 + x^4} \, \mathrm{d}x.$$

Indication: calculer l'intégrale

$$I_z = \int_{\Gamma \cap} \frac{1}{1 + z^4} \, \mathrm{d}z.$$

 Γ étant le contour composé du segment [-R, R] et du demi-cercle \mathcal{C} de rayon R centré en 0 (justifier ce choix de contour). On donnera le degré des pôles et on remarquera que la fonction que l'on veut intégrer est du type P(x)/Q(x) où P et Q sont des polynômes.

Solution de l'exercice 2

La fonction à intégrer tend vers zéro comme $1/|z|^4$ pour $z \to \infty$. Donc l'intégrale sur le demi-cercle \mathcal{C} tend vers zéro dans la limite $R \to \infty$. Par conséquent,

$$I = \int_{-\infty}^{\infty} \frac{1}{1+x^4} dx = \int_{\Gamma \circlearrowleft} \frac{1}{1+z^4} dz.$$

La fonction $f(z) = 1/(1+z^4)$ possède des singularités aux point suivants :

$$1 + z^4 = 0$$
 \Leftrightarrow $z_n = e^{i\frac{\pi}{4} + in\frac{\pi}{2}} \quad (n = 0, 1, 2, 3).$

Le points singuliers avec $\Im[z_n]>0$ se trouvent à l'intérieur du contour,

$$\Im[z_n] = \sin\left((1+2n)\frac{\pi}{4}\right), \text{ donc } \Im[z_0], \Im[z_1] > 0.$$

Pour évaluer l'intégrale, on utilise le théorème des résidus,

$$I = \int_{\Gamma_0} \frac{1}{1 + z^4} dz = 2\pi i \left[\text{Res}(f, z_0) + \text{Res}(f, z_1) \right].$$

Comme il s'agit de pôles du premier ordre, les résidus sont donnés par

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_i} \frac{z - z_i}{1 + z^4} = \lim_{z \to z_i} \frac{z - z_i}{(z - z_0)(z - z_1)(z - z_2)(z - z_3)}.$$

Donc

$$\operatorname{Res}(f, z_0) = \frac{1}{(e^{i\frac{\pi}{4}} - e^{i\frac{3\pi}{4}})(e^{i\frac{\pi}{4}} - e^{i\frac{5\pi}{4}})(e^{i\frac{\pi}{4}} - e^{i\frac{7\pi}{4}})} = \frac{1}{4}e^{-i\frac{3\pi}{4}} = \frac{1}{4}\left(-\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right)$$

$$\operatorname{Res}(f, z_1) = \frac{1}{(e^{i\frac{3\pi}{4}} - e^{i\frac{\pi}{4}})(e^{i\frac{3\pi}{4}} - e^{i\frac{5\pi}{4}})(e^{i\frac{3\pi}{4}} - e^{i\frac{7\pi}{4}})} = \frac{1}{4}e^{-i\frac{9\pi}{4}} = \frac{1}{4}\left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right).$$

[Plus simple : Pour f(z) = P(z)/Q(z), où P et Q sont des polynomes, le résidu pour un pôle du premier ordre est donné par $\text{Res}(f, z_i) = P(z_i)/Q'(z_i)$.]

Finalement, on obtient

$$I = 2\pi i \left[\frac{1}{4} \left(-\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) + \frac{1}{4} \left(\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \right] = \frac{\pi}{\sqrt{2}}.$$

Exercice 3

Calculer l'intégrale suivante par la méthode des résidus :

$$I = \int_{-\infty}^{\infty} \frac{1}{(1+x^2)^4} \, \mathrm{d}x.$$

Indication : On utilisera le même contour que précédemment. [Justifier ce choix de contour.] Attention au degré du pôle pour le calcul du résidu.

Solution de l'exercice 3

La fonction à intégrer tend vers zéro comme $1/|z|^8$ pour $z \to \infty$. Donc l'intégrale sur le demi-cercle \mathcal{C} tend vers zéro dans la limite $R \to \infty$. Par conséquent,

$$I = \int_{-\infty}^{\infty} \frac{1}{(1+x^2)^4} \, \mathrm{d}x = \int_{\Gamma \circlearrowleft} \frac{1}{(1+z^2)^4} \, \mathrm{d}z.$$

La fonction $f(z)=1/(1+z^2)^4$ possède des singularités aux point suivants :

$$1 + z^2 = 0$$
 \Leftrightarrow $z_n = e^{i\frac{\pi}{2} + in\pi} \ (n = 0, 1),$

c'est-à-dire, $z_n = (-1)^n i$.

Seulement le point singulier $z_0 = i$ se trouve à l'intérieur du contour. Pour évaluer l'intégrale, on utilise le théorème des résidus,

$$I = \int_{\Gamma_0} \frac{1}{(1+z^2)^4} dz = 2\pi i \operatorname{Res}(f, z_0).$$

Comme il s'agit d'un pôle de l'ordre 4, le résidue est donné par

$$\operatorname{Res}(f, z_0) = \frac{1}{3!} \lim_{z \to z_0} \left[\frac{d^3}{dz^3} (z - z_0)^4 \frac{1}{(1 + z^2)^4} \right] = \frac{1}{3!} \lim_{z \to i} \left[\frac{d^3}{dz^3} \frac{1}{(z + i)^4} \right]$$
$$= \frac{1}{3!} \lim_{z \to i} \left[(-4)(-5)(-6) \frac{1}{(z + i)^7} \right] = -i \frac{6!}{(3!)^2 2^7} = -i \frac{5}{32}.$$

Donc

$$I = 2\pi i \left(-i\frac{5}{32} \right) = \frac{5\pi}{16}.$$