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Introduction Directed Polymer language

1D Interface in the Directed Polymer (DP) language
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[Trick n◦1]

No bubbles
No overhangs
Interface lengthscale r

l
DP ‘time’ t

working at fixed ‘time’ t ⇐⇒ integration of
fluctuations at scales smaller than t

time duration ≡ lengthscale
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Introduction Directed Polymer language

Disordered elastic systems

Elasticity: tends to flatten the interface





HV = Hel +Hdis
V

Hel[y(t ′), t ] =
c
2

∫ t

0
dt ′
[
∂t ′y(t ′)

]2

Disorder: tends to bend it

Hdis
V [y(t ′), t ] =

∫ t

0
dt ′ V

(
t ′, y(t ′)

)

Competition btw “order” and “disorder”

Ingredients up to now:

elastic constant c disorder potential V (t , y)

trajectory weight ∝e−HV /T

︷ ︸︸ ︷
temperature T
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Introduction Questions & known results

Questions

Nature of fluctuations
? V (t , y) ≡ 0: diffusive (y ∼ t1/2), Edwards-Wilkinson (EW)
? V (t , y) 6≡ 0: super-diffusive (y ∼ t2/3), Kardar-Parisi-Zhang (KPZ)
→ This holds at large ‘times’. What about intermediate ‘times’?

Role of (experimentally ineluctable) disorder correlations?

zero mean, Gaussian, V (t , y)V (t ′, y ′) = Dδ(t ′ − t)Rξ(y ′ − y)

y

R
Ξ

HyL scaling as Rξ(y) = 1
ξ Rξ=1(y/ξ)

[standard uncorrelated case: ξ = 0]

Summary of ingredients:

elastic constant c temperature T disorder
∣∣∣∣

amplitude D
corr. length ξ
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Introduction Questions & known results

Free-energy fluctuations [Tricks n◦2&3]

Partition function ZV vs. Free-energy FV

ZV (t , y) =

∫ y(t)=y

y(0)=0
Dy(t ′)e−

1
THV [y(t ′),t] FV (t , y) = − 1

T
log ZV (t , y)

Statistical Tilt Symmetry

FV (t , y) = c
y2

2t
+

T
2

log
2πTt

c︸ ︷︷ ︸
thermal contribution

FV≡0

+ F̄V (t , y)
︸ ︷︷ ︸

disorder
contribution

(STS)

Tilted KPZ equation for F̄V (t , y)

∂t F̄V +
y
t
∂y F̄V =

T
2c
∂2

y F̄V −
1
2c
[
∂y F̄V

]2
+ V (t , y)

Non-linear, additive noise, F̄V (0, y) ≡ 0: “simple” initial cond.
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Introduction Questions & known results

Known results @ξ = 0 [⇐⇒ T →∞@ξ > 0]

Central tool: 2-point correlation function

R̄(t , y2 − y1) = ∂y F̄V (t , y1)∂y F̄V (t , y2)

Infinite-‘time’ limit (steady state)
F̄ (t =∞, y) distributed as a Brownian Motion

i.e. : Prob
[
F̄ (t =∞, y)

]
Gaussian, of correlator

R̄(t =∞, y) = D̃ξ=0 δ(y) with D̃ξ=0 =
cD
T

Roughness function B(t) [variance of end-point fluct.]

B(t) = 〈y(t)2〉 =
∫

dy y2ZV (t ,y)∫
dy ZV (t ,y)

B(t) =
[
D̃ξ=0 /c2]2/3t4/3 as t →∞
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Results DP toymodel

Effective model @ξ > 0 & numerical results
ξ > 0 not obtained from perturbation of ξ = 0

Distribution of free-energy
scales closely to the ξ = 0 case

2-point correlation function of amplitude D̃

R̄(t , y) ' D̃Rξ(y) as t →∞

-10 -5 5 10

-0.5

0.5

1.0

1.5

2.0

-40 -20 20 40

-0.5

0.5

1.0

1.5

2.0

y

y

R̄sat(y)
R̄(t, y)

y

R̄(t, y)

t 2 [0.1, 25] t 2 [25, 40]

-20 -10 10 20

-0.5

0.5

1.0

1.5

2.0

T = 0.35

V. Lecomte (LPMA - Paris) Interfaces & Directed Polymer 19/03/2013 8 / 11



Results DP toymodel

Effective model @ξ > 0 & numerical results
ξ > 0 not obtained from perturbation of ξ = 0

Distribution of free-energy
scales closely to the ξ = 0 case

2-point correlation function of amplitude D̃

R̄(t , y) ' D̃Rξ(y) as t →∞

-10 -5 5 10

-0.5

0.5

1.0

1.5

2.0

-40 -20 20 40

-0.5

0.5

1.0

1.5

2.0

y

y

R̄sat(y)
R̄(t, y)

y

R̄(t, y)

t 2 [0.1, 25] t 2 [25, 40]

-20 -10 10 20

-0.5

0.5

1.0

1.5

2.0

T = 0.35

V. Lecomte (LPMA - Paris) Interfaces & Directed Polymer 19/03/2013 8 / 11



Results DP toymodel

High- and low-temperature regimes

Characteristic temperature

Tc = (ξcD)1/3

[T � Tc ]

[T � Tc ]

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
¥ ¥

¥ ¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
¥ ¥

¥ ¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥
1.0 5.02.0 3.01.5

1.0

2.0

1.5

T

R̄sat(0) / eD1(T, ⇠)

⇠ 1/T

⇠ 1/Tc(⇠)

(Advanced) scaling analysis

[ Note: again B(t) =

ξ plays a role
at all scales︷ ︸︸ ︷[
D̃/c2]2/3 t4/3 ]

T � Tc T � Tc

one optimal trajectory many trajectories

D̃ =
cD
Tc

D̃ =
cD
T
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Results DP toymodel

Summary & open questions [arXiv:1209.0567]

Geometry of interface←→ Directed Polym. free-energy fluctuat.
? T . Tc : ξ plays a role at all lengthscales [Tc = (ξcD)1/3]

? focus on the free-energy 2-point correlator amplitude D̃
? understanding of ‘time’- (i.e. length) multiscaling
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Bdis(t)

t

B(t)

Bth(t)

T = 0.35

ζ = 1
2

diffusive

ζ = 2
3

KPZ

intermediate

Perspective
? experimental probe of the importance of ξ
? interpretation in other ‘incarnations’ of the KPZ class

. growth interfaces with F (t , y) = height at (real) time t

. through replicæ: 1D quantum bosons with softened repulsive
interaction

? creep law: non-linear response to small force

velocity ∼ exp
{
−
[

depends on c, D, T , ξ︷ ︸︸ ︷
critical force

force
]1/4

}
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Results DP toymodel

Free-energy fluctuations [Trick n◦2]

Partition function ZV vs. Free-energy FV

ZV (t , y) =

∫ y(t)=y

y(0)=0
Dy(t ′)e−

1
THV [y(t ′),t] FV (t , y) = − 1

T
log ZV (t , y)

Stochastic Heat Equation (Feynman-Kac formula)

∂tZV =
[ T

2c
∂2

y −
1
T

V (t , y)
]
ZV (t , y) (SHE)

Linear, multiplicative noise
Kardar-Parisi-Zhang equation

∂tFV =
T
2c
∂2

y FV −
1
2c
[
∂yFV

]2
+ V (t , y) (KPZ)

Non-linear, additive noise
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∂tZV =
[ T

2c
∂2

y −
1
T

V (t , y)
]
ZV (t , y) (SHE)

Linear, multiplicative noise, reversible
Kardar-Parisi-Zhang equation

∂tFV =
T
2c
∂2

y FV −
1
2c
[
∂yFV

]2
+ V (t , y) (KPZ)

Non-linear, additive noise, non-reversible
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Results DP toymodel

Free-energy fluctuations [Trick n◦2]

Partition function ZV vs. Free-energy FV

ZV (t , y) =

∫ y(t)=y

y(0)=0
Dy(t ′)e−

1
THV [y(t ′),t] FV (t , y) = − 1

T
log ZV (t , y)

Stochastic Heat Equation (Feynman-Kac formula)

∂tZV =
[ T

2c
∂2

y −
1
T

V (t , y)
]
ZV (t , y) (SHE)

Linear, multiplicative noise, ZV (0, y) = δ(y)

Kardar-Parisi-Zhang equation

∂tFV =
T
2c
∂2

y FV −
1
2c
[
∂yFV

]2
+ V (t , y) (KPZ)

Non-linear, additive noise, FV (0, y): “sharp wedge” initial cond.
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