Interfaces in Correlated Disorder: what we learn from the Directed Polymer

Elisabeth Agoritsas⁽¹⁾, <u>Vivien Lecomte⁽²⁾ & Thierry Giamarchi⁽¹⁾</u>

(1) Département de Physique de la Matière Condensée & MaNEP, Université de Genève (2) Laboratoire Probabilité et Modèles Aléatoires, CNRS, Université Paris Diderot & Université Pierre et Marie Curie, Paris

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

V. Lecomte (LPMA - Paris)

Interfaces & Directed Polymer

1D Interfaces

Interfaces in magnetic films

(b) 310 Oe (g) 293 Oe (c) 104 Oe (h) 111 Oe 65 Oe 65 Oe (d)

from Metaxas *et al.* APL **94** 132504 (2009)

Wide spectrum of phenomena

Large range of physical scales

28.0 sec from Takeuchi & Sano PRL **104** 230601 (2010)

V. Lecomte (LPMA - Paris)

Interfaces & Directed Polymer

Introduction

Motivations

1D Interfaces

from Metaxas *et al.* APL **94** 132504 (2009) Growth in liquid crystals

Large range of physical scales

Wide spectrum of phenomena

28.0 sec from Takeuchi & Sano PRL **104** 230601 (2010)

V. Lecomte (LPMA - Paris)

1D Interface in the Directed Polymer (DP) language

fluctuations at scales smaller than t

1D Interface in the Directed Polymer (DP) language

time duration \equiv lengthscale

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\mathcal{H}^{\mathsf{el}}[\boldsymbol{y}(t'),t] = \frac{c}{2} \int_0^t dt' \left[\partial_{t'} \boldsymbol{y}(t')\right]^2$$

Disorder: tends to bend it

$$\mathcal{H}_V^{\mathsf{dis}}[\mathbf{y}(t'), t] = \int_0^t dt' \ V(t', \mathbf{y}(t'))$$

Competition btw "order" and "disorder"

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\mathcal{H}^{\mathsf{el}}[y(t'),t] = \frac{c}{2} \int_0^t dt' \left[\partial_{t'} y(t')\right]^2$$

Disorder: tends to bend it

$$\mathcal{H}_V^{\mathsf{dis}}[y(t'),t] = \int_0^t dt' V(t',y(t'))$$

$$\left\{ \begin{array}{l} \mathcal{H}_{V} = \mathcal{H}^{\mathsf{el}} + \mathcal{H}_{V}^{\mathsf{dis}} \end{array} \right.$$

Competition btw "order" and "disorder"

• Ingredients up to now: elastic constant *c* disorder potential V(t, y) temperature *T*

Questions

- Nature of fluctuations
 - * $V(t, y) \equiv 0$: diffusive ($y \sim t^{1/2}$), Edwards-Wilkinson (EW)
 - * $V(t, y) \neq 0$: super-diffusive ($y \sim t^{2/3}$), Kardar-Parisi-Zhang (KPZ)
 - → This holds at large 'times'. What about intermediate 'times'?

Questions

- Nature of fluctuations
 - * $V(t, y) \equiv 0$: diffusive ($y \sim t^{1/2}$), Edwards-Wilkinson (EW)
 - * $V(t, y) \neq 0$: super-diffusive ($y \sim t^{2/3}$), Kardar-Parisi-Zhang (KPZ)
 - \rightarrow This holds at large 'times'. What about intermediate 'times'?
- Role of (experimentally ineluctable) **disorder correlations**? zero mean, Gaussian, $\overline{V(t, y)V(t', y')} = D\delta(t' - t)R_{\varepsilon}(y' - y)$

scaling as $R_{\xi}(y) = \frac{1}{\xi} R_{\xi=1}(y/\xi)$ [standard uncorrelated case: $\xi = 0$]

Questions

- Nature of fluctuations
 - * $V(t, y) \equiv 0$: diffusive ($y \sim t^{1/2}$), Edwards-Wilkinson (EW)
 - * $V(t, y) \neq 0$: super-diffusive ($y \sim t^{2/3}$), Kardar-Parisi-Zhang (KPZ)
 - \rightarrow This holds at large 'times'. What about intermediate 'times'?
- Role of (experimentally ineluctable) **disorder correlations**? zero mean, Gaussian, $\overline{V(t, y)V(t', y')} = D\delta(t' - t)R_{\varepsilon}(y' - y)$

scaling as $R_{\xi}(y) = \frac{1}{\xi} R_{\xi=1}(y/\xi)$

[standard uncorrelated case: $\xi = 0$]

Summary of ingredients:

elastic constant *c* temperature *T* disorder $\begin{bmatrix} \text{amplitude } D \\ \text{corr. length } \xi \end{bmatrix}$

V. Lecomte (LPMA - Paris)

Interfaces & Directed Polymer

[Tricks n°2&3]

• Partition function Z_V vs. Free-energy F_V $Z_V(t, y) = \int_{y(0)=0}^{y(t)=y} \mathcal{D}y(t') e^{-\frac{1}{T}\mathcal{H}_V[y(t'),t]}$ $F_V(t, y) = -\frac{1}{T}\log Z_V(t, y)$

[Tricks n°2&3]

- Partition function Z_V vs. Free-energy F_V $Z_V(t, y) = \int_{y(0)=0}^{y(t)=y} \mathcal{D}_Y(t') e^{-\frac{1}{T}\mathcal{H}_V[y(t'),t]}$ $F_V(t, y) = -\frac{1}{T}\log Z_V(t, y)$
- Statistical Tilt Symmetry

$$F_{V}(t,y) = \underbrace{c\frac{y^{2}}{2t} + \frac{T}{2}\log\frac{2\pi Tt}{c}}_{\text{thermal contribution}} + \underbrace{\bar{F}_{V}(t,y)}_{\substack{\text{disorder}\\ \text{contribution}}}$$

• Tilted KPZ equation for $\bar{F}_V(t, y)$

$$\partial_t \bar{F}_V + \frac{y}{t} \partial_y \bar{F}_V = \frac{T}{2c} \partial_y^2 \bar{F}_V - \frac{1}{2c} \left[\partial_y \bar{F}_V \right]^2 + V(t, y)$$

Non-linear, additive noise, $\overline{F}_V(0, y) \equiv 0$: "simple" initial cond.

(STS

Known results $@\xi = 0$

- $[\Longleftrightarrow T \to \infty \ @\xi > 0]$
- Central tool: 2-point correlation function

$$\bar{R}(t, y_2 - y_1) = \overline{\partial_y \bar{F}_V(t, y_1) \partial_y \bar{F}_V(t, y_2)}$$

Infinite-'time' limit (steady state)

 $\bar{F}(t = \infty, y)$ distributed as a Brownian Motion i.e.: $Prob[\bar{F}(t = \infty, y)]$ Gaussian, of correlator

$$ar{R}(t=\infty,y)=\widetilde{D}_{\xi=0}\,\delta(y)$$
 with

$$\widetilde{D}_{\xi=0} = rac{cD}{T}$$

Known results $@\xi = 0$

- $[\Longleftrightarrow T \to \infty \ @\xi > 0]$
- Central tool: 2-point correlation function

$$\bar{R}(t, y_2 - y_1) = \overline{\partial_y \bar{F}_V(t, y_1) \partial_y \bar{F}_V(t, y_2)}$$

Infinite-'time' limit (steady state)

 $\bar{F}(t = \infty, y)$ distributed as a Brownian Motion i.e.: $Prob[\bar{F}(t = \infty, y)]$ Gaussian, of correlator

$$ar{R}(t=\infty,y)=\widetilde{D}_{\xi=0}\,\delta(y)$$
 with

$$\widetilde{D}_{\xi=0} = rac{cD}{T}$$

• **Roughness** function *B*(*t*)

[variance of end-point fluct.]

$$B(t) = \overline{\langle y(t)^2 \rangle} = \overline{\frac{\int dy \ y^2 Z_V(t,y)}{\int dy \ Z_V(t,y)}}$$
$$B(t) = [\widetilde{D}_{\xi=0} \ / \ c^2]^{2/3} t^{4/3} \text{ as } t \to \infty$$

Effective model $@\xi > 0$ & numerical results

- $\xi > 0$ not obtained from perturbation of $\xi = 0$
 - Distribution of free-energy

scales closely to the $\xi = 0$ case

Effective model $@\xi > 0$ & numerical results

- $\xi > 0$ not obtained from perturbation of $\xi = 0$
 - Distribution of free-energy

scales closely to the $\xi = 0$ case

• **2-point** correlation function of amplitude \widetilde{D}

DP toymodel

High- and low-temperature regimes

• (Advanced) scaling analysis

 $T \ll T_c$ $T \gg T_c$

one optimal trajectory

many trajectories

$$\widetilde{D} = rac{cD}{T_c}$$
 $\widetilde{D} = rac{cl}{7}$

V. Lecomte (LPMA - Paris)

Interfaces & Directed Polymer

DP toymodel

High- and low-temperature regimes

Interfaces & Directed Polymer

DP toymodel

Summary & open questions

[arXiv:1209.0567]

 $[T_c = (\xi cD)^{1/3}]$

- **Geometry** of interface \leftrightarrow Directed Polym. **free-energy** fluctuat.
 - * $T \lesssim T_c$: ξ plays a role at all lengthscales
 - \star focus on the free-energy 2-point correlator amplitude \widetilde{D}
 - * understanding of 'time'- (i.e. length) multiscaling

DP toymodel

Summary & open questions

[arXiv:1209.0567]

 $[T_c = (\xi cD)^{1/3}]$

- **Geometry** of interface \leftrightarrow Directed Polym. **free-energy** fluctuat.
 - * $T \lesssim T_c$: ξ plays a role at all lengthscales
 - \star focus on the free-energy 2-point correlator amplitude \widetilde{D}
 - * understanding of 'time'- (i.e. length) multiscaling

DP toymodel

Summary & open questions

[arXiv:1209.0567]

 $[T_c = (\xi cD)^{1/3}]$

- **Geometry** of interface \leftrightarrow Directed Polym. **free-energy** fluctuat.
 - * $T \lesssim T_c$: ξ plays a role at all lengthscales
 - \star focus on the free-energy 2-point correlator amplitude \widetilde{D}
 - * understanding of 'time'- (i.e. length) multiscaling

Summary & open questions

[arXiv:1209.0567]

 $[T_c = (\xi cD)^{1/3}]$

- **Geometry** of interface \leftrightarrow Directed Polym. **free-energy** fluctuat.
 - \star *T* ≲ *T_c*: *ξ* plays a role at all lengthscales
 - \star focus on the free-energy 2-point correlator amplitude \widetilde{D}
 - * understanding of 'time'- (i.e. length) multiscaling

Perspective

- \star experimental probe of the importance of ξ
- * interpretation in other 'incarnations' of the KPZ class
 - . growth interfaces with F(t, y) = height at (real) time t
 - . through replicæ: **1D quantum bosons** with softened repulsive interaction

Summary & open questions

[arXiv:1209.0567]

 $[T_c = (\xi cD)^{1/3}]$

- **Geometry** of interface \leftrightarrow Directed Polym. **free-energy** fluctuat.
 - * $T \lesssim T_c$: ξ plays a role at all lengthscales
 - \star focus on the free-energy 2-point correlator amplitude \widetilde{D}
 - ⋆ understanding of 'time'- (i.e. length) multiscaling

Perspective

- \star experimental probe of the importance of ξ
- * interpretation in other 'incarnations' of the KPZ class
 - . growth interfaces with F(t, y) = height at (real) time t
 - . through replicæ: **1D quantum bosons** with softened repulsive interaction
- * creep law: non-linear response to small force

$$\text{velocity} \sim \text{exp} \left\{ - \left[\underbrace{\frac{\text{critical force}}{\text{force}}}_{\text{force}} \right]^{1/4} \right\}$$

[Trick n°2]

• Partition function Z_V vs. Free-energy F_V $Z_V(t, y) = \int_{y(0)=0}^{y(t)=y} \mathcal{D}y(t') e^{-\frac{1}{T}\mathcal{H}_V[y(t'),t]}$ $F_V(t, y) = -\frac{1}{T}\log Z_V(t, y)$

• Partition function Z_V vs. $Z_V(t, y) = \int_{v(0)=0}^{y(t)=y} \mathcal{D}y(t') e^{-\frac{1}{T}\mathcal{H}_V[y(t'), t]}$

$$Free-energy F_V$$

$$F_V(t, y) = -\frac{1}{T} \log Z_V(t, y)$$

[Trick n°2]

Stochastic Heat Equation

(Feynman-Kac formula)

$$\partial_t Z_V = \left[\frac{T}{2c}\partial_y^2 - \frac{1}{T}V(t,y)\right]Z_V(t,y)$$
 (SHE)

Linear, multiplicative noise, reversible

Kardar-Parisi-Zhang equation

$$\partial_t F_V = \frac{T}{2c} \partial_y^2 F_V - \frac{1}{2c} \left[\partial_y F_V \right]^2 + V(t, y)$$
 (KPZ)

Non-linear, additive noise, non-reversible

• Partition function Z_V vs.

$$Z_{V}(t,y) = \int_{y(0)=0}^{y(t)=y} \mathcal{D}_{Y}(t') e^{-\frac{1}{T}\mathcal{H}_{V}[y(t'),t]} \qquad F_{V}(t,y)$$

Stochastic Heat Equation

[Trick n°2]

$$F_V(t,y) = -\frac{1}{T}\log Z_V(t,y)$$

(Feynman-Kac formula)

Free-energy F_V

$$\partial_t Z_V = \left[\frac{T}{2c}\partial_y^2 - \frac{1}{T}V(t,y)\right]Z_V(t,y)$$
 (SHE)

Linear, multiplicative noise, $Z_V(0, y) = \delta(y)$

Kardar-Parisi-Zhang equation

$$\partial_t F_V = \frac{T}{2c} \partial_y^2 F_V - \frac{1}{2c} [\partial_y F_V]^2 + V(t, y)$$
 (KPZ)

Non-linear, additive noise, $F_V(0, y)$: "sharp wedge" initial cond.