Thermodynamics of histories: application to systems with glassy dynamics <u>Vivien Lecomte</u>^{1,2}, Cécile Appert-Rolland¹, Estelle Pitard³, Kristina van Duijvendijk^{1,2}, Frédéric van Wijland^{1,2} Juan P. Garrahan⁴, Robert L. Jack^{5,6}, David Chandler⁶ ¹Laboratoire de Physique Théorique, Université d'Orsay ²Laboratoire Matière et Systèmes Complexes, Université Paris 7 ³Laboratoire Colloïdes, Verres et Nanomatériaux, Université Montpellier 2 ⁴School of physics and astronomy, University of Nottingham ⁵Rudolf Peierls Centre for Theoretical Physics, University of Oxford ⁶Department of Chemistry, University of California Barcelona - 5th October 2006 - Motivations - glassy systems - a thermodynamic phase transition? - Thermodynamics of histories - historical background - histories versus configurations - A picture of phase coexistence - kinetically constrained models - dynamical free-energy ## Glassy systems: a picture Fig.1 from Ritort and Sollich, Adv. in Phys. 52 219 (2003) ## Glassy systems: experimental characterisation #### Real systems - glasses obtained from supercooled liquids - colloids - magnetic spin glasses - polydisperse gases of hard spheres #### Dramatic slow-down of the dynamics - viscosity strongly depends on temperature - large relaxation times au , heuristic fits ## Glassy systems: experimental characterisation #### Real systems - glasses obtained from supercooled liquids - colloids - magnetic spin glasses - polydisperse gases of hard spheres #### Dramatic slow-down of the dynamics - viscosity strongly depends on temperature - large relaxation times τ , heuristic fits: $$au \sim \exp\left(rac{{\cal A}}{{\cal T}-{\cal T}_0} ight) \quad { m or} \quad au \sim \exp\left(rac{{\cal A}}{{\cal T}^b} ight) \quad { m or} \; . \; .$$ ## Anomalous decay of correlation function: aging experimental data (magnetic spin glass) from Hérisson and Ocio, PRL 88 257202 (2002) ## Hysteresis specific heat in a kinetically constrained model from Graham, Piché and Grant, J. Phys. Cond. Matt., 5 L349 (1993) ## Diverging length ### Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition L. Berthier, ^{1*} G. Biroli, ² J.-P. Bouchaud, ^{3,4} L. Cipelletti, ¹ D. El Masri, ¹ D. L'Hôte, ⁴ F. Ladieu, ⁴ M. Pierno ¹ Understanding glass formation is a challenge, because the existence of a true glass state, distinct from liquid and solid, remains elusive: Classes are liquids that have become too viscous to flow. An old idea, as yet unproven experimentally, is that the dynamics becomes sluggish as the glass transition approaches, because increasingly larger regions of the material have to move simultaneously to allow flow. We introduce new multipoint dynamical susceptibilities to estimate quantitatively the size of these regions and provide direct experimental evidence that the glass formation of molecular liquids and colloidal suspensions is accompanied by growing dynamic correlation length scales. Berthier et al., Science 310 1797 (2005) $(n \ge 4)$ -point correlator #### BUT... ## Absence of thermodynamic phase transition in a model glass former #### **Ludger Santen & Werner Krauth** CNRS-Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France The glass transition can be viewed simply as the point at which the viscosity of a structurally disordered liquid reaches a universal threshold value¹. But this is an operational definition that circumvents fundamental issues, such as whether the glass transition is a purely dynamical phenomenon². If so, ergodicity gets broken (the system becomes confined to some part of its phase space), but the thermodynamic properties of the liquid remain unchanged across the transition, provided they are determined as thermodynamic equilibrium averages over the whole phase space. The opposite view³⁻⁶ claims that an underlying thermodynamic phase transition is responsible for the pronounced slow-down in the dynamics at the liquid–glass boundary. Santen and Krauth, Nature 405 550 (2000) - Motivations - glassy systems - a thermodynamic phase transition? - Motivations - glassy systems - a thermodynamic phase transition? - Thermodynamics of histories - historical background - histories versus configurations - **Motivations** - glassy systems - a thermodynamic phase transition? - Thermodynamics of histories - historical background - histories versus configurations - A picture of phase coexistence - kinetically constrained models - dynamical free-energy ## Thermodynamic of histories for glassy systems #### Chaotic Properties of Systems with Markov Dynamics VL, Appert-Rolland and van Wijland, PRL 91 010601 (2005) #### Space-time thermodynamics of the glass transition Mauro Merolle[†], Juan P. Garrahan[‡], and David Chandler^{†§} [†]Department of Chemistry, University of California, Berkeley, CA 94720-1460; and [‡]School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom Contributed by David Chandler, June 15, 2005 We consider the probability distribution for fluctuations in dynamical action and similar quantities related to dynamic heterogeneity. We argue that the so-called "glass transition" is a manifestation of low action tails in these distributions where the entropy of trajectory space is subextensive in time. These low action tails are acconsequence of dynamic heterogeneity and an indication of plass coexistence in trajectory space. The glass transition, where the system falls out of equilibrium, is then an order-disorder phenomenon in space-time occurring at a temperature T_p, which is a weak function of measurement time. We illustrate our perspective ideas with facilitated lattice models and note how these ideas apply more generally. dynamic heterogeneity | entropy | phase transition | supercooled liquids A glass transition, where a supercooled fluid falls out of equilibrium, is irreversible and a consequence of experimental protocols, such as the time scale over which the system is prepared and the time scale over which its properties are observed for regimes sea feet. 1-23. It is thus not a transition in In both cases, there is an energy function JΣ_{Pl}, where J > 0 sets the equilibrium temperature scale, n_i is either 1 or 0, indicating whether lattice site i is excited or not, and the sum over i extends over lattice sites. The system moves stochastically from one microstate to another through a sequence of single-cell moves. In the FA model, the state of cell i at time slice t + 1, $n_{i,t+1}$, can differ from that at time slice t, $n_{i,t}$, only if at least one of two nearest neighbors, $i\pm 1$, is excited at time t. In the East model the condition is that n; +1, must be excited. These dynamic constraints affect the metric of motion, confining the space-time volume available for trajectories (23). This mimics the effects of complicated intermolecular potentials in a dense nearly jammed material. Excitations in this picture are regions of space-time where molecules are unjammed and exhibit mobility. As such, we refer to $n_{i,t}$ as the mobility field. For both models, the dynamics is time-reversal symmetric and obeys detailed balance. The equilibrium concentration of excitations, $c \equiv \langle n \rangle = 1/(1 + e^{J/T})$, is the relevant control parameter. The average distance between excitations sets the characteristic length scale for relaxation, $\ell \approx$ Merolle, Garrahan and Chandler, PNAS 102 10837 (2005) PHYSICS ## Historical perspective #### Historical background in mathematics - Ruelle's thermodynamic formalism: deterministic dynamics - work of Kolmogorov, Sinai, Shannon #### In physics - Gaspard: discrete time stochastic dynamics - our contribution: continuous time stochastic dynamics ## Historical perspective #### Historical background in mathematics - Ruelle's thermodynamic formalism: deterministic dynamics - work of Kolmogorov, Sinai, Shannon #### In physics - Gaspard: discrete time stochastic dynamics - our contribution: continuous time stochastic dynamics ## Kinetically Constrained Models (KCM) #### Fredrickson Andersen model in 1D - L sites $\mathbf{n} = \{n_i\}$ with $n_i = 1$ or 0 in one dimension - Constraint: at least one neighbor is alive to allow an event - Transition rates: - annihilation with rate $W(1_i \rightarrow 0_i) = k$ - creation with rate $W(0_i \rightarrow 1_i) = k'$ annihilation: k' k' k' k' #### Classification of histories using time-extensive parameters on [0, t] - number of configuration change: K - "dynamical complexity": Q₊ $$\begin{aligned} \mathbf{Q}_{+}[\textit{history}] &= \ln \text{Prob}[\textit{history}] \\ &= \sum_{k=1}^{K} \ln \frac{W(\mathbf{n}_{k} \to \mathbf{n}_{k+1})}{r(\mathbf{n}_{k})} \qquad \text{with } r(\mathbf{n}) = \sum_{\mathbf{n}' \neq \mathbf{n}} W(\mathbf{n} \to \mathbf{n}') \end{aligned}$$ #### Classification of histories using time-extensive parameters on [0, t] - number of configuration change: K - "dynamical complexity": Q₊ $$Q_{+}[history] = \ln \text{Prob}[history]$$ $$= \sum_{k=1}^{K} \ln \frac{W(\mathbf{n}_{k} \to \mathbf{n}_{k+1})}{r(\mathbf{n}_{k})} \quad \text{with } r(\mathbf{n}) = \sum_{\mathbf{n}' \neq \mathbf{n}} W(\mathbf{n} \to \mathbf{n}')$$ Probing the space of histories: density $\rho(K)$, $\rho(Q_+)$ $$\frac{\rho(K)}{\rho(K)} = \sum_{\substack{\text{histories} \\ \text{from 0 to } t}} \delta(K - K[\textit{hist}]) \rho(t)$$ #### Classification of histories using time-extensive parameters on [0, t] - number of configuration change: K - "dynamical complexity": Q₊ $$Q_{+}[history] = \ln \text{Prob}[history]$$ $$= \sum_{k=1}^{K} \ln \frac{W(\mathbf{n}_{k} \to \mathbf{n}_{k+1})}{r(\mathbf{n}_{k})} \quad \text{with } r(\mathbf{n}) = \sum_{\mathbf{n}' \neq \mathbf{n}} W(\mathbf{n} \to \mathbf{n}')$$ Probing the space of histories: density $\rho(K)$, $\rho(Q_+)$ $$\frac{\rho(Q_{+})}{\Pr[from \ 0 \ to \ t]} \delta(Q_{+} - Q_{+}[hist])\rho(t)$$ ## Dynamical entropy #### Kolmogorov Sinai entropy $$h_{ extsf{KS}} = -\lim_{t o \infty} rac{1}{t} \sum_{ ext{histories}} ext{Prob}\{ ext{history}\} \ln ext{Prob}\{ ext{history}\} = -\lim_{t o \infty} rac{1}{t} \langle extsf{Q}_+ angle$$ #### Lyapunov exponents for deterministic dynamics ## Dynamical entropy #### Kolmogorov Sinai entropy $$extit{h}_{ extsf{KS}} = -\lim_{t o \infty} rac{1}{t} \sum_{ ext{histories}} ext{Prob}\{ ext{history}\} \ln ext{Prob}\{ ext{history}\} = -\lim_{t o \infty} rac{1}{t} \langle extsf{Q}_+ angle$$ #### Lyapunov exponents for deterministic dynamics ## Dynamical entropy #### Kolmogorov Sinai entropy $$\textit{h}_{\text{KS}} = -\lim_{t \to \infty} \frac{1}{t} \sum_{\text{histories}} \text{Prob}\{\text{history}\} \ln \text{Prob}\{\text{history}\} = -\lim_{t \to \infty} \frac{1}{t} \langle \mathbf{Q}_{+} \rangle$$ #### Lyapunov exponents for deterministic dynamics Pesin theorem: $$h_{\mathsf{KS}} = \sum_{\lambda_i > 0} \lambda_i$$ #### Probing fluctuations (1): the micro-canonical way Thermodynamics of configurations $$Z(E, N) = \sum_{n} \delta(E - \mathcal{H}(n))$$ (large N) #### Probing fluctuations (1): the micro-canonical way Thermodynamics of configurations $$Z(E, N) = \sum_{n} \delta(E - \mathcal{H}(n))$$ (large N) Thermodynamics of histories [Ruelle] $$\frac{Z_{\mathsf{dyn}}(Q_+, t)}{Z_{\mathsf{dyn}}(Q_+, t)} = \sum_{\substack{\mathsf{histories} \\ \mathsf{from 0 to } t}} \delta(Q_+ - Q_+[\mathit{history}]) \qquad (\mathsf{large } t)$$ #### Probing fluctuations (2): the canonical way Thermodynamics of configurations $$Z(\beta, N) = \sum_{\mathbf{n}} e^{-\beta \mathcal{H}(\mathbf{n})} = e^{-N f(\beta)}$$ (large N) Thermodynamics of histories [Ruelle] $$Z_{\text{dyn}}(s, t) = \sum_{\substack{\text{histories} \\ \text{from 0 to } t}} \text{Prob}\{\text{history}\}^{1-s} = e^{-t f_{\text{dyn}}(s)} \quad \text{(large } t)$$ #### Probing fluctuations (2): the canonical way Thermodynamics of configurations $$Z(\beta, N) = \sum_{\mathbf{n}} e^{-\beta \mathcal{H}(\mathbf{n})} = e^{-N f(\beta)}$$ (large N) Thermodynamics of histories [Ruelle] $$Z_{\text{dyn}}(s, t) = \sum_{\substack{\text{histories} \\ \text{from 0 to } t}} \text{Prob}\{\text{history}\}^{1-s} = e^{-t f_{\text{dyn}}(s)} \quad \text{(large } t)$$ #### Canonical (dynamical) ensemble - β conjugated to energy - s conjugated to dynamical complexity Q₊ #### Probing fluctuations (2): the canonical way Thermodynamics of configurations $$Z(\beta, N) = \sum_{\mathbf{n}} e^{-\beta \mathcal{H}(\mathbf{n})} = e^{-N f(\beta)}$$ (large N) Thermodynamics of histories [Ruelle] $$Z_{\text{dyn}}(s, t) = \sum_{\substack{\text{histories} \\ \text{from 0 to } t}} \text{Prob}\{\text{history}\}^{1-s} = e^{-t f_{\text{dyn}}(s)} \quad \text{(large } t)$$ #### Canonical (dynamical) ensemble $$\rho_{+}(s) = \frac{1}{Z_{\text{dyn}}(s,t)} \sum_{Q_{+}} e^{-s Q_{+}} \rho(Q_{+})$$ #### Probing fluctuations (2): the canonical way Thermodynamics of configurations $$Z(\beta, N) = \sum_{\mathbf{n}} e^{-\beta \mathcal{H}(\mathbf{n})} = e^{-N f(\beta)}$$ (large N) Thermodynamics of histories [Ruelle] $$Z_{\text{dyn}}(s, t) = \sum_{\substack{\text{histories} \\ \text{from 0 to } t}} \text{Prob}\{\text{history}\}^{1-s} = e^{-t f_{\text{dyn}}(s)} \quad \text{(large } t)$$ #### Canonical (dynamical) ensemble $$\rho_{K}(s) = \frac{1}{Z_{K}(s,t)} \sum_{K} e^{-sK} \rho(K)$$ #### Results #### **Explicit expression** $$Z_{\text{dyn}}(s, t | \mathcal{C}_0, t_0) = \sum_{K=0}^{+\infty} \sum_{\mathcal{C}_1, \dots, \mathcal{C}_K} \int_{t_0}^t dt_1 \ r(\mathcal{C}_0) e^{-(t_1 - t_0)r(\mathcal{C}_0)} \dots$$ $$\int_{t_{K-1}}^t dt_K \ r(\mathcal{C}_{K-1}) e^{-(t_K - t_{K-1})r(\mathcal{C}_{K-1})}$$ $$e^{-(t - t_K)r(\mathcal{C}_K)} \left[\prod_{n=1}^K \frac{W(\mathcal{C}_{n-1} \to \mathcal{C}_n)}{r(\mathcal{C}_{n-1})} \right]^{1-s}$$ $$= \left\langle e^{-s Q_+} \right\rangle$$ #### Results #### Canonical (dynamical) s-state - micro-canonical: fixed value of Q₊ - canonical: fixed value of s - s > 0: more active state ("high" Q_+) - s = 0: steady state - s < 0: less active state ("low" Q_+) #### Of practical interest - $f_{dyn}(s)$ = smallest eigenvalue of some operator - corresponding eigenvector = s-state - → exact results, numerical approach #### **Outline** - Motivations - glassy systems - a thermodynamic phase transition? - Thermodynamics of histories - historical background - histories versus configurations #### **Outline** - Motivations - glassy systems - a thermodynamic phase transition? - Thermodynamics of histories - historical background - histories versus configurations - A picture of phase coexistence - kinetically constrained models - dynamical free-energy ### Dynamical phase transition Comparison between constrained and unconstrained model ### Dynamical phase transition Comparison between constrained and unconstrained model ### Dynamical phase transition Large size scaling From Jack, Garrahan and Chandler, [cond-mat/0604068] $$f_{\mathsf{dyn}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$ $$f_{\text{dyn}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$ = $\mathcal{F}(\rho(s), s)$ $$f_{\text{dyn}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$ = $\mathcal{F}(\rho(s), s)$ $$f_{\text{dyn}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$ = $\mathcal{F}(\rho(s), s)$ $$f_{\mathsf{dyn}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$ $$= \mathcal{F}(\rho(s), s)$$ #### Conclusions #### Framework - Unified picture - Criticality in a "hidden" dynamical direction #### Main results - s-states ≡ probe of dynamical aspects of the steady state - Efficient tools to find dynamical phase transition in physical models - glassiness in KCM's \leftrightarrow s = 0 is a critical point #### Conclusions #### Perspectives - Open questions - Relations between $\langle K^2 \rangle_c$ and $(n \ge 4)$ -correlators? - Measurement of the h_{KS} entropy jump at s = 0? - Non-equivalence of ensemble, non-convex free-energy? - Quantitative behaviour of time relaxation? - Experimental predictions? - Experimental realization of s-states? #### References: - PRL 91 010601 (2005) - ond-mat/0606211