Depinning transition for domain walls with an internal degree of freedom

Vivien Lecomte¹, Stewart Barnes^{1,2}, Jean-Pierre Eckmann³, Thierry Giamarchi¹

¹Département de Physique de la Matière Condensée, Genève ²Physics Department, University of Miami ³Département de Physique Théorique et Section de Mathématiques, Genève

Courmayeur – 27th January 2010

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Interfaces

Interfaces in magnetic films

(b) 310 Oe (g) 293 Oe (c) 104 Oe (h) 111 Oe 65 Oe (d) 65 Oe

from Metaxas *et al.* APL **94** 132504 (2009) Large range of physical scales

Wide spectrum of phenomena

Crystal growth

from Shahidzadeh-Bonn *et al.* Langmuir **24** 8599 (2008)

V. Lecomte (DPMC - Genève)

Introduction

Motivations

Interfaces

from Metaxas *et al.* APL **94** 132504 (2009) Large range of physical scales

Wide spectrum of phenomena

from Shahidzadeh-Bonn *et al.* Langmuir **24** 8599 (2008)

V. Lecomte (DPMC - Genève)

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\frac{c}{2}\int dz \, \left(\nabla r(z)\right)^2$$

• Disorder: tends to bend it

$$\int dz \ V(r(z),z)$$

Competition btw "order" and "disorder"

Is r(z) enough?

\rightarrow Have a look to the dynamics in simple examples.

Depinning

Depinning transition @ zero temperature

threshold force

Depinning

Depinning transition @ finite temperature

thermal rounding

A case with internal degrees: ferromagnetic wire

$$v(f) \sim \exp\left[-\frac{U_c}{T}\left(\frac{f_c}{f}\right)^{\mu}
ight]$$
 (creep

Current drive	
σ	
.0 ± 0.2	
1.25	

from Yamanouchi et al., Science 317 1726 (2007)

driving the wall with a current: coupling with a phase

Outline

Interface Physics

- Systems
- Depinning transition

Depinning with internal degree of freedom

- Modelisation
- Dynamics

Bulk energy

$$E = \int d^{d}x \left\{ J \left[(\nabla \theta)^{2} + \sin^{2} \theta (\nabla \phi)^{2} \right] + K \sin^{2} \theta + K_{\perp} \sin^{2} \theta \cos^{2} \phi \right\}$$

Equation of motion

(Landau-Lifshitz-Gilbert)

$$\partial_t \Omega = \Omega \times \left(\frac{\delta E}{\delta \Omega} + f + \eta\right) - \Omega \times \left(\alpha \partial_t \Omega\right)$$

Model

Bulk model

Effective equations

$$\alpha \partial_t r - \partial_t \phi = J(\nabla r)^2 + F_{\text{pinning}} + f_{\text{ext}} + \eta_1$$

$$\alpha \partial_t \phi + \partial_t r = J(\nabla \phi)^2 + -\frac{1}{2} K_{\perp} \sin 2\phi + \eta_2$$

Rigid wall approximation

$$\alpha \partial_t r - \partial_t \phi = \underbrace{-\cos \kappa r}_{pinning} + \underbrace{f}_{pinning} + \eta_1$$
$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_{\perp} \sin 2\phi + \eta_2$$

Effective model Position r(t) coupled to phase $\phi(t)$

Depinning @ finite temperature

(1st case) Large K_{\perp} : ϕ decouples from r

```
\alpha \partial_t \mathbf{r} = \mathbf{f} - \cos \kappa \mathbf{r} + \boldsymbol{\eta}
```


Depinning @ zero temperature

(2nd case) Small K_{\perp} : ϕ matters

$$\alpha \partial_t r - \partial_t \phi = f - \cos \kappa r$$
$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_\perp \sin 2\phi$$

Depinning @ zero temperature

(2nd case) Small K_{\perp} : ϕ matters

• Dramatic change in the depinning law: $v \sim \frac{1}{|\log(f-f_c^*)|}$

- Depinning at lower critical force: $f_c^{\star} < f_c$
- Bistability

V. Lecomte (DPMC - Genève)

Physical interpretation

potential seen by rpotential seen by ϕ

Phase space

In the bistable regime $(f_c^{\star} < f < f_c)$

V. Lecomte (DPMC - Genève)

Phase space

Homoclinic bifurcation:

 $(\epsilon \propto f_c - f)$

Phase space: T > 0

Homoclinic bifurcation with noise:

Finite temperature

Force-velocity characteristics

V. Lecomte (DPMC - Genève)

This is not the end of the story

potential seen by rpotential seen by ϕ

The phase ϕ plays the role of inertia:

helps to cross barriers [see also Risken chap.11]

This is not the end of the story

(3rd case) Even smaller K_{\perp}

inertia is unbounded whereas ϕ is bounded and periodic

Topological transition

Successive regimes characterized by winding numbers ${\cal W}$

Experiment

30 40 50

60 70

80 90 100

t

SPINTRONICS

experiment from Parkin et al., Science 320 190 (2008)

magnetic field (Oe)

DW velocity (m/s)

Experiment

30

SPINTRONICS

40 50 experiment from Parkin et al., Science 320 190 (2008) 60 70 0.2 (10⁸ A/cm²) 80 90 100 200 Walker model t (no pinning) DW velocity (m/s) 100 200 0 $f_{\rm W}$ 20 40 75 100 50 25 $f_{\rm c}^{\star}$ $\overset{0^{*}}{0}$ 10 20 30 40 magnetic field (Oe)

Experiment

SPINTRONICS

Outlook

PRB 80 054413 (2009)

Internal degree of freedom

- unusual depinning law
- bistability
- non-monotonous v(f) at finite T
- link with experiments

Perspective

- Interface with elasticity
- Current driven wall
- Experiments
- Other internal degrees

 \leftrightarrow modified creep law?

$\leftrightarrow \text{ periodic patterning?} \\ \leftrightarrow \text{ coupled interfaces?}$

Outlook

PRB 80 054413 (2009)

Internal degree of freedom

- unusual depinning law
- bistability
- non-monotonous v(f) at finite T
- link with experiments

Perspective

- Interface with elasticity
- Current driven wall
- Experiments
- Other internal degrees

↔ modified creep law?

\leftrightarrow periodic patterning?

 $\leftrightarrow \text{coupled interfaces?}$