Dynamics of domain walls with an internal degree of freedom

Vivien Lecomte¹, Stewart Barnes^{2,3}, Jean-Pierre Eckmann⁴, Thierry Giamarchi²

¹Laboratoire Probabilités et Modèles Aléatoires, Paris
²Département de Physique de la Matière Condensée, Genève
³Physics Department, University of Miami
⁴Département de Physique Théorique et Section de Mathématiques, Genève

V. Lecomte (LPMA - Paris)

Courmayeur -

31th January 2011

Dynamics of domain walls with an internal degree of freedom

Vivien Lecomte¹, Stewart Barnes^{2,3}, Jean-Pierre Eckmann⁴, Thierry Giamarchi² Sebastian Bustingorry⁵, Alejandro Kolton⁵

¹Laboratoire Probabilités et Modèles Aléatoires, Paris
²Département de Physique de la Matière Condensée, Genève
³Physics Department, University of Miami
⁴Département de Physique Théorique et Section de Mathématiques, Genève
⁵CNEA, Bariloche, Argentina

Courmayeur - 31th January 2011

31/01/2011 1 / 19

V. Lecomte (LPMA - Paris)

Interfaces

Interfaces in magnetic films

from Metaxas *et al.* APL **94** 132504 (2009) Large range of physical scales

Wide spectrum of phenomena

Crystal growth

from Shahidzadeh-Bonn et al.

Langmuir 24 8599 (2008)

V. Lecomte (LPMA - Paris)

Introduction

Motivations

Interfaces

from Metaxas *et al.* APL **94** 132504 (2009)

Large range of physical scales

Wide spectrum of phenomena

from Shahidzadeh-Bonn et al.

Langmuir 24 8599 (2008)

V. Lecomte (LPMA - Paris)

Introduction

Motivations

Interfaces

from Metaxas *et al.* APL **94** 132504 (2009)

from Shahidzadeh-Bonn *et al.* Langmuir **24** 8599 (2008)

V. Lecomte (LPMA - Paris)

V. Lecomte (LPMA - Paris) Internal degree of freedom & Dynamics 31/01/2011

2/19

V. Lecomte (LPMA - Paris)

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\frac{c}{2}\int dz \, \left(\nabla r(z)\right)^2$$

• Disorder: tends to bend it

$$\int dz \ V(r(z),z)$$

Competition btw "order" and "disorder"

Is r(z) enough?

\rightarrow Have a look to the dynamics in simple examples.

Depinning

Depinning transition @ zero temperature

threshold force

Depinning

Depinning transition @ finite temperature

thermal rounding

Outline

Interface Physics

- Systems
- Depinning transition

Depinning with internal degree of freedom

- Modelisation
- Dynamics

from Yamanouchi et al., Science 317 1726 (2007)

Bulk energy

$$E = \int d^d x \left\{ J \left[(\nabla \theta)^2 + \sin^2 \theta (\nabla \phi)^2 \right] + K \sin^2 \theta + K_{\perp} \sin^2 \theta \cos^2 \phi \right\}$$

Equation of motion

(Landau-Lifshitz-Gilbert)

$$\partial_t \Omega = \Omega \times \left(\frac{\delta E}{\delta \Omega} + f + \eta\right) - \Omega \times \left(\alpha \partial_t \Omega\right)$$

Model

Bulk model

• Effective equations

$$\alpha \partial_t r - \partial_t \phi = J(\nabla r)^2 + F_{\text{pinning}} + f_{\text{ext}} + \eta_1$$

$$\alpha \partial_t \phi + \partial_t r = J(\nabla \phi)^2 + -\frac{1}{2} K_{\perp} \sin 2\phi + \eta_2$$

Rigid wall approximation

$$\alpha \partial_t r - \partial_t \phi = \underbrace{-\cos \kappa r}_{\text{pinning}} + \underbrace{f}_{\text{f}} + \eta_1$$
$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_{\perp} \sin 2\phi + \eta_2$$

• Effective model Position r(t) coupled to phase $\phi(t)$

Large K

Depinning @ zero temperature

Depinning @ finite temperature

(1st case) Large K_{\perp} : ϕ decouples from r

```
\alpha \partial_t \mathbf{r} = \mathbf{f} - \cos \kappa \mathbf{r} + \boldsymbol{\eta}
```


Depinning @ zero temperature

(2nd case) Small K_{\perp} : ϕ matters

$$\alpha \partial_t r - \partial_t \phi = f - \cos \kappa r$$
$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_\perp \sin 2\phi$$

Depinning @ zero temperature

(2nd case) Small K_{\perp} : ϕ matters

• Dramatic change in the depinning law: $v \sim \frac{1}{|\log(f-f_c^*)|}$

- Depinning at lower critical force: $f_c^{\star} < f_c$
- Bistability

V. Lecomte (LPMA - Paris)

Physical interpretation

potential seen by rpotential seen by ϕ

Phase space

In the bistable regime $(f_c^{\star} < f < f_c)$

V. Lecomte (LPMA - Paris)

Phase space

Homoclinic bifurcation:

 $(\epsilon \propto f_c - f)$

Small K₁

Phase space: T > 0

Homoclinic bifurcation with noise:

Finite temperature

Force-velocity characteristics

V. Lecomte (LPMA - Paris)

This is not the end of the story

potential seen by rpotential seen by ϕ

The phase ϕ plays the role of inertia:

helps to cross barriers

This is not the end of the story

(3rd case) Even smaller K_{\perp}

inertia is unbounded whereas ϕ is bounded and periodic

Topological transition

Successive regimes characterized by winding numbers ${\cal W}$

Experiment (i)

SPINTRONICS

experiment from Parkin et al., Science 320 190 (2008)

magnetic field (Oe)

Experiment (i)

30

SPINTRONICS

40 experiment from Parkin et al., Science 320 190 (2008) 50 60 -0.2 0.2 (10⁸ A/cm²) 70 80 90 200 Walker model 100 (no pinning) t DW velocity (m/s) 100 200 $f_{\rm W}$ 20 40 0 75 100 50 25 $f_{\rm c}^{\star}$ 0<u></u> 10 20 30 40 magnetic field (Oe)

Experiment (i)

SPINTRONICS

Experiment (ii)

SPINTRONICS

experiment from Yang, Beach et al., PRL 102 067201 (2009)

Numerics: including elasticity

T = 0 creep-like motion of ϕ induced by $v_r > 0$

Outlook

PRB 80 054413 (2009)

Internal degree of freedom

- unusual depinning law
- bistability
- non-monotonous v(f) at finite T
- link with experiments

Perspective

- Interface with elasticity
- Current driven wall
- Experiments
- Other internal degrees

 \leftrightarrow modified creep law?

↔ periodic patterning? ↔ coupled interfaces?

Outlook

PRB 80 054413 (2009)

Internal degree of freedom

- unusual depinning law
- bistability
- non-monotonous v(f) at finite T
- link with experiments

Perspective

- Interface with elasticity
- Current driven wall
- Experiments
- Other internal degrees

↔ modified creep law?

\leftrightarrow periodic patterning?

 $\leftrightarrow \text{coupled interfaces?}$