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Introduction Motivations

1D Interfaces

Interfaces in magnetic films Growth in liquid crystals

Large range of
physical scales

Wide spectrum of
phenomena

from Metaxas et al. from Takeuchi & Sano
APL 94 132504 (2009) PRL 104 230601 (2010)
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Introduction Modelisation

Disordered elastic systems
z

u(z)

Elasticity: tends to flatten the interface

Hel =
c
2

∫
dz

(
∇u(z)

)2 [Short-range]

Hel =
c
2π

∫
dzdz′

(
u(z)− u(z′)

)2
(z− z′)2 [Long-range]

Disorder: tends to bend it

Hdis
V =

∫
dz V

(
u(z), z

)

Force: induces motion of the interface

Competition btw “order” and “disorder”
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Introduction Depinning

Depinning transition @ zero temperature

threshold force fc

creep regime

veloity v

fc

v ∼ (f − fc)
β

fore f
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Introduction Depinning

Depinning transition @ finite temperature

thermal rounding
creep regimeveloity v

fc

v ∼ (f − fc)
β

fore f

T = 0

reepregime
T > 0
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Introduction Depinning

Uncorrelated disorder:

V(z, x)V(z′, x′) = D δ(z′ − z)δ(x′ − x)

Correlated disorder on a lengthscale ξ:

V(z, x)V(z′, x′) = D δ(z′ − z)Rξ(x′ − x)

Can ξ play a role at lengthscales≫ ξ?

R
Ξ

HxL scaling as Rξ(x) = 1
ξ Rξ=1(x/ξ)
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Introduction Outline

Study 1D models with correlated disorder (ξ > 0)

1 Static properties

(T > 0 and T→ 0)

short-range elasticity
−→ Identification of lengthscales and power laws
[Elisabeth Agoritsas, Thierry Giamarchi, VL]

2 Dynamical properties

(T→ 0)

effective description
−→ Creep regime ; crossover with linear response
[Reinaldo García-García, Elisabeth Agoritsas, Lev Truskinovsky,
Damien Vandembroucq, VL]

Focus on scaling analysis, beyond naive power counting.
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Short-range elasticity Directed Polymer language

1D Interface in the Directed Polymer (DP) language

u(z+r)

u(z)

∆uz(r)

z

r

x

(z, u(z))

(0, 0)

t

y(t)

(t, y(t))

t�

y�

[Step n°1]

No bubbles
No overhangs
Interface lengthscale r

↕
DP ‘time’ t

working at fixed ‘time’ t ⇐⇒
integration of fluctuations at scales smaller than t

lengthscale ≡time duration
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Short-range elasticity Directed Polymer language

Disordered elastic systems

Elasticity: tends to flatten the interface [short-range elasticity]

Hel[y(·), t] = c
2

∫ t

0
dt′

[
∂t′y(t′)

]2
Disorder: tends to bend it

Hdis
V [y(·), t] =

∫ t

0
dt′ V

(
t′, y(t′)

)
Competition btw “order” and “disorder”

Ingredients up to now:

elastic constant c disorder potential V(t, y)
trajectory weight ∝e−HV/T︷ ︸︸ ︷

temperature T
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Short-range elasticity Known results

Free-energy fluctuations [Step n°2&3]

Partition function ZV vs. Free-energy FV

ZV(t, y) =
∫ y(t)=y

y(0)=0
Dy(t′)e− 1

THV[y(·),t] FV(t, y) = −
1

T log ZV(t, y)

Statistical Tilt Symmetry

FV(t, y) = cy2
2t +

T
2

log 2πTt
c︸ ︷︷ ︸

thermal contribution
FV≡0

+ F̄V(t, y)︸ ︷︷ ︸
disorder

contribution

(STS)

Tilted KPZ equation for F̄V(t, y)

∂tF̄V+
y
t ∂yF̄V =

T
2c∂

2
y F̄V −

1

2c
[
∂yF̄V

]2
+ V(t, y)

Non-linear, additive noise, F̄V(0, y) ≡ 0: “simple” initial cond.
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Short-range elasticity Known results

Known results @ξ = 0 [⇐⇒ T→∞ @ξ > 0]

Central tool: 2-point correlation function
R̄(t, y2 − y1) = ∂yF̄V(t, y1)∂yF̄V(t, y2)

Infinite-‘time’ limit (steady state)
F̄(t =∞, y) distributed as a Brownian Motion

i.e. : Prob
[
F̄(t =∞, y)

]
Gaussian, of correlator

R̄(t =∞, y) = D̃ξ=0 δ(y) with D̃ξ=0 =
cD
T

Roughness function B(t) [variance of end-point fluct.]

B(t) = ⟨y(t)2⟩ =
∫

dy y2ZV(t,y)∫
dy ZV(t,y)

B(t) =
[
D̃ξ=0 /c2

]2/3t4/3 as t→∞
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Results DP toymodel

Effective model @ξ > 0 & numerical results
ξ > 0 not obtained from perturbation of ξ = 0

Distribution of free-energy
scales closely to the ξ = 0 case

2-point correlation function of amplitude D̃
R̄(t, y) ≃ D̃Rξ(y) as t→∞
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Results DP toymodel

High- and low-temperature regimes

Characteristic temperature

Tc = (ξcD)1/3

[T≫ Tc]
[T≪ Tc]

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
¥ ¥

¥ ¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
¥ ¥

¥ ¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥
1.0 5.02.0 3.01.5

1.0

2.0

1.5

T

R̄sat(0) / eD1(T, ⇠)

⇠ 1/T

⇠ 1/Tc(⇠)

(Advanced) scaling analysis

[ Note: again B(t) =

ξ plays a role
at all scales︷ ︸︸ ︷[
D̃/c2

]2/3 t4/3 ]

T≪ Tc T≫ Tc

one optimal trajectory many trajectories

D̃ =
cD
Tc

D̃ =
cD
T
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Results DP toymodel

Lengthscales & dynamics PRE 87 042406 (2013)

Geometry of interface ←→ Directed Polym. free-energy fluctuat.
⋆ T ≲ Tc: ξ plays a role at all lengthscales [Tc = (ξcD)1/3]

⋆ focus on the free-energy 2-point correlator amplitude D̃
⋆ understanding of ‘time’- (i.e. length) multiscaling
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t

B(t)

Bth(t)

T = 0.35

ζ = 1
2

diffusive

ζ = 2
3

KPZ

intermediate

Interpretation in other ‘incarnations’ of the KPZ class
⋆ growth interfaces with F(t, y) = height at (real) time t
⋆ experimental probe of the importance of ξ
⋆ through replicæ: 1D quantum bosons with softened attractive

interaction
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Results Dynamics

Non-linear response at small force

Creep law: non-linear response to small force

velocity ∼ exp
{
−

[ depends on c, D, T, ξ︷ ︸︸ ︷
critical force

force
]1/4}
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Results Dynamics

Effective model
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