
Functional derivatives:
continuous and discrete musings

Questions
In the same way as, for a discrete set F = (Fi) indexed by integers i and an ‘action’ S[F] defined
as the sum of local terms of the form L(F, j)

S[F] =
∑
j

L(Fj , j) (1)

one has
∂S[F]
∂Fi

= ∂FL(Fi, i) (2)

we would like, for a function F (y) of a continuous variable y and an action functional

S[F ] =
∫
dy L(F (y), y) (3)

to determine the dependence of S in F , as

δS[F ]
δF (y) = ∂FL(F (y), y) , (4)

having in mind that subtleties are to appear when the ‘Lagrangian’ L depends on derivatives
of F . Note: we work in a space of functions F where F and its derivatives at ±∞ are zero.

Continuous variables
(i) Definitions
To find a good definition of the functional derivative δ

δF (y) that ensures the rule (3,4) to be
correct, let’s remark that it implies

δF (y1)
δF (y2) = δ

δF (y2)

∫
dy δ(y − y1)F (y) hence δF (y1)

δF (y2) = δ(y2 − y1) (5)

Conversely, if this rule is taken as a definition, and if the operator δ
δF (y) is a ‘derivation’, i.e. if

it verifies the following properties

δ

δF (y)
(
λ1A1[F ] + λ2A2[F ]

)
= λ1

δA1[F ]
δF (y) + λ2

δA2[F ]
δF (y) (6)

δ

δF (y)
(
A1[F ]A2[F ]

)
= A1[F ]δA2[F ]

δF (y) +A2[F ]δA1[F ]
δF (y) (7)

then one checks by recurrence that δ(F (y1)k)
δF (y2) = kF (y1)k−1δ(y2 − y1), and thus the rule (3,4) is

verified (at least for F expandable in series) since

δ

δF (y2)

∫
dy1

≡L(F (y1),y1)︷ ︸︸ ︷∑
k

ak(y1)F (y1)k =
∫
dy1 δ(y2 − y1)

=∂FL(F (y1),y1)︷ ︸︸ ︷∑
k

kak(y1)F (y1)k−1 (8)

Note that another good construction which implies (3,4) is

δS[F ]
δF (y) = lim

ε→0

S[F + ε δ(.− y)]− S[F ]
ε

where S[F+f(.−y)] ≡
∫
dxL(F (x)+f(x−y), x) (9)
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(ii) What about derivatives?
Applying again rule (3,4)

δF ′(y1)
δF (y2) = δ

δF (y2)

∫
dy δ(y − y1)F ′(y) (ipp)= − δ

δF (y2)

∫
dy δ′(y − y1)F (y) (10)

one obtains (noting also that the distribution δ′ is odd)

δF ′(y1)
δF (y2) = −δ′(y2 − y1) = δ′(y1 − y2) (11)

More generally, if the Lagrangian depends on the derivative of F in the action:

S[F ] =
∫
dy L(F (y), F ′(y), y) (12)

taking (9) as a generic definition, one has

δS[F ]
δF (y) = lim

ε→0

1
ε

∫
dx
[
L(F (x) + εδ(x− y), F ′(x) + εδ′(x− y), x)− L(F (y), F ′(y), y)

]
(13)

= lim
ε→0

1
ε

∫
dx
[
εδ(x− y)∂FL(F (x), F ′(x), x) + εδ′(x− y)∂F ′L(F (x), F ′(x), x)

]
(14)

(ipp)= lim
ε→0

1
ε

∫
dx εδ(x− y)

[
∂FL(F (x), F ′(x), x)− ∂

∂x

{
∂F ′L(F (x), F ′(x), x)

}]
(15)

=∂FL(F (y), F ′(y), y)− ∂

∂y

{
∂F ′L(F (y), F ′(y), y)

}
(16)

This implies (11) by writing F ′(y1) =
∫
dy δ(y − y1)F ′(y). Conversely, the relation (16) is also

a consequence of (11), since (11) implies by recurrence

δ
(
F (y1)kF ′(y1)k′)

δF (y2) = kF (y1)k−1δ(y1 − y2)F ′(y1)k′ + k′F ′(y1)k′−1δ′(y1 − y2)F (y1)k (17)

which one can use as in (8) for L expanded in series as L =
∑
k,k′ akk′(y)F (y)kF ′(y)k′ . This

shows that the generic definition (9) is equivalent to the computation rules (5,6,7,11).
More generically for higher order derivative dependence:

δS[F ]
δF (y) = ∂FL(F (y), F ′(y), . . . , y)− ∂

∂y

{
∂F ′L(F (y), F ′(y), . . . , y)

}
+ ∂2

∂y2

{
∂F ′′L(F (y), F ′(y), . . . , y)

}
+ . . .

+ (−1)k ∂
k

∂yk

{
∂F (k)L(F (y), F ′(y), . . . , y)

}
+ . . . (18)
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(iii) Examples
The functional derivative allows to find a condition for an expression L(F (y), F ′(y), y) to be an
“total derivative”:

L(F (y), F ′(y), y) is an total derivative (19)

⇐⇒ ∃f(F, F ′, y) : L(F (y), F ′(y), y) = ∂

∂y

[
f(F (y), F ′(y), y)

]
(20)

⇐⇒ ∀A > 0,
∫ A

−A
dy L(F (y), F ′(y), y) =

[
f(F (y), F ′(y), y)

]A
−A

is independent of F (y′) for all |y′| < A (21)

⇐⇒ ∀A > 0,∀|y′| < A,
δ

δF (y′)

∫ A

−A
dy L(F (y), F ′(y), y) = 0 (22)

⇐⇒ δ

δF (y′)

∫
dy L(F (y), F ′(y), y) = 0 (23)

⇐⇒ ∂FL(F (y), F ′(y), y)− ∂

∂y

{
∂F ′L(F (y), F ′(y), y)

}
= 0 (24)

Some functional derivatives of the (functional) Gaussian in F (y)

G0[F ] = exp
[
− 1

2

∫
dy1dy2 F (y1)C(y2 − y1)F (y2)

]
(25)

where C(y) is an even function1, write

δG[F ]
δF (y) =

∫
dy1C(y1 − y)F (y1) , δ2G[F ]

δF (y)δF (y′) = C(y′ − y) (26)

For the Gaussian in F ′(y) with C(y) = δ(y):

G1[F, λ] = exp
[
− λ

2

∫
dy F ′(y)2

]
(27)

one has
δG1[F, λ]
δF (y) = λF ′′(y)G1[F, λ] (28)

This shows that, for λ = 1, G1[F, λ] is a steady solution to the Fokker-Planck equation

0 =
∫
dy

δ

δF (y)

{
−F ′′(y)G[F ] + δG[F ]

δF (y)︸ ︷︷ ︸
=0 for G[F ] = G1[F, 1]

}
(29)

Note that if one computes the full right hand site for any λ, one finds∫
dy

δ

δF (y)

{
(λ− 1)F ′′(y)G1[F, λ]

}
= (λ− 1)

∫
dy
[
δ′′(0) + λF ′′(y)2]G1[F, λ] (30)

which involves a seemingly undefined term (λ − 1)
∫
dy δ′′(0). However this term can be put

without harm to 0 for λ→ 1 if one wants the following exchange of limits to hold

lim
λ→1

∫
dy

δ

δF (y)

{
−F ′′(y) + δG1[F, λ]

δF (y)

}
=
∫
dy

δ

δF (y)

{
lim
λ→1

[
− F ′′(y) + δG1[F, λ]

δF (y)

]}
(31)

1It is always possible to write (25) with C(y) an even function of y: if C(y) is not even, take 1
2 [C(y) + C(−y)].
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Discrete variables
(i) Definitions
A continuum action S is the integral of a Lagrangian L which may not only depend on F (y) but
also on the derivatives F ′(y), F ′′(y), . . .: this non-strictly local dependence in F (y) is inducing
non-elementary functional derivatives as in (18). Consider now a set F = (Fi) of variables
indexed by integers i. The discrete equivalent of this non-strictly local dependence is to have
an action written as a sum of Lagrangians Lj depending on j not only through Fj but also
through its neighbours, e.g. Fj±1. This dependence may always be written as

S[F] =
∑
j

L(Fj ,∇+
j F,∇

−
j F,∆jF, j) (32)

where we have introduced the following discrete gradient and Laplacian operators

∇+
i F = Fi+1 − Fi ∇−i F = Fi − Fi−1 (33)

∆iF = ∇+
i ∇
−
i F = (∇+

i −∇
−
i )F = Fi+1 − 2Fi + Fi−1 (34)

The writing (32) is not unique (since one may for instance always replace ∆jF by ∇+
j F −∇

−
j F )

but results do not depend on the choice of writing. One denotes for short by ∂FL (resp. ∂+L,
∂−L, ∂∆L, ∂iL) the derivative of the function L in (32) with respect to its 1st (resp. 2nd, 3rd,
4th, 5th) argument.

(ii) Derivation rules
Because of discreteness, the action (32) still depends explicitly on the individual Fi’s. To
compute ∂S[F]/∂Fi one thus only needs to identify the indices in the sum for which Fi appears.
Noting for short Lj = L(Fj ,∇+

j F,∇
−
j F,∆jF, j) (and the same for the derivatives ∂±L) and

using the symbols (33,34) for L, one thus has:

∂S[F]
∂Fi

= ∂

∂Fi

∑
j

L( Fj︸︷︷︸
selects
i=j

, ∇+
j F︸ ︷︷ ︸

selects
i=j+1
i=j

, ∇−j F︸ ︷︷ ︸
selects
i=j
i=j−1

, ∆jF︸ ︷︷ ︸
selects
i=j+1
i=j
i=j−1

, j) (35)

and writing for the selected indices j = i, i± 1

∂

∂Fi
L(Fi,∇+

i F,∇
−
i F,∆iF, i) = ∂FLi − ∂+Li + ∂−Li − 2∂∆Li (36)

∂

∂Fi
L(Fi+1,∇+

i+1F,∇
−
i+1F,∆i+1F, i+ 1) = −∂−Li+1 + ∂∆Li+1 (37)

∂

∂Fi
L(Fi−1,∇+

i−1F,∇
−
i−1F,∆i−1F, i− 1) = ∂+Li−1 + ∂∆Li−1 (38)

one finds, summing those lines

∂S[F]
∂Fi

= ∂FLi −∇−i ∂+L −∇+
i ∂−L+ ∆i∂∆L (39)

which is the discrete equivalent of the continuum functional derivative (18) with dependence up
to the second derivative. Note in (39) that the two possible discretizations∇±i F of the derivative
F ′(y) yield a similar contribution to ∂S[F]/∂Fi: to a dependence of Li in ∇+

i F corresponds a
discrete difference ∇−i in ∂S[F]/∂Fi (and conversely).
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(ii) Necessary and sufficient condition for being a discrete difference
As in the continuum, one may find a condition for a function L(Fi,∇+

i F,∇
−
i F,∆iF, i) to be a

discrete difference:

L(Fi,∇+
i F,∇

−
i F,∆iF, i) is a discrete difference (40)
⇐⇒ ∃fi ≡ f(Fi−1, Fi, Fi+1, i) : L(Fi,∇+

i F,∇
−
i F,∆iF, i) = ∇+

i f (41)
⇐⇒ ∀A > 0,

∑
|i|≤A

L(Fi,∇+
i F,∇

−
i F,∆iF, i) = fA+1 − f−A

is independent of Fi for all |i| < A (42)

⇐⇒ ∀A > 0, ∀|j| < A,
∂

∂Fj

∑
|i|≤A

L(Fi,∇+
i F,∇

−
i F,∆iF, i) = 0 (43)

⇐⇒ ∂

∂Fj

∑
i

L(Fi,∇+
i F,∇

−
i F,∆iF, i) = 0 (44)

⇐⇒ ∂FLi −∇−i ∂+L −∇+
i ∂−L+ ∆i∂∆L = 0 (45)

This allows for instance to show that the only possibility for the following expression (arising
from a discretized version of the KPZ Fokker-Planck equation)[

a1(∇+
i F )2 + a2∇+

i F ∇
−
i F + a3(∇−i F )2

][
∇+
i F −∇

−
i F
]

(46)

to be a discrete difference is a1 = a2 = a3 (in which case it is equal to a1
(
(∇+

i F )3 − (∇−i F )3)).
(iii) Discrete Gaussians
Let’s consider the following discrete Gaussian distribution, analog to the continuum (27)

G1[F, λ] = exp
[
− λ

2
∑
i

(Fi+1 − Fi)2
]

= exp
[
− λ

2
∑
i

(∇+
i F )2

]
(47)

Using (39) one has

∂G1[F, λ]
∂Fi

= λ∇−i ∇
+
i F G1[F, λ] = λ∆iF G1[F, λ] (48)

This shows that, for λ = 1, G1[F, λ] is a steady solution to the discrete Fokker-Planck equation

0 =
∑
i

∂

∂Fi

{
−∆iFG[F] + ∂G[F]

∂Fi︸ ︷︷ ︸
=0 for G[F] = G1[F, 1]

}
(49)

Note that if one computes the full right hand site for any λ, one finds∑
i

∂

∂Fi

{
(λ− 1)∆iF G1[F, λ]

}
= (λ− 1)

∑
i

{
− 2 + λ (∆iF )2

}
G1[F, λ] (50)

(where we used ∆iF
∂Fi

= −2) which involves an infinite term (λ− 1)
∑
i(−2), as in the continuum

case (30). It is due to the fact that limλ→1 and
∑
i
∂
∂Fi

may no commute if
∑
i
∂
∂Fi

does not
exist before taking limλ→1. However to enforce this commutation and write

lim
λ→1

∑
i

∂

∂Fi

{
−∆iFG1[F, λ] + ∂G[F]

∂Fi

}
=
∑
i

∂

∂Fi

{
lim
λ→1

[
−∆iFG1[F, λ] + ∂G[F]

∂Fi

]}
= 0 (51)

one may simply adopt the rule limλ→1
[
(λ− 1)

∑
i(−2)

]
= 0.
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Integration by parts
We assume again appropriate boundary conditions at infinity for border terms to vanish.

(o) One variable: ∫
dF L1(F )L′2(F ) = −

∫
dF L′1(F )L2(F ) (52)

(i) Discrete variables F = (Fi):∫ ∏
j

dFj
∑
i

L1[F]∂L2[F]
∂Fi

= −
∫ ∏

j

dFj
∑
i

∂L1[F]
∂Fi

L2[F] (53)

(ii) Functional integrals:∫
DF

∫
dy L1[F ]δL2[F ]

δF (y) = −
∫
DF

∫
dy

δL1[F ]
δF (y) L2[F ] (54)

(iii) Application to the (functional) Fokker-Planck equation:
To the Langevin equation

∂tF (t, y) = G[F, y] + V (t, y) (55)

where V (t, y) is a Gaussian noise with with correlations 〈V (t, y)V (t′, y′)〉 = Dδ(t′− t)Rξ(y′− y)
corresponds the Fokker-Planck equation

∂tP [F, t] =
∫
dy

δ

δF (y)

[
−G[F, y]P [F, t] + D

2

∫
dy′Rξ(y′ − y)δP [F, t]

δF (y′)

]
(56)

The time-derivative of the average of an observable O(F (y)) at time t and fixed y1 writes

∂t
〈
O
(
F (t, y1)

)〉
=
∫
DF O

(
F (y1)

)
∂tP [F, t] (57)

(56)=
∫
DF

∫
dy O

(
F (y1)

) δ

δF (y)

[
−G[F, y]P [F, t] + D

2

∫
dy′Rξ(y − y′)

δP [F, t]
δF (y′)

]
(58)

(54)=
∫
DF

∫
dy

δO
(
F (y1)

)
δF (y)︸ ︷︷ ︸

=δ(y−y1)∂FO(F (y1))

[
G[F, y]P [F, t]− D

2

∫
dy′Rξ(y − y′)

δP [F, t]
δF (y′)

]
(59)

=
∫
DF ∂FO(F (y1))

[
G[F, y1]P [F, t]− D

2

∫
dy′Rξ(y1 − y′)

δP [F, t]
δF (y′)

]
(60)

(54)=
〈
G[F, y1]∂FO(F (t, y1))

〉
+ D

2

∫
DF

∫
dy′∂2

FO(F (y1))δ(y′ − y1)Rξ(y1 − y′)P [F, t] (61)

=
〈
G[F, y1]∂FO(F (t, y1))

〉
+ D

2

∫
DF ∂2

FO(F (y1))Rξ(0)P [F, t] (62)

and finally

∂t
〈
O
(
F (t, y)

)〉
=
〈
G[F, y]∂FO(F (t, y))

〉
+ D

2 Rξ(0)
〈
∂2
FO(F (t, y))

〉
(63)

For O(F ) = F , one finds
∂t
〈
F (t, y)

〉
=
〈
G[F, y]

〉
(64)

which is somehow obvious from the Langevin equation (55) (since V is centered), but instructive
to obtain in the context of the Fokker-Planck equation.

6



For O(F ) = F 2 one finds

∂t
〈
F (t, y)2〉 = 2

〈
F (t, y)G[F, y]

〉
+DRξ(0) (65)

which is singular for ξ → 0 and not obvious to obtain from the Langevin equation (55), since (55)
would formally imply

∂t
〈
F (t, y)2〉 = 2

〈
F (t, y)∂tF (t, y)

〉
(66)

= 2
〈
F (t, y)G[F, y]

〉
+ 2

〈
F (t, y)V (t, y)

〉
(67)

The last term is difficult to compute and (may) correspond(s) to the last one of (65).

Another example is provided by the computation of the average of multiple point time deriva-
tives:

∂t
〈
F (y1)F (y2)

〉
=
∫
DF

∫
dy

δ
(
F (y1)F (y2)

)
δF (y)︸ ︷︷ ︸

=δ(y−y1)F (y2)+δ(y−y2)F (y1)

[
G[F, y]P [F, t]− D

2

∫
dy′Rξ(y − y′)

δP [F, t]
δF (y′)

]

(68)

=
∫
DF

{
F (y1)

[
G[F, y2]P [F, t]− D

2

∫
dy′Rξ(y2 − y′)

δP [F, t]
δF (y′)

]
+ F (y2)

[
G[F, y1]P [F, t]− D

2

∫
dy′Rξ(y1 − y′)

δP [F, t]
δF (y′)

]}
(69)

=
〈
G[F, y1]F (t, y2) + G[F, y2]F (t, y1)

〉
+ D

2

∫
DF

∫
dy′
{
Rξ(y2 − y′)δ(y1 − y′) +Rξ(y1 − y′)δ(y2 − y′)

}
P [F, t]

(70)

and finally

∂t
〈
F (t, y1)F (t, y2)

〉
=
〈
G[F, y1]F (t, y2) + G[F, y2]F (t, y1)

〉
+DRξ(y2 − y1) (71)

which yields back (65) for y1 = y2. More generally, one has (noting ∂1O (resp. ∂2O) the
derivative of O w.r.t its first (resp. second) argument):

∂t
〈
O
(
F (t, y1), F (t, y2)

)〉
=
〈
G[F, y1]∂1O

(
F (t, y1), F (t, y2)

)
+ G[F, y2]∂2O

(
F (t, y1), F (t, y2)

)〉
+ D

2
[
Rξ(0)∂11 + 2Rξ(y2 − y1)∂12 +Rξ(0)∂22

]
O
(
F (t, y1), F (t, y2)

)
(72)
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