Depinning transition for domain walls with an internal degree of freedom

Vivien Lecomte¹, Stewart Barnes^{1,2}, Jean-Pierre Eckmann³, Thierry Giamarchi¹

¹Département de Physique de la Matière Condensée, Genève ²Physics Department, University of Miami ³Département de Physique Théorique et Section de Mathématiques, Genève

Genève – 13th March 2009

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Internal degree of freedom & depinning

Outline

Interface Physics

- Systems
- Depinning transition
- Experiments

Depinning with internal degree of freedom

- Modelisation
- Dynamics

Magnetic domain wall

90µm

from Lemerle et al., PRL 80 849 (1998)

from Tatara et al., J. Phys. Soc. Jap 77 031003 (2008)

Internal degree of freedom & depinning

Motivations

Magnetic domains

Ferroelectric domain wall

from Paruch et al. J. Appl. Phys, 100 051608 (2006)

Ferroelectric domain wall

from Paruch et al. J. Appl. Phys, 100 051608 (2006)

Contact line of a fluid

from Moulinet, Guthmann and Rolley, Eur. Phys. J. E, 8 437 (2002)

6/26

V. Lecomte (DPMC - Genève) Internal degree of freedom & depinning 13/03/2009

Common underlying description?

Large range of physical scales

- magnetic/ferroelecric domain walls
- growth interfaces
- contact line
- o crack propagation

Questions

Statics

fluctuations, roughness

• Non-equilibrium dynamics

motion of the interface

Nature, role of disorder

Common underlying description?

Large range of physical scales

- magnetic/ferroelecric domain walls
- growth interfaces
- contact line
- crack propagation

Questions

Statics

fluctuations, roughness

Non-equilibrium dynamics

motion of the interface

Nature, role of disorder

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\frac{c}{2}\int dz \left(\nabla r(z)\right)^2$$

• Disorder: tends to bend it

$$\int dz \ V(r(z),z)$$

Motivations

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\frac{c}{2}\int dz \, (\nabla r(z))^2$$

• Disorder: tends to bend it

$$\int dz \ V(r(z),z)$$

Motivations

Disordered elastic systems

• Elasticity: tends to flatten the interface

$$\frac{c}{2}\int dz \, \left(\nabla r(z)\right)^2$$

• Disorder: tends to bend it

$$\int dz \ V(r(z),z)$$

Competition btw "order" and "disorder"

Is r(z) containing enough?

Motivations

Is r(z) containing enough?

\rightarrow Have a look to the dynamics in simple examples.

Depinning transition @ zero temperature

Dynamics

Depinning transition @ finite temperature

Dynamics

Comparison with experiment: ferromagnetic films

from Lemerle et al., PRL 80 849 (1998)

Comparison with experiment: ferroelectric films

from Paruch et al., PRL 94 197601 (2005)

Dynamics

Comparison with experiment

BUT...

V. Lecomte (DPMC - Genève) Internal degree of freedom & depinning

13/03/2009 12 / 26

Dynamics

Comparison with experiment: ferromagnetic wire

$$v(f) \sim \exp\left[-\frac{U_c}{T} \left(\frac{f_c}{f}\right)^{\mu}
ight]$$
 (creep)

	Field drive		Current drive	
	μ*	σ*	μ	σ
Experiment	1.2 ± 0.1	1.4 ± 0.1	0.33 ± 0.06	2.0 ± 0.2
Theory	1.0	1.5	0.5	1.25

from Yamanouchi et al., Science 317 1726 (2007)

V. Lecomte (DPMC - Genève)

Comparison with experiment: ferromagnetic wire

$$v(f) \sim \exp\left[-\frac{U_c}{T} \left(\frac{f_c}{f}\right)^{\mu}
ight]$$
 (creep)

	Field drive		Current drive	
	μ*	σ*	μ	σ
Experiment	1.2 ± 0.1	1.4 ± 0.1	0.33 ± 0.06	2.0 ± 0.2
Theory	1.0	1.5	0.5	1.25

from Yamanouchi et al., Science 317 1726 (2007)

Outline

Outline

Interface Physics

- Systems
- Depinning transition
- Experiments

Depinning with internal degree of freedom

- Modelisation
- Dynamics

$$E = \int d^d x \left\{ J \left[(\nabla \theta)^2 + \sin^2 \theta (\nabla \phi)^2 \right] + K \sin^2 \theta + K_{\perp} \sin^2 \theta \cos^2 \phi \right\}$$

Equation of motion

$$(\partial_t + \mathbf{v}_s \cdot \nabla)\Omega = \Omega \times (\frac{\delta \mathbf{E}}{\delta \Omega} + f + \eta) - \Omega \times (\alpha \partial_t + \beta \mathbf{v}_s \cdot \nabla)\Omega$$

$$\begin{aligned} \partial_t \theta - \alpha \sin \theta \, \partial_t \phi + v_s (\partial_x \theta - \beta \sin \theta \, \partial_x \phi) &= -\frac{1}{2} \kappa_\perp \sin \theta \sin 2\phi - \frac{1}{\sin \theta} \partial_x (\sin^2 \theta \, \partial_x \phi) \\ \sin \theta \, \partial_t \phi + \alpha \partial_t \theta + v_s (\sin \theta \, \partial_x \phi + \beta \partial_x \theta) &= -\frac{1}{2} \kappa_\perp \sin 2\theta \, \cos^2 \phi - \frac{1}{2} (\kappa + J (\partial_x \phi)^2) \sin 2\theta \\ &- H_{\text{ext}} \sin \theta + J \partial_x^2 \theta \end{aligned}$$

• Solitonic solution [Walker 1974]

$$\sin 2\phi(x,t) = \frac{f}{f_W} \qquad f_W = \frac{1}{2}\alpha K_\perp$$

$$\theta(x,t) = 2\arctan\exp\left\{\left[1 + \frac{K_\perp}{K}\cos^2\phi\right]^{\frac{1}{2}}\left(\sqrt{\frac{K}{J}}x - vt\right)\right\}$$

$$v = \frac{H_{\text{ext}}}{H_c}\left[1 + \frac{K_\perp}{K}\cos^2\phi\right]^{-\frac{1}{2}}$$

$$\alpha \partial_t r - \partial_t \phi = f + \text{Landscape}$$
$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} \mathcal{K}_\perp \sin 2\phi$$

 $+\eta_1$

$$+ \eta_2$$

Unit of length: $\sqrt{J/K}$

$$\alpha \partial_t r - \partial_t \phi = f - \cos \kappa r \qquad \qquad + \eta_1$$

$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_\perp \sin 2\phi \qquad \qquad + \eta_2$$

• Effective model:

Position r(t) coupled to phase $\phi(t)$.

Depinning @

Large K_{\perp} : ϕ decouples from r

Depinning @ zero temperature

Depinning @ finite temperature

Depinning @ zero temperature

Smaller K_{\perp} : ϕ matters

$$\alpha \partial_t r - \partial_t \phi = f - \cos \kappa r$$
$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_\perp \sin 2\phi$$

Depinning @ zero temperature

Smaller K_{\perp} : ϕ matters

• Dramatic change in the depinning law: $v \sim \frac{1}{|\log(f-f_c^*)|}$

- Depinning at lower critical force: $f_c^{\star} < f_c$
- Bistability

V. Lecomte (DPMC - Genève)

Phase space

In the bistable regime $(f_c^{\star} < f < f_c)$

V. Lecomte (DPMC - Genève)

Internal degree of freedom & depinning

Phase space

Homoclinic bifurcation:

 $f > f_c^{\star}$

Phase space

Homoclinic bifurcation:

Finite temperature

Finite temperature

Force-velocity characteristics

V. Lecomte (DPMC - Genève)

Internal degree of freedom & depinning

Analogy

$$\alpha \partial_t r - \partial_t \phi = f - \cos \kappa r$$

$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_\perp \sin 2\phi$$

$$\uparrow$$

$$m \partial_t^2 r + \alpha \partial_t r = f - \cos \kappa r$$

The phase ϕ plays the role of a velocity: inertia helps to cross barriers

[see also Risken chap.11]

Analogy

$$\alpha \partial_t r - \partial_t \phi = f - \cos \kappa r$$

$$\alpha \partial_t \phi + \partial_t r = -\frac{1}{2} K_\perp \sin 2\phi$$

$$\uparrow$$

$$m \partial_t^2 r + \alpha \partial_t r = f - \cos \kappa r$$

BUT ...

Analogy

the velocity is unbounded WHEREAS ϕ is bounded and periodic

Topological transition

Topological transition

Successive regimes characterized by winding numbers ${\cal W}$

Experiment

from Parkin et al., Science 320 190 (2008)

Experiment

experiment from Parkin et al., Science 320 190 (2008)

Outlook

Internal degree of freedom

- unusual depinning law
- bistability
- non-monotonous v(f) at finite T
- link with experiments

- Current driven wall
- Interface with elasticity

→ modified creep law?

• Experiments

periodic patterning

V. Lecomte (DPMC - Genève)

Internal degree of freedom & depinning

Outlook

Internal degree of freedom

- unusual depinning law
- bistability
- non-monotonous v(f) at finite T
- link with experiments

- Current driven wall
- Interface with elasticity

 \rightarrow modified creep law?

Experiments

periodic patterning

