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[Anomaly for 1-month average]
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Introduction Motivations

Why studying rare events?

2010 heat wave in Western Russia [Dole et al., 2011]
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Introduction Motivations

Why studying rare events?

°C
t=40 days︷ ︸︸ ︷

1

tmax

∫
0

dt ∆T(t) « Teleconnection patterns » [Bouchet et al.]
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Introduction Motivations

How to study rare events?

Questions for physicists and mathematicians:
Probability and dynamics of rare events?
How to sample these in numerical modelisation?
Numerical tools and methods to understand their formation?
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Introduction
Tools and algorithm:

Large deviation functions
Ingredient 1/2: population dynamics
Ingredient 2/2: change of ensemble

Use, extensions and limitations of population dynamics:
Different averages
Feedback method
Finite-time and finite-population scalings

Open questions
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Tools Large deviation functions

Time-extensive observable on a time window [0, tf]

Climate dynamics: ∫ tf

0
dt temperature(t)

Fluctuating thermodynamics:

work =

∫ tf

0
dt force(t) · velocity(t)

Road traffic:
#{cars passing through a gate}

Molecular transport:
#{steps of a motor on a filament}

Lattice gases in 1d:
“current” = #{jumps to the right} − {jumps to the left}
“activity” = #{jumps to the right} + {jumps to the left}
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Tools Large deviation functions

Distribution of a time-extensive observable K on [0, t]

Prob[K, t] ∼ etφ(K/t) as t→∞ φ(k) = large deviation function

quadratic approx. φ(k) = (k−k̄)2
2σ2 + . . . ↔ Gaussian fluctuations
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Tools Large deviation functions

Aim: modify dynamics to make atypical values k typical

k : typical k : atypical

Original dynamics: k̄ is typical and k atypical
Construct a modified dynamics where k is now typical?
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Tools Large deviation functions

Aim: modify dynamics to make atypical values k typical

k : typical k : atypical

what are the 

properties of 

the system at 

this value of k?

Original dynamics: k̄ is typical and k atypical
Construct a modified dynamics where k is now typical?
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Tools Population Dynamics Algorithm

Ingredient 1/2: population dynamics

Copy 1

Copy 2

Copy 3

Copy 4

Copy 5

: multiplication : removal
time

Many copies of the system of interest evolve in parallel.

Selection rules favor the normally atypical value of k
→ typical population trajectories sample trajectories at K/t = k
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Tools Population Dynamics Algorithm

Ingredient 2/2: dynamical change of ensemble @t→∞

Consider an observable O[trajectory].

One can show:

〈
O[traj.] δ

(
1
t K[traj.]− k

)〉〈
δ
(
1
t K[traj.]− k

)〉︸ ︷︷ ︸
average of O for trajectories

with atypical k = K/t

conditionned ensemble
microcanonical ensemble

=

〈
O[traj.] e−s K[traj.]〉〈

e−s K[traj.]〉︸ ︷︷ ︸
average of O for trajectories

with a bias e−s K

biased ensemble
canonical ensemble

Next goal: show that . . . =
〈
O[traj.]

〉
population dynamics︸ ︷︷ ︸

average of O for trajectories
in fixed-size population

dynamics

For s and k suitably “conjugated”.
Analogy: k ≡ energy/volume; s ≡ inverse temperature β
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Tools Population Dynamics Algorithm

Ingredient 2/2: dynamical change of ensemble @t→∞

Correspondences:
Fixed k= K/t ⇐⇒ bias by e−sK

⇐⇒ Selection rules in
population dynamics

Relation between s and k ; Cumulant Generating Function (CGF):

Prob [K/t = k] ∼ etφ(k) ⇐⇒
〈
e−sK〉 ∼ et

CGF︷︸︸︷
ψ(s)

Saddle-point at large t:
max

k

{
φ(k)− s k

}
= ψ(s)

Maximum reached for k conjugated to s
Remaining question: how to represent e−sK by pop. dynamics?
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Tools An example: Markov jump processes

s -modified dynamics (for jump processes)

Markov processes: Configs. C, jump rates W(C → C′)

∂tP(C, t) =
∑
C′

{
W(C′ → C)P(C′, t)︸ ︷︷ ︸

gain term

−W(C → C′)P(C, t)︸ ︷︷ ︸
loss term

}

More detailed dynamics for P(C,K, t):

∂tP(C,K, t) =
∑
C′

{
W(C′ → C)P(C′,K−1, t)−W(C → C′)P(C,K, t)

}
Biased ensemble: s conjugated to K (canonical description)

P̂(C, s, t) =
∑

K
e−sKP(C,K, t)

s -modified dynamics [probability non-conserving] ∂t|P̂⟩ = Ws|P̂⟩

∂tP̂(C, s, t) =
∑
C′

{
e−sW(C′ → C)P̂(C′, s, t)−W(C → C′)P̂(C, s, t)

}
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Tools An example: Markov jump processes

s -modified dynamics K = kC0C1 + kC1C2 + . . .
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Numerical method Population dynamics

Numerical method [JB Anderson; D Aldous; P Grassberger; P Del Moral; …]

Evaluation of large deviation functions [à la “Diffusion Monte-Carlo”]∑
C

P̂(C, s, t) =
〈
e−s K〉 ∼ etψ(s) (ψ(s)=CGF=max eigenv. Ws)

discrete time: Giardinà, Kurchan, Peliti [PRL 96, 120603 (2006)]
continuous time: VL, Tailleur [JSTAT P03004 (2007)]

Cloning dynamics
∂tP̂(C, s) =

∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

Ws(C′ → C) = e−sW(C′ → C)
rs(C) =

∑
C′ Ws(C → C′) r(C) =

∑
C′ W(C → C′)

δrs(C) = rs(C)− r(C)
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Population dynamics

Explicit construction

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

How to take into account loss/gain of probability?
handle a large number Nc of copies of the system
implement a selection rule: on a time interval ∆t
a copy in config C is replaced by Y = e∆t δrs(C) copies
ψ(s) = the rate of exponential growth/decay of the total population
optionally: keep population constant by non-biased pruning/cloning
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a copy in config C is replaced by Y = ⌊e∆t δrs(C) + ε⌋ copies, ε∼ [0, 1]

ψ(s) = the rate of exponential growth/decay of the total population
optionally: keep population constant by non-biased pruning/cloning

CGF estimator: ψ(s) = ⟨Ψ(s)⟩ with Ψ(s) = log
∏

t
Nc+Yt−1

Nc︸ ︷︷ ︸
reconstituted

population size
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Population dynamics

Explicit construction

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

Biological interpretation
copy in configuration C ≡ organism of genome C
dynamics of rates Ws ≡ mutations
cloning at rates δrs ≡ selection rendering typical the rare histories

the CGF ψ(s) is a measure of the fitness of the population
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Population dynamics

Explicit construction
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Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

Biological interpretation
copy in configuration C ≡ organism of genome C
dynamics of rates Ws ≡ mutations
cloning at rates δrs ≡ selection rendering typical the rare histories
the CGF ψ(s) is a measure of the fitness of the population

Generic idea
Different dynamics can share equivalent statistical properties.
Constrained trajectories (fixed atypical k = K/t) ≡ pop. dynamics
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Population dynamics Example

An example: 4 copies, 1 degree of freedom C = x ∈ R
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Population dynamics Questions

How to perform averages? (i) [spectral analysis]

∂t|P̂⟩ = Ws|P̂⟩ Ws|R⟩ = ψ(s)|R⟩

etWs ∼
t→∞

etψ(s)|R⟩⟨L| ⟨L|Ws = ψ(s)⟨L|

[ ⟨L| = ⟨−| @ s = 0 ]

⋆ Final-time distribution pend(C): proportion of copies in C at t

⟨Nnc(t)⟩s

= ⟨−|etWs |Pi⟩N0 ∼t→∞
etψ(s)⟨L|Pi⟩N0

⟨Nnc(C, t)⟩s

= ⟨C|etWs |Pi⟩N0 ∼t→∞
etψ(s)⟨C|R⟩⟨L|Pi⟩N0

pend(C, t) =
⟨Nnc(C, t)⟩s
⟨Nnc(t)⟩s

∼
t→∞

⟨C|R⟩ ≡ pend(C)

[Nnc = number of copies in non-constant population dynamics]

Final-time distribution pend(C) governed by right eigenvector.
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Population dynamics Questions

An example: 4 copies, 1 degree of freedom C = x ∈ R

Vivien Lecomte (LIPhy) Population dynamics & rare events 17/06/2019 17 / 33



Population dynamics Questions

How to perform averages? (ii) Intermediate times

∂t|P̂⟩ = Ws|P̂⟩ Ws|R⟩ = ψ(s)|R⟩

etWs ∼
t→∞

etψ(s)|R⟩⟨L| ⟨L|Ws = ψ(s)⟨L|

[ ⟨L| = ⟨−| @ s = 0 ]

⋆ Mid-time distribution pave(C): proportion of copies in C at t1 ≪ t

⟨Nnc(t)⟩s

= ⟨−|etWs |Pi⟩N0 ∼t→∞
etψ(s)⟨L|Pi⟩N0

⟨Nnc(t|C, t1)⟩s

= ⟨−|e(t−t1)Ws |C⟩⟨C|et1Ws |Pi⟩N0 ∼ etψ(s)⟨L|C⟩⟨C|R⟩⟨L|Pi⟩N0

p(t|C, t1) =
⟨Nnc(t|C, t1)⟩s
⟨Nnc(t)⟩s

∼
t→∞

⟨L|C⟩⟨C|R⟩ ≡ pave(C)

Mid-time distribution pave(C) governed by left and right eigenvecs.
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Population dynamics Questions

An example: 4 copies, 1 degree of freedom C = x ∈ R

Huge sampling issue
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Population dynamics Questions

Example distributions for a simple Langevin dynamics

final-time: pend(x) intermediate-time: pave(x)
(= R(x)) (= R(x)L(x))
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Population dynamics Questions

The small-noise crisis: systematic errors grow as ϵ→ 0

CGF as a function of the noise amplitude ϵ:

Cause: as ϵ→ 0, pave(x) & pend(x)→ sharply peaked at different points
i.e. the clones do not sample correctly the phase space
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Feedback Method

The feedback method
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Feedback Method Description

How to make mid- and final-time distribution closer?

Driven/auxiliary dynamics: [Maes, Jack&Sollich, Touchette&Chetrite]
Probability preserving
No mismatch between pave and pend

Constructed as [Different dynamics can share ≡ statistical properties.]

Waux
s = LWsL−1 − ψ(s)1

Issue: determining L is difficult
Solution: evaluate L as Ltest on the fly [feedback] and simulate

Wtest
s = LtestWsL−1

test (induces effective forces)
Iterate. [For any Ltest, the simulation is in principle correct.]

Similar in spirit to multi-canonical (e.g. Wang–Landau) approaches in
static thermodynamics. [Here, one flattens the left-eigenvector of Wtest

s .]
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Feedback Method Results

Improvement of the small-noise crisis (i.i)
CGF as a function of the noise amplitude ϵ:

Physical insight: probability loss transformed into effective forces.
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Feedback Method Results

Improvement of the small-noise crisis (i.ii)

Without feedback With feedback

Much more efficient evaluation of the biased distribution.
Even for a very crude (polynomial) approximation of the effective force.
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Feedback Method Results

Improvement of the small-noise crisis (ii)

Interacting system in 1D.
Effective force: 1-, 2-, 3- body interactions only [also crude approx.].
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Finite-time and -population effects

Finite-time and -population effects
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Finite-time and -population effects Finite-time scaling

Finite-time scaling [fixed population Nc]

Estimator converges in 1/t to its infinite-time limit
Understanding: the estimator is an additive observable of the pop. dyn.
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Finite-time and -population effects Finite-population scaling

Finite-Nc scaling [fixed time]

Estimator converges in 1/Nc to its infinite-population limit
Understanding: large Nc expansion, small-noise description
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Finite-time and -population effects Distribution of the CGF estimator

Distribution of the CGF estimator [fixed population Nc]

In the numerics: ≈ Gaussian when finite-Nc scaling is O(1/Nc)
A way to check why one is / is not in that regime
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Conclusion

Summary and open questions (1)

Feedback method [with F Bouchet, R Jack, T Nemoto]
Sampling problem (depletion of ancestors)
On-the-fly evaluated auxiliary dynamics
Solution to the small-noise crisis
Systems with large number of degrees of freedom

Finite-population effects [with E Guevara, T Nemoto]
Quantitative finite-Nclones scaling → interpolation method
Initial transient regime due to small population
Analogy with biology: many small islands vs. few large islands?
Question: effective forces ← selection?
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Conclusion Open questions

Open questions (2): why is the feedback working?

Improvement of the depletion-of-ancestors problem:

Dashed line: lower noise Continuous line: higher noise
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Conclusion Open questions

Open questions (3)

Finite-population and -time scalings
Anomalous fluctuations (invalid 1/Nc asymptotics)
Correct description of the meta-dynamics?
Finite-Nc and -t scaling with feedback
Phase transition in the distribution of the CGF estimator?
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Conclusion Open questions

Thank you for your attention!
References:
⋆ Population dynamics method with a multi-canonical feedback control

Takahiro Nemoto, Freddy Bouchet, Robert L. Jack and Vivien Lecomte
PRE 93 062123 (2016)

⋆ Finite-time and finite-size scalings in the evaluation of large deviation
functions: Analytical study using a birth-death process
Takahiro Nemoto, Esteban Guevara Hidalgo and Vivien Lecomte
PRE 95 012102 (2017)

⋆ Finite-size scaling of a first-order dynamical phase transition: adaptive
population dynamics and effective model
Takahiro Nemoto, Robert L. Jack and Vivien Lecomte
PRL 118 115702 (2017)

⋆ Finite-time and finite-size scalings in the evaluation of large deviation
functions: Numerical approach in continuous time
Esteban Guevara Hidalgo, Takahiro Nemoto and Vivien Lecomte
PRE 95 062134 (2017)
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Supplementary material

Supplementary material
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Supplementary material

How to perform averages?

⋆ Mid-time ancestor distribution:
fraction of copies (at time t1) which were in configuration C, knowing that
there are in configuration Cf at final time tf:

panc(C, t1; Cf, tf) =
⟨Nnc(Cf, tf|C, t1)⟩s∑
C′⟨Nnc(Cf, tf|C′, t1)⟩s

∼
tf,1→∞

⟨L|C⟩⟨C|R⟩ = pave(C)

The “ancestor statistics” of a configuration Cf is thus
independent (far enough in the past) of the configuration Cf.
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Supplementary material

Prob[K] ∼ etφ(K/t)
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Supplementary material
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Prob[K] ∼ etφ(K/t) Finite-time & -size scalings matter.
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Supplementary material

[Merolle, Garrahan and Chandler, 2005]
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Supplementary material

Exponential divergence of the susceptibility
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Supplementary material Explicit construction

Explicit construction (1/3)

0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

jump probability:
1

rs(C1)
Ws(C1→C2)

Probability-preserving contribution

∂tP̂(C, t) =
∑
C′

{
Ws(C′ → C)P̂(C′, t)︸ ︷︷ ︸

gain term

−Ws(C → C′)P̂(C, t)︸ ︷︷ ︸
loss term

}

Vivien Lecomte (LIPhy) Population dynamics & rare events 17/06/2019 39 / 33



Supplementary material Explicit construction

Explicit construction (1/3)

0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

jump probability:
1

rs(C1)
Ws(C1→C2)

Which configurations will be visited?
Configurational part of the trajectory: C0 → . . .→ CK

Prob{hist} =
K−1∏
n=0

Ws(Cn → Cn+1)

rs(Cn)

where
rs(C) =

∑
C′

Ws(C → C′)
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Supplementary material Explicit construction

Explicit construction (2/3)

0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

probability density:
rs(C1)e−(t2−t1)rs(C1)

no jump probability:
e−(t−tK)rs(CK)

When shall the system jump from one configuration to the next one?
probability density for the time interval tn − tn−1

rs(Cn−1)e−(tn−tn−1)rs(Cn−1)

probability not to leave CK during the time interval t− tK

e−(t−tK)rs(CK)
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Supplementary material Explicit construction

Explicit construction (3/3)

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

How to take into account loss/gain of probability?
handle a large number of copies of the system
implement a selection rule: on a time interval ∆t
a copy in config C is replaced by e∆t δrs(C) copies
ψ(s) = the rate of exponential growth/decay of the total population
optionally: keep population constant by non-biased pruning/cloning
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Supplementary material Explicit construction

Explicit construction (3/3)

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

Biological interpretation
copy in configuration C ≡ organism of genome C
dynamics of rates Ws ≡ mutations
cloning at rates δrs ≡ selection rendering atypical histories typical
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