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Abstract
The definition and manipulation of Langevin equations  with multiplicative 
white noise require special care (one has to specify the time discretisation and 
a stochastic chain rule has to be used to perform changes of variables). While 
discretisation-scheme transformations and non-linear changes of variable can 
be safely performed on the Langevin equation, these same transformations 
lead to inconsistencies in its path-integral representation. We identify their 
origin and we show how to extend the well-known Ito prescription (dB2 = dt) 
in a way that defines a modified stochastic calculus to be used inside the path-
integral representation of the process, in its Onsager–Machlup form.

Keywords: Langevin equation, Stochastic processes, path-integral 
formalism, Stochastic chain rule, Onsager–Machlup functional

1.  Introduction

Physical phenomena are often non-deterministic, presenting a stochastic behaviour induced 
by the action of a large number of constituents or by more intrinsic sources of noise [1–4]. 
A paradigmatic example is the one of Brownian motion, the study of which is at the source 
of stochastic calculus. From a modelisation viewpoint, the evolution of such systems can 
be described by a Langevin-type equation  or by the path probability of its trajectories.  
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An important aspect of these descriptions is that the trajectories are not differentiable in gen-
eral. This peculiarity implies that the definition of the evolution equation  requires special 
care, namely, it demands the specification of a non-ambiguous time-discretisation scheme 
and, moreover, it induces a modification of the rules of calculus [1–4].

The important role of the time discretisation in the Langevin equation is now clearly elu-
cidated [5] and many results have been obtained for the construction of an associated path- 
integral formalism, whose functional action and Jacobian correctly take into account the 
choice of discretisation [6–13].

An important point in the manipulation of Langevin equations is that the usual differential-
calculus chain rule for changes of variables, dt

[
u(x(t))

]
= u′(x(t)) dtx(t), has to be modified. 

It is replaced by the Ito formula (or ‘stochastic chain rule’), which is itself the consequence 
of the Ito substitution rule dB2 = dt  for an infinitesimal increment dB = Bt+dt − Bt  of a 
Brownian motion Bt of unit variance. Although such manipulations are well understood at the 
Langevin equation level, the situation is less clear for the transformation of fields performed 
inside the action functional corresponding to the Langevin equation. It is known, for instance, 
that the use of the stochastic chain rule in the action can yield unsolved inconsistencies, both 
in statistical field theory [7, 14] and in quantum field theory [14–19].

In this article, we elucidate the source of this inconsistency, focusing on the case of the 
Onsager–Machlup action functional corresponding to a Langevin equation for one degree of 
freedom, with multiplicative white noise. We find that the sole Ito substitution rule dB2 = dt  
proves to be insufficient to correctly perform non-linear changes of variables in the action. We 
identify the required generalised substitution rules and we determine that their use should be 
performed with extreme care, since they take different forms when applied inside the expo-
nential of the time-discrete action, or in the prefactor of its Gaussian weight factor.

In continuous time, we show that, in general, the use of the usual stochastic chain rule 
inside the action yields wrong results—and this even for a Stratonovich-discretised additive-
noise Langevin equation. We determine a modified stochastic chain rule that allows one to 
manipulate the action directly, even in continuous time.

The organisation of the article is the following. In section 2, we review the non-ambiguous 
construction of the Langevin equation, providing three detailed examples which illustrate the 
role of the Ito substitution rule. In section 3, we recall inconsistencies that appear when one 
manipulates the action incorrectly, and we determine the valid substitution rules. We synthe-
sise our results in section 4. Appendices gather part of the technical details.

2.  Langevin equation and stochastic calculus

In this section, we briefly review the definition of multiplicative Langevin equations. For com-
pleteness, we first describe the standard construction of an unambiguous stochastic evolution 
equation  through time discretisation, and we then provide three examples illustrating how 
differential calculus is generalised for stochastic variables, following this construction.

2.1.  Discretisation convention of Langevin equations

Consider a time-dependent variable x(t) which verifies a Langevin equation with a force f (x) 
and a multiplicative noise g(x)η ,

dtx(t) = f (x(t)) + g(x(t)) η(t).� (1)
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The function g(x), that depends in general on the value of the variable, describes the amplitude 
of the stochastic term of this equation. The noise η(t) is a centred Gaussian white noise of 
2-point correlator equal to 〈η(t)η(t′)〉 = 2Dδ(t′ − t), where D plays the role of temperature. It 
is well known that the Langevin equation in its continuous-time writing (1) is ambiguous: one 
needs to specify a ‘discretisation scheme’ in order to give it a meaning (see [3, 5] for reviews).

Such a scheme is defined in discrete time, in the zero time step limit. We denote by xt the 
time-discrete variable, with now t ∈ dtN. The central feature of the definition of the Langevin 
equation is the following. Upon the time step t � t + dt, the right-hand-side (r.h.s.) of (1) is 
evaluated at a value of x = x̄t  chosen as a weighted average between xt and xt+dt  as

xt+dt − xt

dt
= f (x̄t) + g(x̄t)ηt 〈ηtηt′〉 =

2D
dt

δtt′� (2)

where the α-discretised evaluation point is

x̄t = αxt+dt + (1 − α)xt = xt + α(xt+dt − xt).� (3)

In the time-discrete evolution (2), the noise ηt  is a centred Gaussian random variable (inde-
pendent from those at other times, and thus independent of xt). Its explicit distribution reads

∀t, Pnoise(ηt) =

√
dt

4πD
e−

1
2

dt
2D η2

t .� (4)

Its form implies that the stochastic term g(x̄t)ηt in (2) is typically of order dt−1/2 , that is 
much larger than f (x̄t), which is of order dt0. This difference is at the core of the ambiguity 
of the equation (1): as dt → 0, the deterministic contribution f (x̄t) to (2) is independent of the 
choice of α-discretisation; however, different values of α lead to different behaviours of the 
stochastic term g(x̄t)ηt. Indeed, making the discretisation explicit with a superscript we see, 
by Taylor expansion, that

[
g
(
x̄(ᾱ)t

)
− g

(
x̄(α)t

)]
ηt =

[
g
(
x̄(α)t + (ᾱ− α)(xt+dt − xt)

)
− g

(
x̄(α)t

)]
ηt

= (ᾱ− α)(xt+dt − xt)g′(x̄
(α)
t )ηt + O(dt−

1
2 )

�
(5)

is typically of order dt0. This shows that, in general, g(x̄(α)t )ηt  and g(x̄(ᾱ)t )ηt  are not equivalent 
in (2) when α �= ᾱ.

Standard discretisation choices are α = 1
2 (known as ‘mid-point’ or Stratonovich conven-

tion) and α = 0 (Ito convention). The Stratonovich choice is invariant by time reversal but, as 
other choices of 0 < α � 1, yields an implicit equation (2) for xt+dt  at each time step. The Ito 
convention, yielding independent increments for x(t), is often chosen in mathematics, where 
the construction of the corresponding ‘stochastic calculus’ [4] is done by defining a stochastic 
integral for the integral equation corresponding to (1).

In general, we will denote the α-discretised Langevin equation (1) as

dtxα = f (x) + g(x) η .� (6)

2.2. Three examples

In this section, we review three archetypal situations illustrating the role played by the choice 
of α-discretisation. We explain the computations in detail, so as to start off on the right footing 
for understanding the origin of the apparent contradictions discussed in section 3.
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2.2.1. The stochastic chain rule (or Itō formula)  A first consequence of the presence of a term 
of order dt−1/2  in the discrete-time Langevin equation (2) is that the usual formulæ of differ
ential calculus have to be altered. For instance, the chain rule describing the time derivative of 
a function of x(t) is modified as [2, 3]

dt
[
u(x)

] α
= u′(x)dtx + (1 − 2α)D g(x)2u′′(x),� (7)

where x = x(t) verifies the Langevin equation (6). It is only for the Stratonovich discretisa-
tion that one recovers the chain rule of differentiable functions. For α = 0, the relation (7) is 
known as the ‘Ito formula’.

The stochastic chain rule (7) is understood as follows. Coming back to the discrete-time 
definition of dt[u(x)], one performs a Taylor expansion in powers of ∆x ≡ xt+dt − xdt, keeping 
in mind that, as seen from (2), ∆x is of order dt1/2; this yields

u(xt+dt)− u(xt)

dt
=

u
(
x̄t + (1 − α)∆x

)
− u

(
x̄t − α∆x

)
dt

=
∆x
dt

u′(x̄t) +
1
2
(1 − 2α)

∆x2

dt
u′′(x̄t) + O(dt

1
2 ) .

�
(8)

For a differentiable function x(t), the term ∝ ∆x2/dt  would be negligible in the dt → 0 limit 
but this is not the case for a stochastic x(t). The next step is to understand the continuous-
time limit dt → 0 of (8): the so-called ‘Ito prescription’ amounts to replacing ∆x2/dt in this 
expression by its quadratic variation

∆x2

dt
�→ 2Dg(x̄t)

2 as dt → 0� (9)

(which is not equal to the expectation value of ∆x2/dt, as occasionally read in the litera-
ture, since g(x̄t) depends on the value of x̄t without averaging). Note that in equation  (8), 
one could as well replace ∆x2/dt by the Ito-discretised 2Dg(xt)

2 (or any other discretisation 
point) instead of the α-discretised one in (9) since this would only add terms of order dt1/2  
to (8)—hence the name ‘Ito prescription’. In this article, we will rather use the name 
‘substitution rule’ for two reasons: one is that we work in a generic α-discretisation scheme; 
another one is that we will introduce generalisations of (9) at a later stage.

We emphasise that the substitution rule (9) has to be used with care, as will be illustrated 
many times in this article. The validity of its use relies on the precise definition of the chain 
rule (7): this identity has to be understood in an ‘L2-norm’ sense, i.e. it corresponds to having 
〈[
∫ tf

0 dt {l.h.s. − r.h.s.}]2〉 = 0 (∀tf) and not to having a point-wise equality. The precise form
ulation and the demonstration of (7) and (9) are given in section B.1 of appendix B, along the 
lines of Øksendal’s reference textbook [4].

As this sort of issues is often overlooked in the theoretical physics literature, we now explain 
why an argument that is regularly proposed to justify (9) is in fact invalid. One could argue 
that the distribution of ∆x2 in (8) is sharply peaked around its most probable value 2Dg(x̄t)

2dt, 
because its variance 〈∆x4〉 − 〈∆x2〉2 is of order dt2 as read from (2) and (4); this would allow 
one to replace ∆x2/dt by 2Dg(x̄t)

2 as dt → 0 in (8), hence justifying (9). However, this argu-
ment is incorrect because the variance of ∆x2/dt is of the same order dt0 as some other terms 
in the time-discrete Langevin equation (8). To understand this point in detail, it is convenient 
to rephrase the argument as follows. First, one notes that according to (2) and (4), the quantity 
∆x/dt is dominated by its most singular contribution g(xt)ηt in the dt → 0 limit

L F Cugliandolo and V Lecomte﻿J. Phys. A: Math. Theor. 50 (2017) 345001
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∆x
dt

= g(xt)ηt + O(dt0).� (10)

In this expression, we have chosen to evaluate g(x) at x = xt  instead of x̄t, the difference being 
gathered with other terms of order O(dt0) (see (5) for a proof). This allows one to use the fact 
that ηt  is independent of xt in order to compute the variance of ∆x2/dt by Gaussian integra-
tion over ηt  as

〈[∆x2

dt

]2〉
−
〈∆x2

dt

〉2
=

{〈[
g(xt)ηt

]4
〉
−
〈[

g(xt)ηt
]2
〉2}

dt2 + O(dt)

= 4D2
(

3〈g(xt)
4〉 − 〈g(xt)

2〉2
)
+ O(dt)

�
(11)

and one observes that it does not vanish as dt → 0 (even for a constant noise amplitude 
g(x) = g). The variance of ∆x2/dt is thus of the same order dt0 as other terms in equation (8); 
this means that the properties of the distribution of ∆x2/dt cannot be invoked to justify the 
substitution rule (9). This rule has to be understood in an L2 sense that we explain in appendix 
B.1. As will prove to be essential, it means that the chain rule (7) is not true ‘point-wise’ but 
only in a weaker sense—which has to be taken care of meticulously in the path integral action, 
as we discuss thoroughly in section 3.2.

Finally, we note that the substitution rule (9) is equivalently written as follows4

η2
t dt �→ 2D� (12)

for the discrete time white noise ηt .

2.2.2.  Changing discretisation while keeping the same evolution.  Since the solution x(t) of 
the Langevin equation (1) depends crucially on the choice of α-discretisation, although this 
choice seems to be arbitrary, one can wonder whether x(t) can also be described as the solu-
tion of another Langevin equation, with a different ᾱ-discretisation and a modified force. To 
answer this question, one comes back to the discrete-time evolution (2) and (3)

xt+dt − xt

dt
= f

(
x̄(α)t

)
+ g

(
x̄(α)t

)
ηt� (13)

where we wrote explicitly the discretisation convention in superscript. Then, writing

x̄(α)t = x̄(ᾱ)t + (α− ᾱ)(xt+dt − xt)� (14)

and expanding in powers of ∆x = xt+dt − xt = O(dt1/2) one obtains

xt+dt − xt

dt
= f

(
x̄(ᾱ)t

)
+ g

(
x̄(ᾱ)t

)
ηt + (α− ᾱ)g′

(
x̄(ᾱ)t

)
∆x ηt + O(dt

1
2 )

= f
(
x̄(ᾱ)t

)
+ g

(
x̄(ᾱ)t

)
ηt + (α− ᾱ)g

(
x̄(ᾱ)t

)
g′
(
x̄(ᾱ)t

)
η2

t dt + O(dt
1
2 )

�
(15)

where we used (2) for the last line.
Finally, using the substitution rule (12) and sending dt to zero, one finds that the process 

x(t), solution of the Langevin equation (6) in the α-discretisation, is also verifying another 
Langevin equation

dtx
ᾱ
= fα→ᾱ(x) + g(x) η� (16)

4 Another writing is dB2
t �→ dt for a Brownian motion Bt of unit variance—the relation with our discrete white noise 

being ηt dt = (2D)1/2(Bt+dt − Bt).

L F Cugliandolo and V Lecomte﻿J. Phys. A: Math. Theor. 50 (2017) 345001



6

fα→ᾱ(x) = f (x) + 2(α− ᾱ)D g(x)g′(x)� (17)

which is understood in ᾱ-discretisation and presents a modified force fα→ᾱ(x). One checks 
directly that the Fokker-Planck equations corresponding to the two Langevin equations (1), 
(16) and (17) are identical, illustrating the equivalence of the two corresponding processes 
(see for instance [5] for the special case α = 0 and ᾱ = 1/2). However, we emphasise that, 
since we used the substitution rule (12), we have to keep in mind that the equivalence between 
(6), (16) and (17) is not true pointwise and this can be the source of unexpected problems, as 
discussed in section 3.1.

2.2.3.  Infinitesimal propagator for a path integral formulation.  The trajectory probability of 
stochastic processes described by a Langevin equation has been the focus of many studies 
in statistical mechanics, either from the Onsager–Machlup approach [20, 21] or from the 
Martin–Siggia–Rose–Janssen–De Dominicis (MSRJD) one [22–27]. The idea in the Onsager–
Machlup approach (to which we restrict our present analysis) is to write the probability of a 
trajectory [x(t)]0�t�tf as

Prob
[
x(t)

]
= J [x(t)] e−S[x(t)] ,� (18)

where S[x(t)] is the ‘action’, which takes a Lagrangian form S[x(t)] =
∫ tf

0 dt L(x, dtx), and 
J [x(t)] is a ‘normalisation prefactor’5. As can be expected from the discussion at the begin-
ning of section 2.1, the form of the action and of the normalisation prefactor will depend not 
only on the α-discretization of the underlying Langevin equation, but also on the discretisa-
tion convention which is used to write them. The average of a functional F  of the trajectory 
can then be written in a path integral form as

〈
F
[
x(t)

]〉
=

∫
DxF

[
x(t)

]
J Prob

[
x(t)

]
Pi
(
x(0)) .� (19)

The path integral is understood in the Feynman sense [28]: a sum over possible trajec-
tories which start from an initial condition sampled by a distribution Pi(x). It is best 
depicted in a time-discrete setup in the limit of zero time step, where one integrates over 
the set of possible values xt  of the trajectory at discrete times t ∈ dtN separated by a time 
step dt, yielding

tf/dt−1∏
t=0

{
dxt P(xt+dt, t + dt|xt, t)

} dt→0−→ DxJ [x(t)] e−S[x(t)]� (20)

where P(xt+dt, t + dt|xt, t) is a conditional probability (or ‘infinitesimal propagator’).
In this section, we focus our attention on the infinitesimal propagator between two suc-

cessive time steps, that for simplicity we take at the first time step. Our goal is to compute 
P(xdt|x0) ≡ P(xdt, dt|x0, 0) and to understand how the full action and normalisation prefactor 
are reconstituted through (20). We note that the correct form of this propagator, taking into 
account the α-discretisation is well-known [6, 8–10]. Still, we derive it again by taking a 
pedestrian approach that illustrates the role played by the substitution rules (9) or (12)—a role 
that proves essential to understand in order to later find the correct rules of stochastic calculus 
in the action.

5 The prefactor J [x(t)] can be included in the measure Dx on trajectories, but is not exponentiated in the action in 
general because it does not take a Lagrangian form.
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2.2.3.1. First time step: changing from the distribution of η0 to that of xdt .  Let us fix the initial 
condition x0 and determine the distribution of xdt obtained from the discrete Langevin equa-
tion (2). This equation is an implicit equation on xdt, the solution of which takes the form

xdt = X1(x0, η0) .� (21)

Therefore, the distribution of xdt reads

P(xdt|x0) =

∫
dη0 δ(xdt − X1(x0, η0)) Pnoise(η0),� (22)

with the noise distribution given in equation (4). In order to integrate over η0, we would like 
to read the Dirac as a δ on the variable η0. Cancelling the argument of the Dirac distribution in 
(22) defines a function H0(x0, xdt) such that

(
xdt − X1(x0, η0)

)∣∣∣
η0=H0(x0,xdt)

= 0.� (23)

Then, the relation (22) yields

�

(24)

Note that this relation can be derived by performing a change of variables in the probability 
distribution Pnoise of η0, to obtain the distribution of xdt seen as a function of η0 through (21). 
(Two ways of evaluating the denominator are recalled in appendices A.2 [10] and A.3 [8]; we 
follow here a different route that is better adapted for our purposes.)

2.2.3.2. Expansions in the limit dt → 0.  The discrete Langevin equation  (2) relating  
(at t = 0) x0 and xdt is a non-linear equation for which there is no explicit solution in general. 
As discussed previously, in the dt → 0 limit, one has xdt − x0 = O(dt1/2) (which is true for 
instance for a Brownian motion when f (x) = 0 and g(x) = 1, and is checked self-consistently 
in general). Writing x̄0 = x0 + α(xdt − x0), we then expand (2) in order to obtain x0 − xdt up 
to order O(dt) included. One deduces

xdt − x0 =
[

f (x0) + η0g(x0)
]
dt

+ αdt(xdt − x0)
[

f ′(x0) + η0g′(x0) +
1
2
αη0(xdt − x0)g′′(x0)

]�
(25)

where we used η0 = O(dt−1/2). Solving for xdt, one obtains, after expansion,

X1(x0, η0) = x0 + dt f (x0) + dt η0 g(x0) + αdt2[ f (x0) + η0g(x0)
][

f ′(x0) + η0g′(x0)
]

+
1
2
α2dt3η2

0

{
2f (x0)g′(x0)

2 + η0g(x0)
2g′′(x0)

+ 2g(x0)
[
2f ′(x0)g′(x0) + f (x0)g′′(x0) + η0g′(x0)

2
]}

,
�

(26)

where we kept terms of high enough order in η0 so as to ensure that the derivative w.r.t. η0 used 
in (24) contains terms up to order O(dt2) included. This derivative reads

L F Cugliandolo and V Lecomte﻿J. Phys. A: Math. Theor. 50 (2017) 345001
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∂η0 X1(x0, η0) = dt g(x0)
[
1 + 2αdtη0 g′(x0) + αdtf ′(x0) + αdtf (x0)

g′(x0)

g(x0)

+
3
2

dt2α2η2
0

(
2g′(x0)

2 + g(x0)g′′(x0)
)]

.
�

(27)

Inverting, we have

1∣∣∣∂η0 X1
(
x0, η0

)∣∣∣
=

1
|g(x0)dt|

[
1 − 2αdtη0 g′(x0)− αdtf ′(x0)− αdtf (x0)

g′(x0)

g(x0)

+
1
2

dt2α2η2
0

(
2g′(x0)

2 − 3g(x0)g′′(x0)
)]

.
�

(28)

In this expression, one can now use the substitution rule (12) to derive

1∣∣∣∂η0 X1
(
x0, η0

)∣∣∣
=

1
|g(x0)dt|

[
1 − 2αdtη0 g′(x0)− αdtf ′(x0)− αdtf (x0)

g′(x0)

g(x0)

+ Dα2dt
(

2g′(x0)
2 − 3g(x0)g′′(x0)

)]
.

�

(29)

For later convenience, we prefer to express the numerator of the r.h.s. in terms of x̄0 instead 
of x0. We then utilise x0 = x̄0 − α(xdt − x0) and we replace xdt − x0 by its expression deduced 
from (2). All in all, the only resulting non-trivial contribution to (29) is

dt η0g′(x0) = dt η0g′
(

x̄0 − α dt
(
g(x̄0)η0 + f (x̄0)

))

= dt η0g′(x̄0)− α dt2η2
0 g(x̄0)g′′(x̄0) + o(dt)

= dt η0g′(x̄0)− 2αD dt g(x̄0)g′′(x̄0) + o(dt)

�

(30)

and, finally, equation (29) becomes

1∣∣∣∂η0 X1
(
x0, η0

)∣∣∣
=

1
|g(x0)dt|

[
1 − 2αdtη0 g′(x̄0)− αdtf ′(x̄0)− αdtf (x̄0)

g′(x̄0)

g(x̄0)

+ Dα2dt
(

2g′(x̄0)
2 + g(x̄0)g′′(x̄0)

)]
.

�

(31)

At this point one would like to exponentiate this expression, an operation that has to be per-
formed with care since η0 dt is of order dt1/2. Using the substitution rule (12) as previously, 
one has

eAη0dt = 1 + Aη0dt + DA2dt + o(dt),� (32)

eAη0dt−DA2dt = 1 + Aη0dt + o(dt).� (33)

These relations imply

1∣∣∣∂η0 X1
(
x0, η0

)∣∣∣
=

1
|g(x0)dt|

exp
[
− 2αdtη0 g′(x̄0)− αdtf ′(x̄0)− αdtf (x̄0)

g′(x̄0)

g(x̄0)

− Dα2dt
(

2g′(x̄0)
2 − g(x̄0)g′′(x̄0)

)]
.

�

(34)
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The other function that one needs to determine to compute the infinitesimal propagator (24) 
is H0(x0, xdt), defined by equation (23), which is equivalent to equation (2) evaluated at t = 0. 
After a simple rearrangement one finds

η0 =
1
dt

xdt − x0 − dtf (x0)

g(x0) + α(xdt − x0)g′(x0)
≡ H0(x0, xdt) .� (35)

In the denominator, one recognises an expansion around x̄0 (with the l.h.s. η0 evaluated up 
to O(dt0) included, so that Pnoise

(
H0(x0, xdt)

)
 contains terms up to O(dt), as seen from equa-

tion (4)). This yields

H0(x0, xdt) =
xdt−x0

dt − f (x̄0)

g(x̄0)
.� (36)

2.2.3.3. Infinitesimal propagator.  Coming back to equation  (24), one obtains from equa-
tions (4), (31) and (36) that

P(xdt|x0)
α
=

√
dt−1

4πD
1

|g(x0)|
exp

{
− 1

2
dt
2D

[ xdt−x0
dt − f (x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

− 2αdt
xdt−x0

dt − f (x̄0)

g(x̄0)
g′(x̄0)− αdtf (x̄0)

g′(x̄0)

g(x̄0)

− Dα2dt
(

2g′(x̄0)
2 − g(x̄0)g′′(x̄0)

)}

�

(37)

where the symbol α= indicates that in the r.h.s. x̄0 is the α-discretised point. Recognising a 
double-product to complete the square, one gets

P(xdt|x0)
α
=

√
dt−1

4πD
1

|g(x0)|
exp

{
− 1

2
dt
2D

[ xdt−x0
dt − f (x̄0) + 4αD g(x̄0)g′(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

− αdtf (x̄0)
g′(x̄0)

g(x̄0)
+ Dα2dt

(
2g′(x̄0)

2 + g(x̄0)g′′(x̄0)
)}

.

� (38)
The global prefactor |g(x0)|−1 in the infinitesimal propagator (38) can also be expressed in 
terms of |g(x̄0)|−1. For this, one starts again from x0 = x̄0 − α(xdt − x0) and replaces xdt − x0 
by its expression deduced from (2). This leads to

1
|g(x0)|

=
1

|g(x̄0)|

[
1 + αdtη0 g′(x̄0) + αdtf (x̄0)

g′(x̄0)

g(x̄0)

+ Dα2dt
(

2g′(x̄0)
2 − g(x̄0)g′′(x̄0)

)]
.

�
(39)

Exponentiating in the same way as we obtained (31),

1
|g(x0)|

=
1

|g(x̄0)|
exp

[
1 + αdtη0 g′(x̄0) + αdtf (x̄0)

g′(x̄0)

g(x̄0)

+ Dα2dt
(

g′(x̄0)
2 − g(x̄0)g′′(x̄0)

)]
.

�
(40)
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Since this relation contains a term ∝ η0, once again one has to complete the square. Coming 
back to equation  (24), finally, many terms compensate and, instead of equation  (38), one 
obtains a simpler expression for the infinitesimal propagator:

P(xdt|x0)
α
=

√
dt−1

4πD
1

|g(x̄0)|

× exp

{
− 1

2
dt
2D

[ xdt−x0
dt − f (x̄0) + 2αD g(x̄0)g′(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

}
.

�

(41)

2.2.3.4. The continuous-time limit.  The result (41) is well-known and can be derived in sim-
pler ways [6, 9, 10] that are reviewed in appendix A, and that do not use (or use in a different 
way) the equivalent substitution rules (9) or (12). Having such different approaches leading to 
the same result is important in order to identify the conditions under which this substitution 
rule can be used; we note in particular that we used this rule in equations (29), (34) and (40) 
only in the prefactor of the exponential Pnoise(H0) and not inside the exponential. As discussed 
throughout section 3, such restriction on the condition under which the substitution rule (9) is 
valid proves to be crucial.

We can read from equation (41) the continuous-time limit (20): this yields the trajectory 
probability in the form (18) with the so-called Onsager–Machlup action

S[x(t)] α
=

∫ tf

0
dt

{
1
2

1
2D

[
dtx − f (x) + 2αD g(x)g′(x)

g(x)

]2

+ αf ′(x)
}

� (42)

where the arguments of the functions f and g are taken in α-discretisation. The associated 
normalisation prefactor reads

J [x(t)] α
=

∏
t

{√
dt−1

4πD
1

|g(x̄t)|

}
.� (43)

We emphasise (and this seems to have been little stressed in the literature) that it is essential 
to specify the discretisation point of the normalisation prefactor J [x(t)], since it can yield dif-
ferent contributions to the action for different discretisation conventions, as should be clear 
from equation (40). For instance, when proving the Fluctuation-Dissipation Theorem and the 
Fluctuation Theorem for Langevin equations with multiplicative noise [8], one has to take 
into account that reversing the time changes the discretisation from α to 1 − α. This implies 
that when comparing the trajectory probability of a path and its time reversed, the discretisa-
tion of one of the normalisation prefactors has to be restored to α from 1 − α, which induces 
terms similar to those in (40) in the action without which the Fluctuation Theorem would not 
be verified.

We also note that Itami and Sasa have recently discussed in [10] the consequences of 
choosing different α-discretisations in the Langevin equation and in the action.

3.  Stochastic calculus in the path integral action

In general, the different actions S[x(t)] that are studied in statistical mechanics (or in quantum field 

theory [29]) take the form of the time integral of a ‘Lagrangian’: S[x(t)] =
∫ tf

0 dtL(dtx(t), x(t)). 
This is the case, for instance, of the action (42) that we derived in the previous section and 
which corresponds to the α-discretised Langevin equation (6). Since the trajectories x(t) that 
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verify the Langevin equation are not differentiable, it is natural to expect that the Lagrangian 
L(dtx(t), x(t)) should be sensitive to the convention of α-discretisation for its writing, and that 
the differential transformations performed in the Lagrangian should incorporate terms akin to 
the stochastic ones ∝ (1 − 2α) of the modified chain rule (7).

It is often assumed that the continuous-time chain rule (7) can be applied when manipulat-
ing the action (see for instance [30]) or that the formulæ (16) and (17) describing the change 
of discretisation in the Langevin equation can be equally used. In this section, we show

	 (i)	that performing a change of discretisation in the Onsager–Machlup action is possible but 
completely wrong if one uses the relations (16) and (17); and

	(ii)	similarly, that non-linear changes of variables are allowed in the action but are also wrong 
if one applies the chain rule (7).

In both cases, one arrives at inconsistencies when using the incorrect transformations to 
manipulate the action. We describe the procedure which enables ones to elucidate the origin 
of such apparent contradictions of stochastic calculus. The moral of the story is that the sub-
stitution rule (9) alone is insufficient to understand the transformations of the action and that 
other transformations, that we derive, are needed.

3.1.  From one discretisation to another

In this section, we examine the condition of validity of the transformation rules allowing one 
to go from an α-discretised Langevin equation (6) to an equivalent ᾱ-discretised Langevin 
equation (16) and (17). We focus on the transformation from a generic α-discretisation to the 
Stratonovich one (α = 1/2), which is often performed for the reason that the stochastic chain 
rule (7) takes a simple form for α = 1/2 (yielding back the standard chain rule of differential 
calculus). We show that, although it seems natural to perform the same transformations in 
the action as at the Langevin level, such as changing discretisation through (16) and (17), the 
resulting action actually proves to be invalid (see figure 1 for a schematic representation of the 
procedure). Finally, we identify the reason why the correct rules of calculus in the action are 
more complex than at the Langevin level, and we determine the correct calculus to be used in 
the action that actually involves generalised substitution rules akin to (9).

3.1.1.  Direct change of discretisation in the action.  The α-discretised Langevin equation (6) 
dtx

α
= f (x) + g(x) η  is equivalent to the following Langevin equation in Stratonovich discreti-

sation, with an α-dependent force fα

dtx
Strato
= fα(x) + g(x) η,� (44)

fα(x) = f (x) + 2D(α− 1
2
)g′(x)g(x).� (45)

This is seen, for instance, by coming back to the time-discrete definition (2) and (3) of the 
α-discretisation and by working with the symmetric Stratonovich discretisation point (the 
superscript S indicates such choice of discretisation in what follows)

x̄S
t =

1
2
(xt+dt + xt) ,� (46)

a procedure that we followed in section  2.2.2 for a generic change of discretisation: 
equations  (16) and (17) yield the result above, i.e. equations  (44) and (45) with a force 
fα = fα→1/2.
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3.1.2.  Change of discretisation in the infinitesimal propagator.  Since the α-discretised Lan-
gevin equation (6) and the Stratonovich one (44) and (45) are equivalent, they must possess 
equivalent infinitesimal propagators. The change of discretisation in the infinitesimal propaga-
tor proves to be more involved than in the equation itself.

3.1.2.1. Expanding without throwing powers of ∆x  out with the bathwater.  We focus, without 
loss of generality, on the first time step 0 � dt. The propagator (41) in α-discretisation is

P(xdt|x0)
α
=

N
|g(x̄0)|

exp

{
− 1

2
dt
2D

[ xdt−x0
dt − f (x̄0) + 2αD g(x̄0)g′(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

}

with N ≡
√

dt−1

4πD
.

�

(47)

The aim is to determine an equivalent propagator in terms of the Stratonovich mid-point 
x̄S

0 = 1
2 (xdt + x0). We expand (47) in powers of ∆x ≡ xdt − x0, using

x̄0 = x̄S
0 + (α− 1

2
)∆x� (48)

and keeping all terms of order dt0 inside the exponential (note that they define the Gaussian 
weight), while putting all terms of order O(dt1/2) and O(dt) in a prefactor of this weight. In 
this procedure, one should remember that ∆x = O(dt1/2). This crucially implies that, in the 
exponential, the expansion of the term

−1
2

1
2D dt

[
∆x

g
(
x̄S

0 + (α− 1
2 )∆x

)
]2

� (49)

Figure 1.  Schematic representation, for a change of discretisation, of the difference 
between the stochastic calculus performed in the Langevin equation  and in the 
Onsager–Machlup action. The α-discretised Langevin equation (6) can be transformed 
by use of the substitution rule (9) into a Stratonovich-discretised one (α = 1/2) given 
by equations (44) and (45). However, one cannot use such equations in the α-discretised 
Onsager–Machlup action (42) to get the correct Stratonovich-discretised action. Instead, 
to go from one action to the other, one has to use the generalised substitution rules 
(54)–(57) in discrete time for the infinitesimal propagator (once expanded in powers of 
∆x and dt), or to rely on modified substitution rules (74) and (75) inside the exponential 
of the propagator.
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generates terms of order O(dt1/2) and O(dt) which are proportional to dt−1∆x3 and dt−1∆x4. 
Expanding then the exponential, one gets terms up to dt−2∆x6. Explicitly, the result is

P(xdt|x0)

N
|g(x̄S

0)|
e−

1
2

dt
2D

(
∆x
dt

)2/
g(x̄S

0)
2

S
= 1 +

[
f (x̄S

0)

2Dg(x̄S
0)

2
+

(2 − 8α)g′(x̄S
0)

4g(x̄S
0)

]
∆x +

[
(2α− 1)g′(x̄S

0)

4Dg(x̄S
0)

3

]
∆x3dt−1

+

[
− α

(
αDg′(x̄S

0)
2 + f ′(x̄S

0)
)
+

αf (x̄S
0)g

′(x̄S
0)

g(x̄S
0)

−
f (x̄S

0)
2

4Dg(x̄S
0)

2

]
dt

+

[
(−12α2 + 8α− 1)g′′(x̄S

0)

8g(x̄S
0)

+
(14α2 − 8α+ 1)Dg′(x̄S

0)
2 + (2α− 1) f ′(x̄S

0)

4Dg(x̄S
0)

2

+
(3 − 8α) f (x̄S

0)g
′(x̄S

0)

4Dg(x̄S
0)

3
+

f (x̄S
0)

2

8D2g(x̄S
0)

4

]
∆x2

+

[
(1 − 2α)2g′′(x̄S

0)

16Dg(x̄S
0)

3
−

(28α2 − 24α+ 5)g′(x̄S
0)

2

16Dg(x̄S
0)

4
+

(2α− 1) f (x̄S
0)g

′(x̄S
0)

8D2g(x̄S
0)

5

]
∆x4 dt−1

+
(1 − 2α)2g′(x̄S

0)
2

32D2g(x̄S
0)

6
∆x6 dt−2.

�

(50)

Note that we also changed the discretisation of the normalisation prefactor from 1/|g(x̄0)| to 
1/|g(x̄S

0)| using a relation similar to (39). The symbol S
= indicates that the r.h.s. is evaluated in 

the Stratonovich discretisation.

3.1.2.2. Comparison to the propagator arising from changing discretisation at the Langevin 
level.  We would like to compare this result to that of the commutative procedure depicted in 
figure 1, namely,

	 (i)	transform the original α-discretised Langevin equation into the Stratonovich-discretised 
one (44) which includes an α-dependent force fα(x) given by (45); and

	(ii)	follow the same procedure as previously done to get the corresponding propagator, that 

we denote PS
fα.

The result is, of course, directly read from equation (47), where α is first replaced by 1/2 (and 
hence x̄0 by x̄S

0), and then f is replaced by fα; this yields

PS
fα(xdt|x0)

S
=

N
|g(x̄S

0)|
exp

{
− 1

2
dt
2D

[ ∆x
dt − fα(x̄S

0) + D g(x̄S
0)g

′(x̄S
0)

g(x̄S
0)

]2

− 1
2

dtf ′α(x̄
S
0)

}
.

� (51)
By consistency, this propagator should be equal to the result (47), in the small dt limit. 
To check whether this is the case, we follow the same procedure as the one leading to  
equations (50) from (47), that is to say, we expand in powers of ∆x and dt, and we replace fα 
by its explicit expression in terms of f, g and α, to obtain
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PS
fα(xdt|x0)

N
|g(x̄S

0)|
e−

1
2

dt
2D

(
∆x
dt

)2/
g(x̄S

0)
2

S
= 1 +

[
f (x̄S

0)

2Dg(x̄S
0)

2
+

(α− 1)g′(x̄S
0)

g(x̄S
0)

]
∆x

+

[
−

f (x̄S
0)

2

2Dg(x̄S
0)

2
− f ′(x̄S

0)−
2(α− 1) f (x̄S

0)g
′(x̄S

0)

g(x̄S
0)

+ D
{
(1 − 2α)g(x̄S

0)g
′′(x̄S

0) + (−2(α− 1)α− 1)g′(x̄S
0)

2
}]1

2
dt

+
(2(α− 1)Dg(x̄S

0)g
′(x̄S

0) + f (x̄S
0))

2

8D2g(x̄S
0)

4
∆x2.

� (52)
The result is clearly different from the one in equation  (50), while one expects 
P(xdt|x0) = PS

fα(xdt|x0) because these two propagators correspond to the same Langevin equa-
tion. In particular, the maximum power of ∆x for PS

fα(xdt|x0) in equation (52) is ∆x2 while it 
is ∆x6 in equation (50) for P(xdt|x0).

Note that if one takes for g(x) a constant function g, the two propagators are still different, 
as checked by direct inspection (unless α = 1/2, as it should because then there is no change 
of discretisation and the two computations are identical). The simple case of additive noise, 
thus, also requires a peculiar attention.

3.1.2.3. Appropriate substitution rules to render the two approaches compatible.  As dis-
cussed in section 2.2.1, the Ito prescription amounts to using the substitution rule

∆x2 �→ 2Dg(x)2dt as dt → 0,� (53)

where on the r.h.s., the argument x of g(x) can be taken at any discretisation point, at mini-
mal order in dt. We have seen in section 2.2.3.3 that the use of such prescription is justified 
as long as it is performed outside the exponential, for the determination of the infinitesimal 
propagator.

Therefore, in order to recover from (50) the simpler result (52) for the propagator, a 
natural possibility is to look for ‘generalised substitution rules’ akin to (53), but now for 
terms of the form ∆xndtm with n, m chosen so that ∆xndtm is typically of order O(dt1/2) or 
O(dt). One finds by direct computation that, to guarantee that (50) becomes (52), there is a 
unique prescription to replace the terms ∆xndtm by standard infinitesimals of the natural form 
Cst × (2Dg(x)2)n/2dt when n is even and Cst ×∆x (2Dg(x)2)(n−1)/2 when n is odd. It reads

∆x2 = 2Dg(x)2 dt,� (54)

∆x3 dt−1 = 3 ∆x 2Dg(x)2,� (55)

∆x4 dt−1 = 3
(
2Dg(x)2)2

dt,� (56)

∆x6 dt−2 = 15
(
2Dg(x)2)3

dt.� (57)

A justification of these generalised substitution rules, to be understood in a precise L2 
sense, is presented in appendix B. It is similar in spirit to the usual mathematical definition of 
the first rule (the usual Ito prescription (9)), the L2 definition of which is also recalled in this 
appendix.
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3.1.2.4. Discussion and comparison to a naive continuous-time computation.  In sec-
tion  3.1.1 we showed that the change of discretisation at the Langevin equation  level 
requires the use of the standard substitution rule (9) (the Ito prescription). This transfor-
mation follows the upper branch in figure 1. In section 3.1.2.3 we proved that the change 
of discretisation at the Onsager–Machlup level (for the infinitesimal propagator) requires a 
full set of generalised substitution rules, given by the relations (54)–(57), that include the 
Ito prescription (9) but extend it with transformation rules for three other infinitesimals. 
This transformation follows the lower branch in figure 1. Therefore, the paths along the 
upper and lower branches should be followed using procedures that involve a different set 
of substitution rules.

The key point that explains the discrepancy between the two approaches is that when one 
changes the discretisation in the action, the term which is quadratic in ∆x (see (49)) trans-
forms in a non-trivial way and contributes to a higher order in powers of ∆x than when one 
changes the discretisation in the Langevin equation (as done in section 3.1.1). Technically, the 
presence of a square (∆x/dt)2 divided by the noise amplitude in the infinitesimal propagator 
implies that, when keeping terms of order O(dt1/2) and O(dt), higher powers of ∆x are gener-
ated, as observed in (50).

An instructive observation is to draw a comparison between the Stratonovich-discretised 
continuous-time action corresponding to (51)

SS
fα [x(t)]

S
=

1
2

∫ tf

0
dt

{
1

2D

[
dtx − fα(x) + D g(x)g′(x)

g(x)

]2

− dtf ′α(x)
}

� (58)

and the result of a naive computation. First, one notes that both the right-down and the down-
right branches of the commutative diagram represented in figure 1 agree with the same result 
(58), together with the corresponding prefactor 

∏
t |g(x̄S

t )|; this is true provided one uses the 
generalised substitution rules (54)–(57). Another—naive—approach consists in attempting to 
arrive at this result by changing the discretisation directly in the time-continuous action, with 
the following procedure:

	 (i)	start from the continuous-time α-discretised action (42); 
	(ii)	use the rules (16) and (17) for the change of discretisation in the Langevin equation; 
	(iii)	change the discretisation of the normalisation prefactor (43) from α to Stratonovich, 

using a relation similar to (40)6.

However, as detailed in appendix D, the result of this procedure is different from (58) and is 
thus incorrect. The reason lies in the fact that the rules (16) and (17) for the change of discre-
tisation in the Langevin equation do not involve substitution rules of high enough order in ∆x: 
they disregard essential terms contributing to the expansion (50) that are crucial to arrive at the 
final correct propagator (51) (or, equivalently, to recover the correct action (58) with its asso-
ciated Stratonovich-discretised normalisation prefactor). This confirms that the sole standard 
substitution rule (9) is not sufficient to handle successfully the path integral representation of 
the stochastic process, and that the generalised substitution rules (54)–(57) that we propose 
have to be used instead.

6 The relation (40) allows one to change the discretisation of the prefactor J [x(t)] from the Ito one (α = 0) to the α 
one, but is easily adapted to change from α to Stratonovich (α = 1/2); see equation (D.6).
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3.2.  Non-linear transformation

A similar apparent contradiction occurs when one attempts to use the chain rule (7) in the 
action, instead of restricting its use to the Langevin level. Such inconsistency was observed 
for non-linear field transformations for the MSRJD action in App. E of [7]7. In appendix 
C of the present article, we translate this computation to the case of the Onsager–Machlup 
action, and the result is the same: using the chain rule (7) in the action brings an incon-
sistency when changing variables. Related issues have been observed in the context of 
quantum field theory [14–19]. In this section, we examine the origin of this paradox. We 
show that it is again due to an invalid use of the Ito substitution rule (9) in the action, and we 
provide the correct treatment of non-linear transformations in the action, working with the 
infinitesimal propagator. We also propose a modified chain rule that can be used in continu-
ous time inside the action.

3.2.1.  Non-linear transformation in the Langevin equation.  We start from the α-discretised 
Langevin equation  (6) and consider an increasing C1 function u(x) which is a bijection 
and is used as a non-linear change of variables. The chain rule (7) implies that the function 
U(t) = u(x(t)) satisfies an α-discretised Langevin equation

dtU
α
= u′f + (1 − 2α)D g2u′′ + u′g η.� (59)

This writing is a shortcut for the Langevin equation with a force F and a noise amplitude G

dtU(t) α
=

≡F(U(t))︷ ︸︸ ︷
u′(xU(t)) f (xU(t)) + (1 − 2α)D g(xU(t))2u′′(xU(t))

+ u′(xU(t)) g(xU(t))︸ ︷︷ ︸
≡G(U(t))

η(t)
� (60)

xU(t) = u−1(U(t))
(
i.e. u(xU(t)) = U(t)

)
.� (61)

Our aim is to compare different procedures represented on the commutative diagram of 
figure 2. Concretely we take the following two paths.

	 (i)	The down path (on the left) that starts from the α-discretised Langevin equation (6) and 
arrives at the Onsager–Machlup action on x(t) given by the expression in (42), which, 
together with its associated normalisation prefactor (43), is equivalent to the infinitesimal 
propagator (41).

	(ii)	The right-down-left path. It starts from the Langevin equation  (59), goes next to its 
corresponding Onsager–Machlup representation and, finally, through the application of 
rules that we still need to find, this path performs a non-linear transformation on the 
Onsager–Machlup action on U(t) that should take it to the one on x(t).

We first analyse these procedures at the infinitesimal propagator level.

3.2.2.  Direct determination of the propagator.  As in section 3.1.2, we perform the comparison 
by keeping only the quadratic in ∆x contribution to the Gaussian weight in the exponen-
tial, and by expanding the rest in front of this weight. The propagator (41) associated to the 
Langevin equation (6) reads

7 Note that this appendix is found only in the arXiv v1 preprint version.
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P(xdt|x0)
α
=

N
|g(x̄0)|

e−
1
2

dt
2D

(
∆x
dt

)2/
g(x̄0)

2

×
{

1 − dtαf ′ (x̄0) +
f (x̄0)− 2Dαg (x̄0) g′ (x̄0)

2Dg (x̄0) 2 ∆x
}

.

�

(62)

In this expansion, we have already used the standard substitution rule (9) to reexpress ∆x2.

3.2.3.  Indirect path: passing through the propagator for U(t).  Corresponding to the Langevin 
equation (60) for U(t), one can write from (41) the propagator

PU(Udt|U0)
α
=

N
|G(Ū0)|

exp

{
− 1

2
dt
2D

[ Udt−U0
dt − F(Ū0) + 2αD G(Ū0)G′(Ū0)

G(Ū0)

]2

− αdtF′(Ū0)

}
.

�

(63)

Since the two Langevin equations (6) and (60) are equivalent, this propagator has to be equiva-
lent to (62). As remarked in the literature in the stochastic [7, 31] and the quantum mechanical 
[14–19] contexts, the application of the chain rule does not yield back (62) or (41). The com-
putation describing this inconsistency for our Onsager–Machlup action of interest is recalled 
for completeness in appendix C

The idea to examine the origin of this inconsistency, as done previously for the change 

of discretisation, is to treat the ‘dangerous’ term of the propagator 
[ Udt−U0

dt G(Ū0)

]2 in a safe way, 

by expanding the propagator and putting all terms in prefactor, apart from the quadratic part 
defining the Gaussian weight itself. To set up the expansion, one uses that

Figure 2.  Schematic representation, for a non-linear (bijective) change of variables 
x �→ u(x), of the difference between the stochastic calculus performed in the Langevin 
equation and in the Onsager–Machlup action. The α-discretised Langevin equation (6) 
can be transformed exploiting the chain rule (7) into a Langevin equation  (59) for 
U(t) = u(x(t)). To this equation  corresponds a Onsager–Machlup action, equivalent 
to the infinitesimal propagator (63). However, one cannot use such chain rule in the 
α-discretised Onsager–Machlup action (42) to derive the correct action of the process 
U(t), as explained in appendix C. To go from one action to the other, one has to use, 
instead, the generalised substitution rules (54)–(57) in discrete time after expanding 
the action (or equivalently (74) and (75) inside the discretised action), or to rely on a 
modified chain rule for the time-continuous process as discussed in section 3.3.2. In the 
text, for simplicity, the lower branch of this commutative diagram is performed from 
right to left.
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Ū0 = (1 − α)u(x0) + α u(xdt),� (64)

x0 = x̄0 − α∆x,� (65)

xdt = x̄0 + (1 − α)∆x,� (66)

and one expands in powers of ∆x, keeping in mind that this quantity is O(dt1/2). The change 
of variables in the (conditional) probability

PU(Udt|U0) u′(xdt) = P(xdt|x0)� (67)

is also needed, where in u′(xdt) one uses (66). After a tedious computation (where the substitu-
tion rule (53) for ∆x2 is employed though only in the prefactor), the result is that the propaga-
tor P(xdt|x0) obtained from (67), with PU  read from (63), is

P(xdt|x0)

N
|g(x̄0)|e

− 1
2

dt
2D

(
∆x
dt

)2/
g(x̄0)2

α
= 1 +

[
f (x̄0)

2Dg(x̄0)2 − αg′(x̄0)

g(x̄0)
− 3(−1 + 2α)u′′(x̄0)

2u′(x̄0)

]
∆x

+

[
3Dα(−2 + 3α)g(x̄0)g′(x̄0)u′′(x̄0)

u′(x̄0)
− (2αf ′(x̄0)u′(x̄0) + 3(−1 + 2α) f (x̄0)u′′(x̄0))

2u′(x̄0)

+
Dg(x̄0)

2(3(1 − 6α+ 6α2)u′′(x̄0)
2 + 2(1 − 3α+ 3α2)u′(x̄0)u(3)(x̄0))

2u′(x̄0)2

]
dt

+
(−1 + 2α)u′′(x̄0)

4dtDg(x̄0)2u′(x̄0)
∆x3

+

[
(−1 + 2α) f (x̄0)u′′(x̄0)

8dtD2g(x̄0)4u′(x̄0)
− α(−2 + 3α)g′(x̄0)u′′(x̄0)

4dtDg(x̄0)3u′(x̄0)

− 3(7 − 32α+ 32α2)u′′(x̄0)
2 + 4(1 − 3α+ 3α2)u′(x̄0)u(3)(x̄0)

48dtDg(x̄0)2u′(x̄0)2

]
∆x4

+
(1 − 2α)2u′′(x̄0)

2

32dt2D2g(x̄0)4u′(x̄0)2 ∆x6 .

�

(68)

This form seems to be different from (62) because it still involves the function u(x) that 
should not be present in the microscopic propagator for x (unless of course the transfor-
mation is the identity u(x) = x in which case (68) is equal to (62)). However, as checked 
with a direct computation, using the generalised substitution rules (55)–(57) allows one to 
remove all dependencies of (68) in the function u(x). Strikingly, the result is the correct 
propagator (62).

This computation shows that one can follow without inconsistencies the different 
branches of figure  2 for non-linear transformations, provided that the correct expan-
sion is done when performing the change of variables in the action (yielding (68)) 
and that the generalised substitution rules (55)–(57) are applied to the prefactor of the 

Gaussian weight |g(x̄t)|−1
exp

{
−∆x2/[4D dt g(x̄t)]

2
}

, after the expansion of the infini-

tesimal propagator.
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3.3.  Discussion

In this section, we gather the previous results on the change of discretisation and the change 
of variables in a common description, aiming at understanding which are the valid rules 
of stochastic calculus that apply in the action. We first describe the origin of the observed 
issues in the infinitesimal propagator, setting down modified substitution rules than can be 
applied ‘inside’ the exponential of the propagator (instead of ‘outside’, on the prefactor of the 
Gaussian weight as done so far). We then formulate a modified chain rule in continuous time 
that one should apply in the path integral formalism.

3.3.1.  (Generalised) substitution rules and exponentials of infinitesimals.  In sections 3.1 and 
3.2, we noted that the expansion of the infinitesimal propagator involves a separation between

	 (i)	a purely Gaussian weight (which defines the probability distribution of the increment 
∆x = xdt − x0) and

	(ii)	a prefactor gathering all other terms, of the form 1 + O(dt1/2) + O(dt).

We now first show explicitly that the generalised substitution rules (54)–(57) cannot be applied 
in the exponential and we elucidate which are the ‘modified substitution rules’ to use in the 
exponentiated expression. Recalling the notation, N = 1/(4πDdt)1/2 we denote by

PG
t

α
=

N
|g(x̄t)|

e−
1
2

dt
2D

(
∆x
dt

)2/
g(x̄t)

2

� (69)

the part of the infinitesimal propagator (taken in a given α-discretisation) which corresponds 
to the Gaussian distribution of ∆x. Then, either for the change of discretisation (50) or for the 
non-linear change of variables (68), the microscopic propagator is decomposed as

P(xdt|x0)
α
= PG

0 ×exp

{
A0dt + A1∆x + A2∆x2 + A3

∆x3

dt
+ A4

∆x4

dt

}
� (70)

where A0, . . . , A4 are functions of x̄0 taken in α-discretisation. The number of terms inside the 
exponential is finite, because higher-order powers of ∆x and dt do not contribute at the orders 
O(dt1/2) and O(dt) we are interested in8. Note that (50) and (68) are written in an expanded 
form, which goes up to order ∆x6 as

exp

{
A0dt+A1∆x + A2∆x2 + A3

∆x3

dt
+ A4

∆x4

dt

}

= 1 + A0dt + A1∆x +
(1

2
A2

1 + A2

)
∆x2

+ A3
∆x3

dt
+
(
A1A3 + A4

)∆x4

dt
+

A2
3

2
∆x6

dt2 .

�

(71)

In this form, one can then apply the generalised substitution rules (54)–(57) in a valid manner 
and reexponentiate the result, taking into account the orders in dt correctly. (This is similar to 
what we have done in (33) when treating the exponential of functions of the noise ηt  only that 
now we deal with a function of ∆x.) Denoting by σ = 2Dg2(x) the noise amplitude, one finds 
that the form (70) of the propagator becomes

8 Of course other computations than the change of discretisation and the change of variables that we considered 
in sections 3.1 and 3.2 could generate larger powers of ∆x, such as ∆x5/dt2 or ∆x6/dt2, which are respectively of 
order O(dt1/2) and O(dt). The modified rule that we present in the present section are easily adapted to such terms.
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P(xdt|x0)
α
= PG

0 ×exp

{[
A1 + 3A3σ

]
∆x +

[
A0 + A2σ + 3(A3)

2σ2 + 3A4σ
2
]
dt
}

�

(72)

with terms in the exponential that are order ∆x (or dt1/2) and dt only, as they should.
One observes by direct inspection that the generalised substitution rules (54)–(57) cannot 

be used directly inside the exponential of (70) in order to get the correct result (72). Indeed, 

the term A3
∆x3

dt  in (70) generates a quadratic contribution ∝ (A3)
2 in (72). The valid ‘modified 

substitution rule’ to use in the exponential (70) are thus

A2(x)∆x2 �→ A2(x) 2Dg(x)2 dt (73)

A3(x)∆x3 dt−1 �→ 3A3(x) 2Dg(x)2∆x + 3
[
A3(x) 2Dg(x)2∆x

]2
dt (74)

A4(x)∆x4 dt−1 �→ 3A4(x)
(
2Dg(x)2

)2
dt (75)




valid
only in
the exp.

One observes that while the first and third line coincide with the corresponding ones in (54) 
and (56), the second line is different: in (55) ∆x3dt−1 is substituted by an expression which 
is independent of its possible prefactor, while in the exponential (70) we need to use (74) that 
effectively replaces ∆x3dt−1 by an expression which explicitly depends on its prefactor A3 (in 
other words, the second term depends on [A3(x)]2).

In the formulation leading from (70) to (72) it is rather evident that the generalised substitu-
tion rules (54)–(57) cannot be applied inside the exponential: indeed one can see eA3∆x3/dt as 
equivalent to a moment-generating function of parameter A3, and the exponent in (72) as the 
corresponding cumulant-generating function, cut after O(dt); thus, forgetting the quadratic 
term ∝ (A3)

2 in (74), which is of order dt, amounts to forgetting the term of degree 2 in the 
expansion of a cumulant-generating function9.

We note that Gervais and Jevicki [15] have also determined in a quantum-field theory 
context that the correct procedure to change variables (in their case, to perform a canonical 
transformation) requires an expansion of the exponent up to terms of order ∆x4dt−1, akin to 
(70). However, to our understanding, their treatment of these terms is unrelated to ours and 
remains perturbative in D, in contrast to our treatment which is non-perturbative.

3.3.2.  Modified chain rule.  The chain rule (7) allows one to deduce an α-discretised Lan-
gevin equation on a variable U(t) = u(x(t)) from the corresponding Langevin equation on the 
variable x(t) after a non-linear transformation, as discussed in section 3.2. This same chain 
rule does not directly allow one to perform such non-linear change of variables at the level of 
the action (see appendix C). To understand this issue on a general footing, let us start from a 
Langevin equation of the form (60)

dtU(t) α
= F(U(t)) + G(U(t))η(t)� (76)

The corresponding Onsager–Machlup weight reads

∏
t

N
|G(Ū)|

× exp

{
−
∫ tf

0
dt
[

1
4D

(
dtU − F(Ū) + 2αD G(Ū)G′(Ū)

G(Ū)

)2

+ αdtF′(Ū)

]}

� (77)

9 For ∆x2 and ∆x4, the higher-order term of the cumulant expansion do not contribute because they are o(dt). 
However, if a term in A5∆x5dt−2 had been present in (70), its modified substitution rule in the exponential would 
present a quadratic contribution ∝ (A5)

2 as in (74) for A3∆x3dt−1.
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with each Ū = U(t) taken in α-discretisation. The naive approach consists in substituting 
U(t) by u(x(t)) and then using the chain rule to determine the Onsager–Machlup weight for 
the trajectory x(t). In the next paragraphs, in order to understand why this procedure fails, we 
come back to the microscopic propagator (63) corresponding to (77), in which we expand the 
square and we study separately the terms affine in dtU  and the term quadratic in dtU . As we 
now show, the result is that the standard chain rule allows one to transform the terms affine 
in dtU , while to correctly transform the quadratic term ∝ (dtU)2, one has to use a ‘modified 
chain rule’.

3.3.2.1. Terms affine in dtU   For the infinitesimal propagator, these terms take the form

B1 = dt B0(Ū) + dt B1(Ū) dtU� (78)

where the first and second terms are of orders O(dt) and O(dt1/2), respectively. In order to 
reexpress eB1 in terms of the original variable x(t) one can follow either of the two following 
approaches.

	 (i)	In discrete time, one takes the same path as in the previous section. Firstly, one dis-
cretises time explicitly; secondly, one expands Udt − U0 = U(xdt)− U(x0) in powers 
of ∆x = xdt − x0 around x̄0 using (65)–(66). With the usual substitution rule (9) 
∆x2 = 2Dg(x)2 dt, after reexponentiation one obtains that

eB1 α
= exp

{
dt B0

(
u(x(t)

)
+ dt B1

(
u(x(t)

)

×
[
u′(x(t)) dtx(t) + (1 − 2α)D g

(
x(t)

)2
u′′

(
x(t)

)]}

�

(79)

		 in the dt → 0 limit. In the light of section 3.1.1, the computation involves no term in 
∆x3dt−1 (nor higher order in powers of ∆xndtm), implying that the standard substitution 
rules could have also been applied inside the exponential.

	(ii)	In continuous time, one can use the chain rule (7) inside the exponential, for U(t) = u(x(t)) 
to get the result (79). It is valid here as shown by the discrete-time computation described 
in the previous point.

3.3.2.2. Term proportional to (dtU)2.  This term takes the form

B2 = −1
2

dt
2D

B2(Ū)
(
dtU

)2
with B2 =

1
G2 .� (80)

It is of order dt0 and if one naively uses the chain rule to compute dtU = dt[u(x(t))], one 
misses a number of terms; such computation would yield

eB2 wrong!
= exp

{
− dt

4D
B2

(
u(x(t)

)[
u′(x(t))dtx(t) + (1 − 2α)D g

(
x(t)

)2
u′′

(
x(t)

)]2
}

� (81)
where g(x)2 = 1/B2(u(x)). Instead, one should discretise in time, using

B2 = − 1
4D

dt−1 B2(Ū0)
(
Udt − U0)

2 as dt → 0� (82)

where U0 = u(x0), Udt = u(xdt) and Ū0 is defined in (64). We also define the function 
b2(x) = B2(u(x)) = 1/g(x)2 for lighter notations.
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Expansion of B2. Using the relations (64)–(66), one then expands (82) in powers of ∆x up 
to order dt to find

B2 =− 1
4Dg(x̄0)2

∆x2

dt
+

(−1 + 2α)u′′(x̄0)

4Dg(x̄0)2u′(x̄0)

∆x3

dt

+

[
− (−1 + α)αg′(x̄0)u′′(x̄0)

4Dg(x̄0)3u′(x̄0)
− (1 + 8(−1 + α)α)u′′(x̄0)

2

16Dg(x̄0)2u′(x̄0)2

+
(−1 − 3(−1 + α)α)u(3)(x̄0)

12Dg(x̄0)2u′(x̄0)

]
∆x4

dt
,

�

(83)

which is not obviously related to (81). We note that this expression contains a crucial term pro-
portional to ∆x3dt−1 which, as we have discussed in section 3.3.1, has to be treated with great 
care. The modified substitution rule (74) has to be used here (and not the rule (55)), in order to 
handle correctly ∆x3dt−1 inside the exponential. We also remark that the term in ∆x3dt−1 is 
non-zero for an additive noise (i.e. when g(x) is constant), indicating that non-linear changes 
of variables also have to be handled with care in this case.

Expansion of eB2 . The correct procedure to follow in order to first use the (simple) substi-
tution rules (54)–(57) for ∆xn  is to first expand the terms of (83) which are not in ∆x2dt−1, 
and to use then the substitution rules (54)–(57). Alternatively, one can use the modified 
ones (73)–(75) which are valid inside an exponential. Recalling the notation g2 = 1/b2, and 
writing

e(...)∆x2
= exp

[
− 1

2
b2(x̄0) dt

2D

(∆x
dt

)2(
u′(x̄0)

)2
]

� (84)

one obtains

eB2

e(...)∆x2 = exp

{
3
2
(−1 + 2α)u′(x̄0)u′′(x̄0)∆x

+ dt
[
− 3D(1 − 2α)2u′′(x̄0)

2

4b2(x̄0)
+

3D(1 − 2α)2u′(x̄0)
2u′′(x̄0)

2

2b2(x̄0)

+ u′(x̄0)

(
3D(−1 + α)αb′

2(x̄0)u′′(x̄0)

2b2(x̄0)2

− D(1 + 3(−1 + α)α)u(3)(x̄0)

b2(x̄0)

)]}
.

�

(85)

This result is completely different from the naive result (81), obtained from the use of the 
chain rule (7) in the exponential, that can be recast as

eB2

e(...)∆x2

wrong!
= exp

{
1
2
(−1 + 2α)u′(x̄0)u′′(x̄0)∆x − D(1 − 2α)2u′′(x̄0)

2

4b2(x̄0)
dt
}

.

�

(86)

(They coincide for linear transformations such that u′′ = 0.).
The result (85) allows one to identify the correct (but complicated) form of the chain rule to 

be used in the exponential for terms of the form (80). Instead of the chain rule (7) that would 
lead to (86), one has that
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−1
2

dt
2D

B2(U)
(
dtU

)2

in exp.�→ − 1
2

dt
2D

b2(x) (dtx)2(u′(x))2

+
3
2
(−1 + 2α)u′(x)u′′(x)dt dtx

+ dt
[
− 3D(1 − 2α)2u′′(x)2

4b2(x)
+

3D(1 − 2α)2u′(x)2u′′(x)2

2b2(x)

+ u′(x)
(

3D(−1 + α)αb′
2(x)u

′′(x)
2b2(x)2 − D(1 + 3(−1 + α)α)u(3)(x)

b2(x)

)]
.

� (87)
(We took the dt → 0 limit, with the r.h.s. being α-discretised.) In order to apprehend better 
the difference with the naive application of the chain rule (7), one can rewrite this result as

−1
2

dt
2D

B2(U)
(
dtU

)2

in exp.�→ − 1
2

dt
2D

b2(x)
[ chain rule (7)︷ ︸︸ ︷

u′(x)dtx + (1 − 2α)D g(x)2u′′(x)
]2

+ (−1 + 2α)u′(x)u′′(x) dt dtx

+ dt
[

3D(−1 + α)αu′(x)b′2(x)u
′′(x)

2b2(x)2

+
D((1 − 2α)2(−1 + 3u′(x)2)u′′(x)2 − 2(1 + 3(−1 + α)α)u′(x)u(3)(x))

2b2(x)

]
,

�
(88)

the three last lines being the terms one misses if one merely applies (7).

Special cases. One notes that this modified chain rule remains non-trivial in the three fol-
lowing simplified cases:

	 •	Stratonovich discretisation (α = 1/2):

−1
2

dt
2D

B2(U)
(
dtU

)2

in exp.�→ −1
2

dt
2D

b2(x)
[
u′(x)dtx

]2 − D dt
[

3u′(x)b′2(x)u
′′(x)

8b2(x)2 +
u′(x)u(3)(x)

4b2(x)

]
.

� (89)
	 •	Additive noise (B2(U) = B2 = b2(x) = b2 = 1/g2(x) = 1/g2):

−1
2

dt
2D

b2
(
dtU

)2

in exp.�→ − 1
2

dt
2D

b2

[
u′(x)dtx + (1 − 2α)D g2u′′(x)

]2

+ (−1 + 2α)u′(x)u′′(x) dt dtx

+
D dt
2b2

[
(1 − 2α)2(−1 + 3u′(x)2)u′′(x)2 − 2(1 + 3(−1 + α)α)u′(x)u(3)(x)

]
.

� (90)
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	 •	Additive noise and Stratonovich discretisation:

−1
2

dt
2D

b2
(
dtU

)2 in exp.�→ −1
2

dt
2D

b2
[
u′(x)dtx

]2 − D dt
u′(x)u(3)(x)

4b2
.� (91)

		 This last case is peculiarly striking, because one could have expected the standard chain 
rule of differentiable calculus to be valid in the dynamical action of an additive-noise 
Stratonovich-discretised Langevin equation (as it is valid at the Langevin equation level). 
Surprisingly, this is not the case as soon as u(3)(x) �= 0.

4.  Outlook

The trajectory probability of Langevin processes is well described by a path-integral weight, 
through either the MSRJD [24, 25] or the Onsager–Machlup [20, 21] formulations. In this 
article we studied the behaviour of the Langevin equation and its corresponding Onsager–
Machlup action under two generic transformations: a change of α-discretisation and a non-
linear change of variables. The correct rules to perform these transformations at the level of 
the Langevin equations are well-known, they have been recalled in this article, and we veri-
fied, once again, that they are reversible.

Consistency requires that the trajectory probability constructed from the Langevin equa-
tion of a variable u(t) = u(x(t)) in a discretisation scheme ᾱ be the same as the trajectory 
probability of the Langevin process of the variable x(t) in another discretisation scheme α, 
after applying to the latter the corresponding discretisation and non-linear transformations. 
Figures 1 and 2 provide sketches of this statement for the discretisation scheme transforma-
tion and the non-linear transformation, respectively. However, it was observed in the literature 
that their use in the action could yield inconsistencies, both in the stochastic field-theory con-
text [7, 31] and in the quantum-mechanical one [14–19]. The aim of the present article was 
to identify the generalisation of the Ito rule and the correct rules of calculus that ensure the 
reversibility of the construction.

By carefully analysing the discrete-time behaviour of the propagator corresponding to the 
infinitesimal evolution during a time step dt → 0, we identified the source of inconsistencies 
and we provided procedures that allow one to perform the transformations in the action in a 
correct manner.

To summarise them, we now list the possible sources of issues. At the infinitesimal level, 
we denote the trajectory increment by ∆x = xt+dt − xt which is typically of order dt1/2. The 
main source of problems is that terms of the form ∆x3dt−1, ∆x4dt−1 and ∆x6dt−2 are gener-
ated in the infinitesimal propagator upon the mentioned transformations, while they are not 
generated at the Langevin level. First, they have to be correctly identified, and second, one has 
to understand their behaviour in the dt → 0 limit. We have provided generalised substitution 
rules (54)–(57) that allow one to do so (they generalise the usual Ito prescription dB2

t = dt  for 
the Brownian motion). An important point is that these relatively simple rules have to be used 
in the prefactor of the Gaussian weight of the infinitesimal propagator (after a dt → 0 expan-
sion), and not inside the exponential of this propagator. We have provided a simple explana-
tion of this condition in section 3.3.1. If one insisted upon applying the transformations in the 
exponential, the modified substitution rules become significantly more complicated and are 
given in equations (73)–(75).

In the continuous-time path integral, an important consequence of the previous observa-
tions is that one cannot use the stochastic chain rule (7) to perform changes of variables. One 
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has, instead, to rely on a time-discrete expansion or on a modified chain rule, described in 
section 3.3.2. We emphasise that the application of the invalid chain rule (7) in the action 
yields wrong results even for an additive-noise Stratonovich-discretised Langevin equation. 
The reason for this is that under a non-linear transformation of variables the equation becomes 
one with multiplicative noise.

For future perspectives, we can list a number of interesting questions to address:

	 (i)	It would be helpful to identify similar rules that would solve inconsistencies observed 
when manipulating the MSRJD action [7], because many field theories (including 
quantum ones) are better written in this formalism or in similar ones that also involve a 
response field.

	(ii)	The generalisation to more than one degree of freedom could be tricky [6] but should be 
very interesting and useful.

	(iii)	Langevin equations  with inertia (a second time derivative) and/or coloured noise 
approach in the overdamped and/or white noise limit the equation that we studied here in 
the Stratonovich scheme (see, e.g. [2, 32]). It would be interesting to understand how the 
issues discussed in the present article arise and are solved in these regularised and better 
behaved cases since, as we showed, even the action in the Stratonovich discretisation 
scheme has to be treated attentively.

	(iv)	The results we have presented also encourage one to revisit the validity of some non-linear 
transformation used in quantum field theory [14–19], where the Lagrangians defining the 
action take forms that are similar to that of statistical mechanics.
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Appendix A.  Determination of the infinitesimal propagator: other approaches

In this appendix, in order to shed a different light on the use of the Ito prescription in the deter-
mination of the infinitesimal propagator, we review other less pedestrian approaches than the 
one presented in section 2.2.3.

A.1.  À la Lau–Lubensky

To compute δ(xdt − X1(x0, η0)) in (22), it proves simpler [6] to start from the following iden-
tity, where the argument of the first delta is the equation of motion at t = 0:

δ

(
≡F(η0,x0,xdt)︷ ︸︸ ︷

η0 −
xdt−x0

dt − f (x̄0)

g(x̄0)

)
(21)
=

1
|∂xdt F(η0, x0, xdt)|

δ
(
xdt − X1(x0, η0)

)
,

� (A.1)

where one recognises F(η0, x0, xdt) = η0 − H0(x0, xdt) from equation (35). One thus has
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|∂xdt H0(x0, xdt)| δ
(
η0 − H0(x0, xdt)

) (35)
= δ

(
xdt − X1(x0, η0)

)
,� (A.2)

so that finally

P(xdt|x0)
(22)
=

∫
dη0 |∂xdt H0(x0, xdt)| δ

(
η0 − H0(x0, xdt)

)
Pnoise(η0) .� (A.3)

By direct computation, one obtains

∂xdtH0(x0, xdt) =
1
dt

1
g(x̄0)

[
1 − αdt f ′(x̄0)−

(
xdt − x0 − f (x̄0) dt

)
α

g′(x̄0)

g(x̄0)

]

�

(A.4)

that, using the Dirac delta in (A.3) to re-express xdt − x0 as a function of η0, implies

|∂xdt H0(x0,xdt)| δ
(
η0 − H0(x0, xdt)

)

(36)
=

1
dt

1
|g(x̄0)|

[
1 − αdt f ′(x̄0)− η0g′(x̄0)αdt

]� (A.5)

(33)
=

1
dt

1
|g(x̄0)|

e−αdt f ′(x̄0)−η0g′(x̄0)αdt−D[g′(x̄0)]
2α2dt .� (A.6)

Inserting this expression in equation (A.3), one finds exactly the same propagator given in 
equation (41). This provides a justification for the use of the Ito rule (12) in equations (29), 
(34) and (40), used in the derivation of the propagator presented in section 2.2.3.

Last, we mention that Lau and Lubensky [6] actually follow a slightly different route, 
which involves a Fourier transformation, but in the end their treatment is equivalent to the one 
we presented in this section.

A.2.  À la Itami–Sasa

In order to calculate the Jacobian 1
|∂η0 X1(x0,H0)|

 arising in (24), one can proceed as follows [10]: 
we write the first time step 0 � dt of the equation of motion as

X1(x0, η0) = x0 + f [

x̄0︷ ︸︸ ︷
αX1(x0, η0) + (1 − α)x0]dt

+ g[αX1(x0, η0) + (1 − α)x0]η0dt .
� (A.7)

Differentiating with respect to the noise, one obtains

∂η0 X1 = α∂η0 X1f ′(x̄0)dt + α∂η0 X1g′(x̄0)η0dt + g(x̄0)dt� (A.8)

that implies

1
|∂η0 X1|

=
1

|g(x̄0)|dt
(1 − αf ′(x̄0)dt − αg′(x̄0)η0dt) .� (A.9)

Note that so far, no expansion nor approximation has been done: this result is exact. In order 
to exponentiate the numerator of this expression, one uses (33):

1
|∂η0 X1|

=
1

|g(x̄0)|dt
exp[−αf ′(x̄0)dt − αg′(x̄0)η0dt − Dα2g′(x̄0)

2dt].

This is the same expression as the one in equation (A.6) obtained following the Lau–Lubensky 
approach, and the one that we obtained in section 2.2.3.

L F Cugliandolo and V Lecomte﻿J. Phys. A: Math. Theor. 50 (2017) 345001



27

A.3.  A continuous-time derivation of the Jacobian

In the quantum-mechanical context a continuous-time formalism is used and the subtleties 
linked to the discretisation scheme are usually encoded in the choice of the value of the Heaviside 
theta function at zero, Θ(0) = α [29]. In this field, the Jacobian |∂η0 X1(x0, H0(x0, xdt))| is com-
puted with the help of the identity det(1 + Cη0) = expTr ln(1 + Cη0) where Cη0 is the part 
of the Jacobian that depends on the noise. The expression ln(1 + Cη0) is further expanded 
in powers of Cη0 to quadratic order (so as to keep terms that are quadratic in the noise and 
contribute to the trace involving a time integral when the noise is delta correlated) [33]. The 
explicit calculation of the Jacobian along these lines was explained in appendix D in [8] and 
constitutes another way of arriving at the expression in equation (A.6). It is less useful for our 
purposes in this article since it works in continuous time and does not allow to make immedi-
ate contact with the (generalised) substitution rules in discrete time.

Appendix B.  Justifying the generalised substitution rules

B.1. The usual ∆x2 = 2Dg(x)2 dt  substitution

Stochastic calculus tells us that, when expanding infinitesimals, for a standard Brownian 
motion Bt, one has:

dB2
t = dt .� (B.1)

For our time-discrete noise, η2
t = 2D/dt. For a more complex variable such as x, the solution 

of the Langevin equation (6), the substitution rule (9) implies

∆x2 = 2Dg(x)2dt (+O(dt3/2) as dt → 0)� (B.2)

where on the r.h.s., the argument x of g(x) can be taken at any discretisation point, at minimal 
order in dt. As discussed in section 2.2.1, there is no direct argument on the distribution of ∆x 
which allows one to use (B.2) point-wise. The meaning of this relation is to be found in an 
integral way. Following Øksendal [4], one uses the following ingredients:

	 •	Two functions A1 and A2 of the process x are equivalent if the L2 norm of the temporal 
integral of their difference is zero:

A1[dtx(t), x(t)] =A2[dtx(t), x(t)]

⇔
〈(∫ tf

0
dt

{
A1[dtx(t), x(t)]− A2[dtx(t), x(t)]

})2
〉

= 0

�

(B.3)

⇔
〈(∑

t

dt
{

A1
[∆x

dt
, xt

]
− A2

[∆x
dt

, xt
]})2

〉
dt→0−→ 0.� (B.4)

	 •	Two Brownian increments Bt+dt − Bt and Bt′+dt − Bt′ at different times t �= t′ are inde-
pendent:
〈
(Bt+dt − Bt)(Bt′+dt − Bt′)

〉
=

〈
(Bt+dt − Bt)

〉〈
(Bt′+dt − Bt′)

〉
if t �= t′.

�
(B.5)

	 •	The following averages are computed (e.g. à la Wick) using the Gaussian nature of Bt:

〈
(Bt+dt − Bt)

2〉 = dt,� (B.6)
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〈
(Bt+dt − Bt)

4〉 = 3 dt2.� (B.7)

Let us thus show that in the sense of (B.3) and (B.4), one has ∆x2 = 2Dg(x)2 dt. For this, one 
computes
〈(∑

t

{
∆x2−2Dg(xt)

2 dt
})2

〉

(6)
=

〈(∑
t

{(
dtf (xt) + g(xt)ηtdt

)2 − 2Dg(xt)
2 dt

})2
〉

=

〈(∑
t

{(
g(xt)ηtdt

)2 − 2Dg(xt)
2 dt

})2
〉
+ O(dt)

�

(B.8)

=

〈(∑
t

[
(Bt+dt − Bt

)2 − dt
]
2Dg(xt)

2
)2
〉
+ O(dt)� (B.9)

(B.5)
=

∑
t

〈([
(Bt+dt − Bt

)2 − dt
]
2Dg(xt)

2
)2
〉
+ O(dt)

+
∑
t �=t′

〈[
(Bt+dt − Bt

)2 − dt
]
2Dg(xt)

2
〉�

(B.10)×
〈[

(Bt′+dt − Bt′
)2 − dt

]
2Dg(xt′)

2
〉

(B.6)
=

∑
t

〈[
(Bt+dt − Bt

)2 − dt
]2
〉

︸ ︷︷ ︸
(B.6) and (B.7)

= 3dt2−2dt2+dt2

〈(
2Dg(xt)

2)2
〉
+ O(dt)� (B.11)

= dt
∑

t

2dt
〈(

2Dg(xt)
2)2

〉
+ O(dt)� (B.12)

= O(dt)� (B.13)

which goes to zero as dt → 0, hence finishing the proof of (B.2).
Note that when going from (B.10) to (B.11), one cancels the sum over different time indi-

ces t �= t′ using that xt is independent of Bt+dt − Bt:

〈[
(Bt+dt − Bt

)2 − dt
]
2Dg(xt)

2
〉

=

〈
(Bt+dt − Bt

)2 − dt
〉〈

2Dg(xt)
2
〉

(B.6)
= 0 .

� (B.14)

In particular, the factor 2 in ∆x2 = 2Dg(x)2 dt is essential, because it allows one to factorise 
by 2Dg(x)2 between (B.8) and (B.9), and to obtain in fine the cancellation in (B.14) which 
makes that (B.13) is of order dt.
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B.2. The generalised substitution rule ∆x4dt−1 = 3
(
2Dg(x)2

)
2 dt

One follows the same path, using 
〈
(Bt+dt − Bt)

8
〉
= 105 dt4 , one computes

〈(∑
t

{∆x4

dt
−3

(
2Dg(xt)

2)2
dt
})2

〉

(6)
=

〈(∑
t

{(
dtf (xt) + g(xt)ηtdt

)4

dt
− 3

(
2Dg(xt)

2)2
dt
})2〉

=

〈(∑
t

{(
g(xt)ηtdt

)4

dt
− 3

(
2Dg(xt)

2)2
dt
})2〉

+ O(dt)

�

(B.15)

=

〈(∑
t

[
(Bt+dt − Bt

)4 − 3dt2](2Dg(xt)
2)2

dt−1
)2
〉
+ O(dt)� (B.16)

= . . . as in (B.10), using (B.5) and the average (B.7)

=
∑

t

〈[
(Bt+dt − Bt

)4 − 3dt2]2
〉

︸ ︷︷ ︸
=105 dt4−2×3×3 dt4+9 dt4

〈(
2Dg(xt)

2)4
dt−2

〉
+ O(dt)� (B.17)

= dt
∑

t

96 dt
〈(

2Dg(xt)
2)4

〉
+ O(dt)

= O(dt)
� (B.18)

which goes to zero as dt → 0, hence finishing the proof of (56). The derivations of (55) and 
(57) follow in the same way.

Note that in passing from (B.16) to (B.17) we have used (i) the same independence as in 
(B.14) and (ii) the fact that in the double sum term

∑
t �=t′

〈[
(Bt+dt − Bt

)4 − 3dt2](2Dg(xt)
2)2

dt−1
〉

×
〈[

(Bt′+dt − Bt′
)4 − 3dt2](2Dg(xt′)

2)2
dt−1

〉
,

�

(B.19)

which is similar to (B.10), one again has the important cancellation

∑
t

〈[
(Bt+dt − Bt

)4 − 3dt2](2Dg(xt)
2)2

dt−1
〉

=

〈∑
t

[
(Bt+dt − Bt

)4 − 3dt2]
〉〈(

2Dg(xt)
2)2

dt−1
〉�

(B.20)

(B.7)
= 0.� (B.21)

In particular, the factor 3 in the substitution rule ∆x4dt−1 = 3
(
2Dg(x)2

)
2 dt one wants to 

show is essential, because it allows one to factorise by 2Dg(x)2 between (B.15) and (B.16), 
and to obtain in fine the cancellation in (B.21) which makes that (B.18) is of order dt.  
The factor 3 in ∆x4dt−1 = 3

(
2Dg(x)2

)
2 dt is thus exactly the same as the one, obtained e.g. 

àla Wick in (B.7).
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Appendix C.  An inconsistency arising when applying the standard chain rule 
inside the dynamical action

We detail in this appendix how an invalid use of the standard stochastic chain rule (7) can 
lead to an inconsistency when changing variables in the dynamical action corresponding to 
the Langevin equation (6). This appendix is the translation to the Onsager–Machlup action 
of the appendix E of [7] (version v1 of the arXiv preprint) where the same inconsistency was 
observed in the Martin–Siggia–Rose–Janssen–De Dominicis formulation of the dynamical 
action.

We compare the direct path (downwards, on the left) of the commutative diagram repre-
sented on figure 2, and the indirect path where one first (top arrow) changes variables from 
x(t) to U(t) = u(x(t)) in the Langevin equation, then (right arrow downwards) constructs the 
action, and finally (down arrow leftwards) tries to come back to the Onsager–Machlup action 
by applying the standard stochastic chain rule (7). On the way, one should not forget to handle 
correctly the change of variables in the normalisation prefactor of the action.

The direct path leads to the expression (42) of the dynamical action, together with its asso-
ciated normalisation prefactor (43). The indirect path starts by obtaining the Langevin equa-
tion (60) on U(t) = u(x(t)) and continues by writing the corresponding the Onsager–Machlup 
weight (77). The last step consists in attempting to come back to the Onsager–Machlup weight 
for the process x(t) by a change of variables in the action and in the Jacobian.

C.1. The normalisation prefactor

One can focus on the first time step 0 � dt without loss of generality. The change of variables 
in the normalisation prefactor involves two stages: (i) taking into account the factor u′(xdt) 
of (67) that comes from the change of measure and (ii) actually passing from the variable 
Ū0 (given by equation (64)) to the variable x̄0 in the prefactor N/|G(Ū0)| of the Onsager–
Machlup weight (77). Denoting by JU(x̄0) the elementary normalisation prefactor coming 
from this procedure, one has

JU(x̄0) =
N

|G(Ū0)|
u′(xdt)� (C.1)

=
N

|g(x̄0)|

(
u′(xdt)

|g(x̄0)|
|G(Ū0)|

)
,� (C.2)

where on the second line we have put in prefactor the expected contribution N/|g(x̄0)| of the 
first time step in the total path-integral normalisation prefactor (43) on x(t). The other factor 
u′(xdt) |g(x̄0)|/|G(Ū0)| gives a contribution that has to be incorporated into the exponential 
part of the infinitesimal propagator (i.e. into the action of the path integral in the dt → 0 limit). 
To do so, one expresses Ū0 and xdt in terms of x̄0 and ∆x by means of equations (64)–(66) 
and one expands the result up to order dt, keeping in mind that ∆x = O(dt1/2). One obtains 
from (C.2) that

JU(x̄0) =
N

|g(x̄0)|

[
1 − (−1 + α)u′′(x̄0)

u′(x̄0)
∆x

+ (−1 + α)

(
αg′(x̄0)u′′(x̄0)

2g(x̄0)u′(x̄0)
+

αu′′(x̄0)
2

2u′(x̄0)2 +
(−1 + α)u(3)(x̄0)

2u′(x̄0)

)
∆x2

]
.

� (C.3)
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Then using the substitution rule (9) for ∆x2 and reexponentiating the result through (33) one 
gets

JU(x̄0) =
N

|g(x̄0)|
exp

{
− (−1 + α)u′′(x̄0)

u′(x̄0)
∆x

+

[
D(−1 + α)g(x̄0)

2u′′(x̄0)
2

u′(x̄0)2

+
D(−1 + α)g(x̄0)[αg′(x̄0)u′′(x̄0) + (−1 + α)g(x̄0)u(3)(x̄0)]

u′(x̄0)

]
dt
}

.

�
(C.4)

Taking finally the continuous-time limit, we see that the change of variables from U(t) to x(t) 
brings a contribution ∆SU[x(t)] to the action equal to

∆SU[x(t)]
α
=

∫ tf

0
dt

{
(−1 + α)u′′(x)

u′(x)
dtx −

D(−1 + α)g(x)2u′′(x)2

u′(x)2

−
D(−1 + α)g(x)

[
αg′(x)u′′(x) + (−1 + α)g(x)u(3)(x)

]
u′(x)

}
.

�

(C.5)

We note that it vanishes for a linear transformation such that u′′ = 0, or for α = 1 
and any function u. This last case is understood from (C.2), where for α = 1 one has 
x̄0 = xdt and Ū0 = Udt = u(xdt) which implies, using (60) for the expression of G, that 
G(Ū0) = u′(xdt)g

(
u(xdt)

)
 from which the factor in parenthesis in (C.2) is equal to 1.

C.2. The change of variables in the action

We can now combine the contribution ∆SU[x(t)] obtained in the previous section  and the 
change of variables from U(t) = u(x(t)) to x(t) in the action S[U(t)] of the process U(t). The 
expression of S[U(t)] is read from (77). The correct procedure to follow is discussed in sec-
tion 3.2 following a discrete-time approach. One can also apply the continuous-time modified 
chain-rule discussed in section 3.3.2. Both approaches yield back the correct action (42) for 
the process x(t).

If one improperly applies the chain rule (7) to determine dtU = dt
[
u(x(t))

]
 in (77), one 

finds a result for the action SU
[
x(t)], in which there are supplementary terms compared do the 

correct result S[x(t)] given by (42); that is

SU
[
x(t)] α

= ∆SU[x(t)] + S
[
U(t)

]∣∣∣
U(t)=u(x(t))

α
= S[x(t)] +

∫ tf

0
dt

{
(−1 + 2α)u′′(x)

u′(x)
dtx −

3D(−1 + α)αg(x)g′(x)u′′(x)
u′(x)

+
D(1 + (−1 + α)α)g(x)2u′′(x)2

u′(x)2

�

(C.6)

+
D(−1 − 3(−1 + α)α)g(x)2u(3)(x)

u′(x)

}
.� (C.7)

The terms in the time integral should be absent if the procedure had been correct (At the 
very least, the result should not depend on the function u.). These terms are equivalent 
to the terms in equation (E.18) of the appendix E in [7]. Their presence is due to the fact 
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that, when using the chain rule (7) as we did, one discards terms proportional to ∆x3dt−1, 
∆x4dt−1 and ∆x6dt−2  that are present in equation (50) when following the correct proce-
dure. The supplementary terms vanish when a linear change of variables is applied, i.e. 
when u′′ = 0 .

Special cases–One notes that these supplementary terms still remain present in the three 
following simplified cases:

	 (i)	Stratonovich discretisation (α = 1/2):

SU
[
x(t)] S

= S[x(t)] +
∫ tf

0
dt

{
3Dg(x)g′(x)u′′(x)

4u′(x)
+

3Dg(x)2u′′(x)2

4u′(x)2

− Dg(x)2u(3)(x)
4u′(x)

}�

(C.8)

	(ii)	Additive noise (g(x) = g is a constant):

SU
[
x(t)] α

= S[x(t)] +
∫ tf

0
dt

{
(−1 + 2α)u′′(x)

u′(x)
dtx +

Dg2(1 + (−1 + α)α)u′′(x)2

u′(x)2

+
Dg2(−1 − 3(−1 + α)α)u(3)(x)

u′(x)

}

�

(C.9)

	(iii)	Additive noise and Stratonovich discretisation:

SU
[
x(t)] S

= S[x(t)] +
∫ tf

0
dt Dg2

{
3u′′(x)2

4u′(x)2 − u(3)(x)
4u′(x)

}
� (C.10)

		 This last case is surprising because, as often described, the additive-noise Stratonovich-
discretised Langevin equation is the better behaved in terms of the rules of differential 
calculus. But in spite of this fact, as we have shown, the standard chain rule of differential 
calculus cannot be used inside the corresponding Onsager–Machlup action (although this 
rule is valid at the Langevin equation level).

Appendix D.  An inconsistency arising when applying the Langevin rule  
for changing discretisation inside the dynamical action

In this appendix, we study how the α-discretised Langevin equation (6) can be described by a 
path-integral probability written in a different ᾱ-discretisation. The direct procedure to follow 
is to change the discretization in the Langevin equation first [this yields (16) with a modified 
force fα→ᾱ(x) given by (17)], and to write the corresponding trajectory weight. One reads its 
action from (42) as

Sαᾱ[x(t)]
ᾱ
=

∫ tf

0
dt

{
1
2

1
2D

[
dtx − fα→ᾱ(x) + 2ᾱD g(x)g′(x)

g(x)

]2

+ ᾱf ′α→ᾱ(x)
}

,

�

(D.1)

where the arguments of the functions f and g are taken in ᾱ-discretisation. The associated 
normalisation prefactor reads, from (43)

J [x(t)] ᾱ
=

∏
t

{√
dt−1

4πD
1

|g(x̄t)|

}
.� (D.2)
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The correct way of performing the change in discretisation in the original α-discretized 
action (42) (together with the prefactor (43)) was described in section 3.1.2, going through 
the infinitesimal propagator in discrete time and using the generalised substitution rules 
(54)–(57). The computation is done in the special case ᾱ = 1/2 but also works for any value 
of ᾱ.

The naive procedure discussed in section 3.1.2.4 consists in applying the two following 
steps.

	 •	For the action: start from the (α-discretized) action (42) and assume that one can replace 
the force f by the effective force fα→ᾱ appearing in the Langevin equation  (16). This 
would yield an exponential contribution to the action of the form

∫ tf

0
dt

{
1
2

1
2D

[
dtx − fα→ᾱ(x) + 2αD g(x)g′(x)

g(x)

]2

+ ᾱf ′α→ᾱ(x)
}

.� (D.3)

	 •	For the normalisation prefactor: change the discretisation from α to ᾱ by going to discrete 
time (and considering the first time step) and writing, with explicit discretisation points, 
that

1∣∣g(x̄(α)0 )
∣∣ =

1∣∣g(x̄(ᾱ)0 )
∣∣

∣∣g(x̄(ᾱ)0 )
∣∣

∣∣g(x̄(α)0 )
∣∣ .� (D.4)

		 Then, using x̄(α)0 = x̄(ᾱ)0 + (α− ᾱ)∆x to expand the second fraction in powers of 

∆x = xdt − x0 up to order ∆x2, using the substitution rule and reexponentiating the result 
gives

1∣∣g(x̄(α)0 )
∣∣ =

1∣∣g(x̄(ᾱ)0 )
∣∣e

(−α+ᾱ)g′ (̄x(ᾱ)
0 )

g(̄x(ᾱ)
0 )

∆x+D(α−ᾱ)2
[

g′(x̄(ᾱ)
0 )2−g(x̄(ᾱ)

0 )g′′(x̄(ᾱ)
0 )

]
dt

.

� (D.5)

		 Taking the continuous-time limit, this gives the following contribution to the action (with 
x being ᾱ-discretised):

∫ tf

0
dt

{
(α− ᾱ)

g′(x)
g(x)

dtx − D(α− ᾱ)2[g′(x)2 − g(x)g′′(x)
]}

.� (D.6)

		 Finally, adding (D.3) and (D.6) yields a candidate ̃Sαᾱ[x(t)] for the ᾱ-discretised action of 
the α-discretised Langevin equation. If this procedure had been correct, one would have 
had recovered the same action Sαᾱ[x(t)] as in (D.1), but, by direct inspection, one finds 
that

S̃αᾱ[x(t)] =Sαᾱ[x(t)]

+

∫ tf

0
dt

{
(α− ᾱ)

[
(−f (x) + 2dtx)g′(x) + g(x)( f ′(x) + 2Dᾱg′(x)2)

]
g(x)

+ 3Dg(x)(α− ᾱ)2g′′(x)
}

.

�

(D.7)
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