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Abstract
We study singularities in the large deviation function of the time-averaged 
current of diffusive systems connected to two reservoirs. A set of conditions 
for the occurrence of phase transitions, both first and second order, are obtained 
by deriving Landau theories. First-order transitions occur in the absence of 
a particle-hole symmetry, while second-order occur in its presence and are 
associated with a symmetry breaking. The analysis is done in two distinct 
statistical ensembles, shedding light on previous results. In addition, we also 
provide an exact solution of a model exhibiting a second-order symmetry-
breaking transition.

Keywords: large deviations in nonequilibrium systems, driven diffusive 
systems, macroscopic fluctuation theory, fluctuating hydrodynamics, Landau 
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1.  Introduction

In recent years there has been an ongoing effort to understand full distribution functions of 
time-averaged currents in a host of scenarios, including both quantum [1–7] and classical 
contexts [8–33]. Since the time-averaged current is a history-dependent observable, its dis-
tribution depends on dynamical aspects and not only on the density of states. This makes the 
problem nontrivial even for equilibrium systems which fall into the Boltzmann–Gibbs frame-
work. Nevertheless, a lot of information has been obtained about long-time properties of the 
distribution, which are encoded in the current large deviation function (LDF) [34]. For vari-
ous low-dimensional current-bearing systems, the LDFs have been derived using both micro-
scopic models [14, 19, 29, 35–38] and a hydrodynamic approach [39, 40]. In the latter case, 

Y Baek et al

Dynamical phase transitions in the current distribution of driven diffusive channels

Printed in the UK

105001

JPHAC5

© 2018 IOP Publishing Ltd

51

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/aaa8f9

Paper

10

1

33

Journal of Physics A: Mathematical and Theoretical

IOP

2018

1751-8121/18/105001+33$33.00  © 2018 IOP Publishing Ltd  Printed in the UK

J. Phys. A: Math. Theor. 51 (2018) 105001 (33pp) https://doi.org/10.1088/1751-8121/aaa8f9

https://orcid.org/0000-0001-6285-0295
mailto:y.baek@damtp.cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aaa8f9&domain=pdf&date_stamp=2018-02-08
publisher-id
doi
https://doi.org/10.1088/1751-8121/aaa8f9


2

the system is described by a small number of transport coefficients, and the LDF is obtained 
using the macroscopic fluctuation theory (MFT) [4, 41, 42]. This approach has shed light on 
many interesting properties of driven diffusive systems [30, 43–51].

One of the most intriguing discoveries of these studies is that the LDF can be singular 
even when the underlying hydrodynamic equations have smooth coefficients. In the context 
of current LDFs, these singularities are referred to as dynamical phase transitions (DPTs) 
[52]4. When a DPT occurs, there is a singular change in the way the system sustains a given 
value of the current. This leads to an enhanced probability of observing values of the current 
beyond the transition point. Various kinds of DPTs have been reported to date [10, 11, 32, 45, 
52–61]. In particular, early studies identify DPTs in driven diffusive systems with periodic 
boundaries [10, 11, 13, 45, 59]. In these systems, small values of the current are sustained 
by time-independent configurations. In contrast, when the transition point is crossed, they 
are realized by configurations which are periodic in time. This second-order DPT, which 
involves a breaking of time-translation symmetry, is said to be originating from a violation 
of the additivity principle [44]. Numerical verifications of the phenomena can be found in 
[20, 28, 62].

Until very recently, much less has been known about DPTs in systems coupled to two res-
ervoirs. A criterion for the occurrence of DPTs, originating from the breaking of the additivity 
principle, was given in [30]. More recently [63], we found that such systems can have DPTs 
which are not associated with the breaking of the time-translation symmetry. Based on Landau 
theories, we showed that when the transition occurs the presence of particle–hole symme-
try leads to second-order DPTs, while in the absence of a particle–hole symmetry the trans
ition is first-order. We also identified microscopic models (e.g. Katz–Lebowitz–Spohn model 
[64]) and suggested experimental systems (e.g. a graphene channel [65]) which realize these 
DPTs. In this paper we discuss the results of [63] in detail and extended them. Specifically, 
we present an in-depth analysis of the correspondence between the different path ensembles 
used in the calculations and discuss the precise nature of the phase coexistence at first-order 
DPTs. Moreover, we present a simple model which can be exactly solved for arbitrary values 
of the control parameters. This result goes well beyond the perturbative treatment presented 
previously.

This paper is organized as follows. In section 2, we introduce a fluctuating hydrodynamics 
description of driven diffusive systems and define a pair of conjugate path ensembles, namely 
the J-ensemble and the λ-ensemble. In section 3, we describe DPTs in the λ-ensemble. In 
section 4, we describe DPTs in the J-ensemble and compare them to those of the λ-ensemble. 
In section 5, we study the symmetry-breaking DPTs in an exactly solvable model, which pro-
vides a non-perturbative verification of our general results. In section 6, we conclude with a 
summary of our findings and possible extensions.

2.  Driven diffusive systems and path ensembles

2.1.  Driven diffusive systems

We consider a one-dimensional (1D) channel of length L � 1 coupling a pair of particle 
reservoirs (see figure 1). The diffusive channel holds a large number of locally conserved and 
mutually interacting particles. Using the standard formalism of fluctuating hydrodynamics 
[39, 40], after rescaling the space coordinate x by L (so that 0 � x � 1) and the time coordinate 
t by L2, the transport is described by the continuity equation

4 For singularities appearing in different contexts, see [52].
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∂tρ(x, t) + ∂xj(x, t) = 0,� (1)

where the density profile ρ(x, t) is subject to boundary conditions

ρ(0, t) = ρ̄a, ρ(1, t) = ρ̄b,� (2)

and the current density j(x, t) is given by

j(x, t) = −D(ρ(x, t))∂xρ+ σ(ρ(x, t))E +
√
σ(ρ(x, t))η(x, t).� (3)

The terms on the rhs of equation (3) represent contributions from Fick’s law, the response to 
a bulk field E, and the noise, respectively. The diffusivity D(ρ) and the mobility σ(ρ), which 
are determined by the local particle density ρ, satisfy the Einstein relation

2D(ρ)

σ(ρ)
= f ′′(ρ),� (4)

where f (ρ) is the equilibrium free energy density. We assume that the transport coefficients 
D(ρ) and σ(ρ) are smooth, so that there are no phase transitions stemming trivially from the 
singularities of f (ρ). Finally, denoting the average over all histories by 〈·〉, the Gaussian noise 
η(x, t) satisfies 〈η(x, t)〉 = 0 and

〈η(x, t)η(x′, t′)〉 = 1
L
δ(x − x′)δ(t − t′).� (5)

2.2.  Large deviations and path ensembles

We aim to calculate the statistics of the time-averaged current

J ≡ 1
T

∫ T

0
dt
∫ 1

0
dx j(x, t),� (6)

where T denotes the duration of observation. It is well known, and shown below, that for dif-
fusive systems the distribution of J satisfies the large deviation principle

P(J) ∼ exp [−TLΦ(J)] for T � 1 and L � 1,� (7)
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Figure 1.  A schematic diagram of a driven diffusive system with open boundaries.

Y Baek et alJ. Phys. A: Math. Theor. 51 (2018) 105001



4

where Φ(J) = 0 only at J = 〈J〉, and Φ(J) > 0 otherwise. We discuss how the large-T and the 
large-L limits are taken in more detail later. The function Φ(J), which quantifies the rarity of 
nonzero deviations from the average current J − 〈J〉 for large T and L, is called the LDF of J.

The statistics of J are also encoded in the scaled cumulant generating function (CGF), 
which is defined by

Ψ(λ) � 1
TL

ln
〈
eTLλJ〉 for T � 1 and L � 1.� (8)

Provided that the large deviation principle (7) is valid, we have

〈
eTLλJ〉 =

∫
dJ eTLλJP(J) ∼

∫
dJ eTL[λJ−Φ(J)].� (9)

For large T and L, saddle-point asymptotics yields

Ψ(λ) = sup
J

[λJ − Φ(J)] ,� (10)

which implies that Ψ(λ), being the Legendre transform of Φ(J), is a convex function. This 
transform amounts to changing the path ensemble from the J-ensemble to the one whose prob-
abilities are biased by eTLλJ , which we call the λ-ensemble. If Ψ′(λ) is well defined, it relates 
λ and J by

Ψ′(λ)
(8), (9)
===

〈
JeTLλJ

〉
〈eTLλJ〉

≡ 〈J〉λ,� (11)

where 〈J〉λ denotes the mean current for the given value of λ. Noting that 
〈
eTLλJ

〉
 is an analog 

of the partition function of a canonical ensemble, we can regard Ψ(λ) as an analog of a free 
energy density. Thus singularities of Ψ(λ) represent DPTs in the λ-ensemble.

3.  Dynamical phase transitions in the λ-ensemble

3.1.  Hamiltonian formalism

Using the standard Martin–Siggia–Rose formalism [66–68], the calculation of the scaled CGF 
Ψ(λ) can be reduced to solving a system of Hamiltonian field equations. For completeness, 
we briefly review how these equations are derived.

By equation (8), Ψ(λ) is calculated from the ensemble average 
〈
eTLλJ

〉
. The latter can be 

expressed in a path-integral form

〈
eTLλJ〉 =

∫
D[ρ, j, η]

{
exp

[
−L

∫ T

0
dt

∫ 1

0
dx

(
η2

2
− λj

)]

× δ
[
∂tρ+ ∂xj

]
δ
[

j + D(ρ)∂xρ− σ(ρ)E −
√
σ(ρ)η

]}
,

� (12)
where the two delta functionals account for equations (1) and (3), respectively. The first delta 
functional can be replaced with the Fourier transform

δ
[
∂tρ+ ∂xj

]
=

∫
Dρ̂ exp

[
−L

∫ T

0
dt

∫ 1

0
dx ρ̂ (∂tρ+ ∂xj)

]
,� (13)
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where the field ρ̂ = ρ̂(x, t) is integrated along the whole imaginary axis. Since ρ is fixed at 
the boundaries, ρ̂  satisfies the boundary conditions (see [69] for a more detailed discussion)

ρ̂(0, t) = 0, ρ̂(1, t) = 0.� (14)

After using equations (13) in (12), one can evaluate the integral over j and η to obtain

〈
eTLλJ〉 =

∫
D[ρ, ρ̂] exp

{
− L

∫ T

0
dt

∫ 1

0
dx

[
ρ̂ ∂tρ+ D(ρ)(∂xρ)(λ+ ∂xρ̂)

− σ(ρ)

2
(λ+ ∂xρ̂)(λ+ ∂xρ̂+ 2E)

]}
.

� (15)
For convenience, we introduce a change of variables

ρ̂(x, t) → ρ̂λ(x, t)− λx,� (16)

which replaces the boundary conditions in equation (14) with

ρ̂λ(0, t) = 0, ρ̂λ(1, t) = λ.� (17)

Then equation (15) changes to

〈
eTLλJ〉 =

∫
D[ρ, ρ̂λ] exp {−LST [ρ, ρ̂λ]} ,� (18)

where the action functional ST [ρ, ρ̂λ] is defined as

ST [ρ, ρ̂λ] ≡ −λ

∫ 1

0
dx x [ρ(x, T)− ρ(x, 0)] +

∫ T

0
dt

∫ 1

0
dx [ρ̂λ∂tρ− H(ρ, ρ̂λ)]

� (19)
with

H(ρ, ρ̂λ) ≡ −D(ρ)(∂xρ)(∂xρ̂λ) +
σ(ρ)

2
(∂xρ̂λ)(∂xρ̂λ + 2E).� (20)

When L is large, the path integral in equation (18) can be evaluated by saddle-point asymptot-
ics. Thus the calculation of Ψ(λ) is simplified to a minimization problem

Ψ(λ) = − lim
T→∞

1
T

inf
ρ, ρ̂λ

ST [ρ, ρ̂λ] = − lim
T→∞

1
T

inf
ρ, ρ̂λ

∫ T

0
dt

∫ 1

0
dx [ρ̂λ∂tρ− H(ρ, ρ̂λ)] ,

� (21)
where the minimum is found among the histories of ρ and ρ̂λ in the complex plane satisfy-
ing the boundary conditions given by equations (2) and (17). The second identity of equa-
tion (21) holds because the first term of ST [ρ, ρ̂λ], shown in equation (19), becomes negligible 
for T → ∞. One easily observes that equation (21) has the form of a least action principle, 
with H(ρ, ρ̂λ) corresponding to a Hamiltonian density which is a function of a ‘position’ field 
ρ and a ‘momentum’ field ρ̂λ. The optimal histories, which minimize the action and determine 
Ψ(λ) by equation (21), therefore satisfy the equations

∂tρ =
δ

δρ̂λ

∫ 1

0
dx H(ρ, ρ̂λ) = ∂x [D(ρ)∂xρ− σ(ρ)(∂xρ̂λ + E)] ,

∂tρ̂λ = − δ

δρ

∫ 1

0
dx H(ρ, ρ̂λ) = −D(ρ)∂2

x ρ̂λ − 1
2
σ′(ρ)(∂xρ̂λ)(∂xρ̂λ + 2E),

� (22)

Y Baek et alJ. Phys. A: Math. Theor. 51 (2018) 105001
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which have real-valued solutions. Note that, by comparing the first equation with equations (1) 
and (3), the real-valued 

√
σ(ρ)∂xρ̂λ of such solutions can be interpreted as an optimal realiza-

tion of the noise (up to a sign).

3.2.  Particle–hole symmetry

In general, finding optimal histories from the nonlinear equation (22) is a difficult task. To 
make progress we consider systems with a particle–hole symmetry. A system is defined to be 
particle–hole symmetric when its dynamics is invariant under the transformation

x → 1 − x, ρ− ρ̄ → ρ̄− ρ, ρ̂ → λ− ρ̂, E → −E.� (23)

Namely, if we define ρ = ρ̄ as a baseline distinguishing ‘particles’ and ‘holes’, the dynamics 
is described by the same set of equations after an exchange of particles flowing to the right 
(left) and holes flowing to the left (right).

By looking at the fluctuating hydrodynamics given by equations (1)–(3), it is clear that this 
symmetry holds only if the transport coefficients are even about ρ̄ , that is,

D(ρ) = D(2ρ̄− ρ), σ(ρ) = σ(2ρ̄− ρ)� (24)

for any ρ. When D(ρ) and σ(ρ) are smooth functions of ρ, this evenness condition implies 
that all odd-order derivatives of the transport coefficients vanish at ρ = ρ̄. In other words, 
introducing the notations

X̄′ ≡ X′(ρ̄), X̄′′ ≡ X′′(ρ̄), X̄(n) ≡ X(n)(ρ̄).� (25)

Equation (24) implies

D̄(2n+1) = σ̄(2n+1) = 0� (26)

for any nonnegative integer n.
In most of the analysis that follows, we focus on the case when the boundary conditions 

satisfy

ρ̄a = ρ̄b = ρ̄,� (27)

so that, if equation (26) holds, equation (22) has a time-independent linear solution

ρ(x, t) = ρ̄, ρ̂λ(x, t) = λx.� (28)

If λ = 0, the time-independent history (28) is clearly optimal since it corresponds to the mean 
behavior, which is the most probable. By continuity, if equations (26) and (27) are satisfied, 
equation (28) gives the optimal history (or rather the optimal profile due to its time independ
ence) for λ sufficiently close to zero. The simplicity of this solution allows us to make much 
progress in the analysis of DPTs.

3.3.  Symmetry-breaking transitions at equilibrium

In what follows we analyze DPTs in equilibrium systems with

ρ̄a = ρ̄b = ρ̄, E = 0.� (29)

We first show that, when λ reaches a critical value λc, the linear solution (28) becomes unsta-
ble. Moreover, we prove that for λ2 > λ2

c  there are two new time-independent solutions of 
equation  (22) which minimize the action. Using these results, we then develop a Landau 
theory which describes the DPT, namely a second-order singularity of Ψ(λ) and the associ-
ated critical behavior.

Y Baek et alJ. Phys. A: Math. Theor. 51 (2018) 105001
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3.3.1.  Derivation of the transition point.  To show that the linear solution (28) becomes unsta-
ble at some value of λ, we look at the Gaussian space-time fluctuations of the action functional 
around the solution. Using equation (19), the fluctuations are given by

∆ST [ϕ, ϕ̂;λ] ≡ ST [ρ̄+ ϕ,λx + iϕ̂]− ST [ρ̄,λx]

�
∫ T

0
dt

∫ 1

0
dx

[
iϕ̂ ∂tϕ+ iD̄(∂xϕ)(∂xϕ̂) +

σ̄

2
(∂xϕ̂)

2 − σ̄′′λ2

4
ϕ2

]
,

� (30)
where the real-valued fields ϕ = ϕ(x, t) and ϕ̂ = ϕ̂(x, t) satisfy the boundary conditions

ϕ(0, t) = ϕ(1, t) = ϕ̂(0, t) = ϕ̂(1, t) = 0.� (31)

Note that in equation (30) the momentum field fluctuations are written as iϕ̂ since ρ̂λ is inte-
grated along the imaginary direction in equation (13). Using the Fourier transforms

ϕ(x, t) = 2
∞∑

n=1

∫ ∞

−∞

dω
2π

ϕn,ω eiωt sin(nπx), ϕ̂(x, t) = 2
∞∑

n=1

∫ ∞

−∞

dω
2π

ϕ̂n,ω eiωt sin(nπx).

� (32)
Equation (30) becomes

∆ST [ϕ, ϕ̂;λ] = 2
∞∑

n=1

∫ ∞

−∞

dω
2π

[
ϕ̂n,ω ϕn,ω

]
Bn,ω,λ

[
ϕ̂n,−ω

ϕn,−ω

]
,� (33)

where Bn,ω,λ is a two-by-two matrix given by

Bn,ω,λ ≡

[
n2π2σ̄

2
in2π2D̄+ω

2
in2π2D̄−ω

2 − σ̄′′λ2

4

]
.� (34)

The linear profiles are unstable when ∆ST < 0 for some ϕn,±ω and ϕ̂n,±ω, which is in turn 

possible when Bn,ω,λ is not positive semidefinite. The eigenvalues of Bn,ω,λ, denoted by b±
n,ω,λ, 

are obtained as

b±n,ω,λ =
2n2π2σ̄ − σ̄′′λ2

8
±

[(
2n2π2σ̄ − σ̄′′λ2

8

)2

+
n2π2σ̄σ̄′′

8
(
λ2 − λ2

n,ω

)]1/2

,

� (35)
which are both positive for λ2 smaller than

λ2
n,ω ≡

2
(
n4π4D̄2 + ω2

)
n2π2σ̄σ̄′′ .� (36)

When σ̄′′ > 0 and λ2 > λ2
n,ω, a negative eigenvalue b−

n,ω,λ < 0 appears, which implies that 
Bn,ω,λ is no longer positive semidefinite. These results imply that λ2

c  is given by the smallest 
λ2

n,ω

λ2
c = λ2

1,0 =
2π2D̄2

σ̄σ̄′′ .� (37)

Therefore a DPT occurs due to a time-independent (ω = 0) mode with the longest wavelength 
(n  =  1, corresponding to a wavelength of twice the system size), which breaks the particle–
hole symmetry. Note that this scenario is different from that found for DPTs in periodic sys-
tems, where the unstable mode has a nonzero frequency ω and breaks the time-translation 
symmetry [10, 11, 13, 45, 59]. In the latter case, the additivity principle, which assumes the 

Y Baek et alJ. Phys. A: Math. Theor. 51 (2018) 105001
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optimal profile to be time-independent, underestimates Ψ(λ) beyond the transition. In con-
trast, in the former case the additivity principle correctly predicts Ψ(λ) both below and above 
the transition.

3.3.2.  Derivation of the Landau theory.  With the above result, we now develop a Landau 
theory to describe the transition induced by the unstable mode. Specifically, we show that for 
λ close to λc the scaled CGF can be expressed as

Ψ(λ) =

∫ 1

0
dx H(ρ̄,λx)− inf

m
Lλ(m) =

σ̄λ2

2
− inf

m
Lλ(m),� (38)

where Lλ is a Landau theory of the form

Lλ(m) = −a2ελm2 + a4m4 + O
(
m6) with a2 > 0 and a4 > 0,� (39)

whose minimization determines the value of the order parameter m = mλ as a function of the 
rescaled distance from the transition point ελ ≡ (λ− λc)/λc.

From our previous discussion, we know that a symmetry-breaking DPT occurs due to a 
zero-frequency mode. Thus equation (21) can be replaced with a simpler, time-independent 
version

Ψ(λ) = sup
ρ, ρ̂λ

∫ 1

0
dx H(ρ, ρ̂λ),� (40)

where the extremum is found among time-independent solutions of Hamiltonian field equa-
tion (22) with the boundary conditions (2), (17), and (27).

We also know that the DPT is induced at the leading order by a sinusoidal mode of the 
longest possible wavelength, namely ϕ(x) ∼ sin(πx). Thus the amplitude of sin(πx) can be 
naturally interpreted as an order parameter m. With this in mind, the deviations from the linear 
profiles can be expanded as

ϕm(x) ≡ m sin(πx) +
∞∑

l=2

mlϕl(x),� (41)

ϕ̂m(x) ≡
∞∑

l=1

mlϕ̂l(x),� (42)

with the boundary conditions for each l given by

ϕl(0) = ϕl(1) = ϕ̂l(0) = ϕ̂l(1) = 0,� (43)

where the higher-order components ϕ2, ϕ3, . . . are chosen to be orthogonal to sin(πx), so that 
m is exactly the amplitude of sin(πx). Based on this expansion, we define

Lλ(m) ≡
∫ 1

0
dx [H(ρ̄,λx)− H(ρ̄+ ϕm,λx + ϕ̂m)] .� (44)

The relation (38) between Ψ(λ) and Lλ(m) is obtained from this definition and equation (40).
To proceed further, we need to obtain the functions ϕm and ϕ̂m order by order by solving 

the Hamiltonian field equation (22) with ρ = ρ̄+ ϕm, ρ̂ = λx + ϕ̂m, and E  =  0 for the time-
independent state. This can be done when at the leading order ελ satisfies

ελ � cλ m2,� (45)

Y Baek et alJ. Phys. A: Math. Theor. 51 (2018) 105001
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so that λ is sufficiently close to λc. At order m, we have

∂2
x ϕ̂1 = −π2D̄

σ̄
sin(πx),� (46)

which is solved by

ϕ̂1(x) =
D̄
σ̄
sin(πx).� (47)

At order m2, we find

∂2
xϕ2 = −π2ϕ2, ∂2

x ϕ̂2 =
D̄
σ̄
∂2

xϕ2 −
πσ̄′′λc

2σ̄
sin(2πx).� (48)

Choosing ϕ2 to be orthogonal to sin(πx), the solution is

ϕ2(x) = 0, ϕ̂2(x) =
σ̄′′λc

8πσ̄
sin(2πx).� (49)

At order m3, one has

∂2
xϕ3 = −π2ϕ3 +

(
D̄′′

2D̄
− σ̄(4)

8σ̄′′ − 2cλ

)
π2 sin(πx)−

(
D̄′′

2D̄
− σ̄(4)

24σ̄′′

)
π2 sin(3πx)

� (50)
and

∂2
x ϕ̂3 =

D̄
σ̄
∂2

xϕ3 +
π2 (D̄σ̄′′ − σ̄D̄′′)

8σ̄2 [sin(πx)− 3 sin(3πx)] .� (51)

The differential equation (50) has a solution with ϕ3(0) = ϕ3(1) = 0 if and only if

cλ =
1
σ̄′′

(
D̄′′

4D̄
− σ̄(4)

16σ̄′′

)
,� (52)

which implies

ϕ3(x) =
(

D̄′′

16D̄
− σ̄(4)

192σ̄′′

)
sin(3πx)� (53)

and

ϕ̂3(x) = − D̄σ̄′′ − D̄′′σ̄

8σ̄2 sin(πx) +
[

D̄
σ̄

(
D̄′′

16D̄
− σ̄(4)

192σ̄′′

)
+

D̄σ̄′′ − D̄′′σ̄

24σ̄2

]
sin(3πx).

� (54)
Using these results in equation (44), we finally obtain

Lλ(m) = −π2D̄2

2σ̄
ελ m2 +

π2D̄
(
4D̄′′σ̄′′ − D̄σ̄(4)

)
64σ̄σ̄′′ m4 + O(m6),� (55)

which confirms equation  (39). It is notable that ϕl and ϕ̂l with l � 3 do not contribute to 
Lλ(m) at this order.

3.3.3. The nature of the transition.  We now discuss the implications of the Landau theory on 
the singular behaviors at λ = λc. If the transport coefficients satisfy

σ̄′′ > 0, 4D̄′′σ̄′′ − D̄σ̄(4) > 0,� (56)
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the minimization of Lλ implies that for ελ > 0 there are two oppositely signed optimal values 
of m, which take the form

m±
λ � ±

(
16D̄σ̄′′ελ

4D̄′′σ̄′′ − D̄σ̄(4)

)1/2

.� (57)

Using m = m±
λ  in equations (38) and (55), we obtain

Ψ(λ) =





σ̄λ2

2 if ελ < 0,
σ̄λ2

2 + 4π2D̄3σ̄′′

σ̄(4D̄′′σ̄′′−D̄σ̄(4))
ε2
λ if ελ � 0.� (58)

Therefore the second-order derivative Ψ′′(λ) has a jump discontinuity at ελ = 0, which is 
given by

∆(Ψ′′) ≡ lim
ελ↓0

Ψ′′ − lim
ελ↑0

Ψ′′ =
4D̄σ̄′′2

4D̄′′σ̄′′ − D̄σ̄(4) .� (59)

See figure 2 for a schematic illustration of Ψ(λ) showing such singularities. Note that these 
singular structures imply ∆(Ψ′′) ∼ εαλ and mλ ∼ εβλ with Ising mean-field exponents α = 0 
and β = 1/2.

Given these singular behaviors, one may ask whether λ = λc is indeed ‘critical’ in the 
sense that there exists a diverging scale. Using equation (33), we obtain the marginal distribu-
tion of the unstable mode

0 λ

Ψ(λ)

x

ρ

(a)

(b)

(c)

0

Lλ

m

−|λc| |λc|

Figure 2.  (a) A schematic illustration of the scaled CGF Ψ(λ) exhibiting second-order 
DPTs associated with particle–hole symmetry breaking. The branch dominated by 
the symmetric (symmetry-breaking) profile(s) is marked with solid blue (red) lines. 
The dashed blue lines indicate the action of the symmetric profile when it is no longer 
optimal. (b) The Landau theory Lλ(m) in each regime of λ. (c) The optimal density 
profile(s) in each regime of λ.
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Pλ[ϕ1,±ω] =

∫
D[ϕ2,±ω ,ϕ3,±ω , · · · ; ϕ̂] e−L∆ST [ϕ,ϕ̂;λ]

∼ exp

[
−L

∫
dω
2π

2ω2 − π2σ̄σ̄′′(λ2 − λ2
c)

2π2σ̄
ϕ1,ωϕ1,−ω

]
for λ2 < λ2

c ,

�

(60)

where saddle-point asymptotics has been used to calculate the integral. Thus the density-
density correlations satisfy

〈ϕ1,ωϕ1,ω′〉 = 2π3σ̄

L[2ω2 − π2σ̄σ̄′′(λ2 − λ2
c)]

δ(ω + ω′),� (61)

whose inverse Fourier transform gives

〈ϕ1(t)ϕ1(t′)〉 =
π̄2σ̄τλ

4L
e−|t−t′|/τλ ,� (62)

with the correlation time

τλ ≡ 1
D̄π2

(
1 − λ2

λ2
c

)−1/2

for λ2 < λ2
c .� (63)

This time scale diverges to infinity as τλ ∼ |ελ|−ν  for λ → λc , with a mean-field correlation 
exponent ν = 1/2.

In spite of the low dimensionality of the system, the critical behaviors at the DPT are 
well described by a mean-field theory because the weak-noise limit imposed by equation (5) 
keeps the effects of fluctuations negligible. In order to see this more clearly, we consider the 
contribution of the unstable mode ϕ1 to the jump discontinuity of Ψ′′(λ) at λ = λc. From 
equation (60), the leading correction to Ψ(λ) from ϕ1 is obtained as

δΨ(λ) ≡ − 1
TL

∫
dω ln

[
ω2 + τ−2

λ

]
for λ2 < λ2

c .� (64)

This modifies Ψ′′(λ) by

δΨ′′(λ) =
π2σ̄σ̄′′

TL

∫
dω

ω2 + 2π2D̄2

(
ω2 + τ−2

λ

)2 ∼ τ 3
λ

L
∼

ε
−3/2
λ

L
,� (65)

where T−1 is canceled by the IR cut-off of the frequency range, and τ 3
λ is extracted from the low-

frequency behavior of the integrand. Although the magnitude of the correction becomes larger 
as ελ approaches zero, the large L keeps it much smaller than the jump discontinuity shown in 
equation (59). Indeed the thermodynamic limit ensures L � |λ− λc|−3/2. For finite system 
size, one thus expects a rounding of the transition in the region |λ− λc| � L−2/3. Similarly, 
for finite time, equation (63) implies that a rounding should occur for |λ− λc| ∼ T−2. In sum, 
for any finite ελ in the infinite-time and infinite-size limits, the mean-field exponent α = 0 
correctly describes the second-order singularity of Ψ(λ).

3.3.4. T → ∞ then L → ∞ versus L → ∞ then T → ∞.  The MFT predicts the existence of 
two solutions for ελ > 0. However, one might imagine that an instanton connecting one solu-
tion to another could allow the system to switch between the two solutions. The description 
of the corresponding time-dependent trajectories falls beyond the scope of the MFT; however, 
we now give simple arguments to analyze such a possibility. As we show, the order of the 
limits T → ∞ and L → ∞, and how they are taken, are both important.
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To analyze whether a transition between profiles is possible, one needs to calculate the cost 
in action of the instanton connecting them. We do this using a heuristic argument which also 
applies to the cost of a domain wall in a Ginzburg–Landau theory of, say, an Ising model. The 
Landau theory developed above implies that the action per unit time scales in the symmetry-
broken phase as m4

λ. In equation (63) we showed that the time correlation τλ of fluctuations 
decays as τλ ∼ |ελ|−1/2. Therefore the instanton connecting the two solutions is expected to 
extend over a duration scaling as |ελ|−1/2. Since mλ scales as |ελ|1/2, the cost of the instanton 
then scales as

∆SDW
λ ∼ |mλ|4τλ ∼ ε

3/2
λ .� (66)

Thus the typical time between the occurrences of instantons behaves as τdom ∼ ecL|ελ|3/2
 with 

c  >  0. This implies that an optimal history develops domain walls if T is much greater than 
the typical duration τdom between instantons. Otherwise, only one of the two optimal profiles 
is observed with equal probability during the entire optimal history. These considerations 
show that the order of limits T → ∞ and L → ∞ plays an important role in determining the 
optimal history.

3.4.  Effects of weak particle–hole asymmetry at equilibrium

We turn to the case when the odd-order derivatives of D(ρ) and σ(ρ) are nonzero at ρ = ρ̄. 
Again ρ̄a = ρ̄b = ρ̄ , and ρ̄  is near a point where σ′(ρ) = 0. Although the system is then 
no longer particle–hole symmetric, the linear solution (28) is still the optimal profile for 
λ = 0. In what follows, we treat the odd-order derivatives as perturbative parameters to 
explore how the optimal profiles depend on λ. We show below that a weak asymmetry 
between particles and holes either destroys the DPTs altogether or induces first-order 
DPTs.

3.4.1.  Derivation of the Landau theory.  The Landau theory, which was derived above for the 
symmetry-breaking DPTs, can be generalized to systems with a weak particle–hole asymme-
try such that odd-order derivatives D̄(2n+1) and σ̄(2n+1) are nonzero. This can be carried out in 
a consistent manner when, in addition to equation (45), we take the odd-order derivatives D̄′, 
σ̄′, and σ̄(3) to scale as

D̄′ � cDm, σ̄′ � c1m3, σ̄(3) � c3m.� (67)

Then we again solve the Hamiltonian field equation (22) order by order for time-independent 
profiles of the form ρ = ρ̄+ ϕm and ρ̂ = λx + ϕ̂m, where ϕm and ϕ̂m satisfy equations (41) 
and (43). Following section 3.3.1, we find that when the coefficient cλ in equation (45) is

cλ =
1
σ̄′′

(
D̄′′

4D̄
− σ̄(4)

16σ̄′′

)
+

2
π

(
cD

D̄
− 3c1 + c3

3σ̄′′

)
,� (68)

a nonzero solution for ϕm and ϕ̂m can be obtained up to order m3. Using this solution and 
equation (44), the Landau theory is obtained as

Lλ(m) = −2πD̄2

σ̄σ̄′′ σ̄′ m − π2D̄2

2σ̄
ελ m2 − 2πD̄(D̄σ̄(3) − 3D̄′σ̄′′)

9σ̄σ̄′′ m3

+
π2D̄

(
4D̄′′σ̄′′ − D̄σ̄(4)

)
64σ̄σ̄′′ m4 + O(m5).

�

(69)
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The Landau theory implies that when σ̄′ �= 0, Lλ contains a linear term in m, which 
destroys the symmetry-breaking DPT in the vicinity of λc. Note that other DPTs might appear 
for larger values of |λ| where the perturbative approach presented here is not valid.

A more interesting behaviour is found when σ̄′ = 0, which allows the system to exhibit 
DPTs. To see this, note that when

ελ = εd
λ ≡ λd − λc

λc
= − 128(D̄σ̄(3) − 3D̄′σ̄′′)2

81π2D̄σ̄′′(4D̄′′σ̄′′ − D̄σ̄(4))
,� (70)

the Landau theory has two degenerate minima. The location of these minima are at m  =  0 and 
m  =  md, with

md � 64(D̄σ̄(3) − 3D̄′σ̄′′)

9π(4D̄′′σ̄′′ − D̄σ̄(4))
.� (71)

Therefore, at λ = λd, there is a first-order DPT where m changes from a zero to a nonzero 
value md. Using equation (11), the former corresponds to a mean current

〈J〉−λd
≡ lim

ελ↑εd
λ

Ψ′(λ) = σ̄λc

[
1 − 128(D̄σ̄(3) − 3D̄′σ̄′′)2

81π2D̄σ̄′′(4D̄′′σ̄′′ − D̄σ̄(4))

]
,� (72)

and the latter corresponds to a different mean current

〈J〉+λd
≡ lim

ελ↓εd
λ

Ψ′(λ) = 〈J〉−λd
+

1024λcσ̄
′′ (D̄σ̄(3) − 3D̄′σ̄′′)2

81π2
(
4D̄′′σ̄′′ − D̄σ̄(4)

)2 .� (73)

This results in a jump discontinuity of Ψ′(λ)

∆ (Ψ′) ≡ lim
ελ↓εd

λ

Ψ′ − lim
ελ↑εd

λ

Ψ′ �
1024λcσ̄

′′ (D̄σ̄(3) − 3D̄′σ̄′′)2

81π2
(
4D̄′′σ̄′′ − D̄σ̄(4)

)2 ,� (74)

which is a standard property of a first-order phase transition. An illustration of Ψ(λ) with such 
first-order DPTs is shown in figure 3, assuming D̄σ̄(3) > 3D̄′σ̄′′.

Below, we analyze the cost of the instanton between the two solutions, in order to study the 
difference between the possible orderings of the L → ∞ and the T → ∞ limits. We find that 
the instanton from the m  =  md to the m  =  0 solution has a negative cost of action, in contrast 
to the instanton from the m  =  0 to the m  =  md solution. This has interesting consequences that 
we discuss in the next subsection.

3.4.2. T → ∞ then L → ∞ versus L → ∞ then T → ∞.  We denote by (ρDW
λ , ρ̂DW

λ ) an 
instanton (domain wall) connecting the solutions with m  =  0 and m  =  md at λ = λd. The 
additional cost of its action can be written as

∆SDW
λ ≡ ST [ρ

DW
λ , ρ̂DW

λ ]− ST [ρ̄+ ϕm,λx + ϕ̂m]

=

∫ T

0
dt

∫ 1

0
dx

[
(ρ̂DW

λ − λx) ∂tρ
DW
λ − H(ρDW

λ , ρ̂DW
λ ) + H(ρ̄+ ϕm,λx + ϕ̂m)

]
.

� (75)
where ϕm and ϕ̂m are given in the form of equation (41) with m  =  0 or m  =  md depending on 
the initial state. For ∆SDW

λ  to be minimal, (ρDW
λ , ρ̂DW

λ ) should obey the Hamiltonian field equa-
tion (22). Since these equations conserve H along the history, we have
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∫ 1

0
dx

[
H(ρDW

λ , ρ̂DW
λ )− H(ρ̄+ ϕm,λx + ϕ̂m)

]
= 0.� (76)

Thus equation (75) can be rewritten as

∆SDW
λ =

∫ T

0
dt

∫ 1

0
dx (ρ̂DW

λ − λx) ∂tρ
DW
λ .� (77)

To proceed, we introduce the notations

∆ρDW
λ (x) ≡ ρDW

λ (x, T)− ρDW
λ (x, 0),

∆f DW
λ (x) ≡ f

(
ρDW
λ (x, T)

)
− f

(
ρDW
λ (x, 0)

)
,

� (78)

based on which we can write the identity

0 =

∫ 1

0
dx

∆f DW
λ − f ′(ρ̄)∆ρDW

λ

2
−
∫ T

0
dt

∫ 1

0
dx

[
f ′(ρDW

λ )− f ′(ρ̄)
2

]
∂tρ

DW
λ .

� (79)
Adding this side-by-side to equation (77), we obtain

∆SDW
λ =

∫ 1

0
dx

∆f DW
λ − f ′(ρ̄)∆ρDW

λ

2

+

∫ T

0
dt

∫ 1

0
dx

[
ρ̂DW
λ − λx − f ′(ρDW

λ )− f ′(ρ̄)
2

]
∂tρ

DW
λ .

�
(80)

0 λ

Ψ(λ)

x

ρ

(a)

(b)

(c)

0

Lλ

m

|λd|−|λd|

Figure 3.  (a) A schematic illustration of the scaled CGF Ψ(λ) exhibiting first-order 
DPTs for D̄σ̄(3) > 3D̄′σ̄′′. The branch dominated by the flat (non-flat) profiles is 
marked with solid blue (red) lines. The dashed blue lines indicate the action of the flat 
profile when it is no longer optimal. (b) The Landau theory Lλ(m) and (c) the optimal 
density profiles in each regime of λ.
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Expanding f (ρ) around ρ = ρ̄, the first integral on the rhs of equation (80) yields
∫ 1

0
dx

∆f DW
λ − f ′(ρ̄)∆ρDW

λ

2
� f ′′(ρ̄)

4

∫ 1

0
dx∆(m2) sin2(πx) =

f ′′(ρ̄)
8

∆(m2),

� (81)
where ∆(m2) is the change of m2 from before to after the instanton. Meanwhile, the second 
integral of the same equation has an integrand which, according to equations (41), (47) and 
(49), satisfies

ρ̂DW
λ − λx − f ′(ρDW

λ )− f ′(ρ̄)
2

= m2 σ̄′′λc

8πσ̄
sin(2πx) + O(m3)� (82)

at t  =  0 and t  =  T. Assuming that the above quantity stays of order m2 and that ρDW
λ  stays of 

order m along the instanton, the contribution from the second integral of equation (80) is of 
order m3, which is higher-order than that of the first integral. Thus we have

∆SDW
λ � f ′′(ρ̄)

8
[
m(T)2 − m(0)2] .� (83)

Since f ′′(ρ̄) > 0, this implies that an instanton starting at m  =  md and ending at m  =  0 costs 
action, while the opposite leads to a gain in the action.

As in the symmetry-breaking case, the effect of the instantons can only be accounted for 
heuristically. We present two possible scenarios for the behavior in the λ-ensemble and dis-
cuss the corresponding behavior in the J-ensemble later. As before we assume that the action 
can be decomposed into contributions from the instantons and those from the saddle-point 
solutions. The two scenarios differ in the identification of the basic excitation.

	 1.	Scenario I: the basic excitations are the instantons from m  =  0 to m  =  md and vice versa. 
The instanton from m  =  0 to m  =  md costs action, and occurs on a very slow time scale 
scaling as ecLm2

d  with c  >  0. In contrast, the instanton from m  =  md to m  =  0 occurs very 
quickly. If we identify these as the basic excitations, we have two time scales in the 
system, one slow and one fast. Then instantons from m  =  0 to m  =  md are observed only 
for T � ecLm2

d. In contrast, the instantons from m  =  md to m  =  0 can be observed even 
with T � ecLm2

d, when the initial state is given by m  =  md.
	 2.	Scenario II: here the basic excitation is a pair of instantons from m  =  0 to m  =  md and 

from m  =  md to m  =  0. The order Lm2
d cost of action of the instanton from m  =  0 to 

m  =  md is always compensated by a subsequent instanton from m  =  md to m  =  0. This 
gives an action cost of the order of Lm3

d for the pair of domain walls. Correspondingly, 
there is a single time scale ecLm3

d  for the occurrence of the excitation. Then for T � ecLm3
d 

there are two options. Initial states with m  =  0 stay at m  =  0. In contrast, initial states 
with m  =  md will switch to m  =  0 at a random times. For T � ecLm3

d histories with an 
alternating sequence of the two types of instantons are more dominant than those with a 
static density profile.

It will be interesting to check numerically which scenario occurs.

3.5.  Generalization to nonequilibrium systems

The above results can be generalized to nonequilibrium systems with boundary and/or bulk 
driving. Instead of the equilibrium conditions (29), we now assume

ρ̄a = ρ̄− δρ, ρ̄b = ρ̄+ δρ, E �= 0,� (84)
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so that nonzero δρ and E indicate the presence of boundary and bulk driving, respectively. 
Even then, since the particle–hole exchange operation (23) is still applicable, the system can 
exhibit both symmetry-breaking and first-order DPTs through similar mechanisms. In the fol-
lowing we sketch how the generalization is done.

3.5.1.  Effects of bulk driving.  We first address the case when the system only has nonzero 
bulk driving (E �= 0) and vanishing boundary driving (δρ = 0). In the calculations described 
in section 3.3 and 3.4, this changes all occurrences of λ2 to λ(λ+ 2E). Consequently one finds 
that equation (36), which describes the values of λ at which the symmetric profile becomes 
unstable against a mode of wave number nπ and frequency ω, is modified to

λn,ω = −E ±
√

E2 +
2 (n4π4D̄2 + ω2)

n2π2σ̄σ̄′′ .� (85)

Using this λn,ω, it is easily seen that the symmetric DPT still occurs due to a time-independent 
mode with n  =  1 and ω = 0, so that the transition points are located at

λ±
c = −E ±

√
E2 +

2π2D̄2

σ̄σ̄′′ .� (86)

Proceeding with the calculation as before, we obtain the Landau theory

Lλ(m) = −2πD̄2

σ̄σ̄′′ σ̄′ m − π2D̄2

2σ̄
ελ m2 − 2πD̄(D̄σ̄(3) − 3D̄′σ̄′′)

9σ̄σ̄′′ m3

+

[
π2D̄

(
4D̄′′σ̄′′ − D̄σ̄(4)

)
64σ̄σ̄′′ +

σ̄′′2E2

64σ̄

]
m4 + O(m5),

�
(87)

where the only changes are in the coefficient of m4 as well as the shifted λc.
It is notable that, for sufficiently large E, DPTs occur for σ̄′ = 0 even when σ̄′′ < 0. In this 

case, both values of λc have the same sign, which implies that the solution with m �= 0 is opti-
mal only for a bounded range of λ. The singular structures of Ψ(λ) for different signs of σ̄′′ are 
illustrated in figure 4. We also note that the scaled CGF Ψ(λ) satisfies the Gallavotti–Cohen 
symmetry Ψ(λ) = Ψ(−2E − λ) [70, 71].

3.5.2.  Effects of boundary driving.  We now turn to the effects of nonzero boundary driving 
δρ �= 0. We consider ρ̄a = ρ̄− δρ and ρ̄b = ρ̄+ δρ with bulk driving E. The first consequence 
of δρ �= 0 is that the linear profiles shown in equation (28) are no longer consistent with the 
boundary conditions. Treating δρ perturbatively, the symmetric saddle-point profiles are

ρ(x) = ρ̄+ δρ ρ1(x) + O(δρ2), ρ̂(x) = λx + δρ ρ̂1(x) + O(δρ2).� (88)

Using this series expansion to solve the saddle-point equation (22) for the steady state, we 
obtain

ρ1(x) = csc
F(λ)

2
sin

[
F(λ)

2

(
x − 1

2

)]
, ρ̂1(x) =

D̄
σ̄
ρ1(x)−

2D̄
σ̄

(
x − 1

2

)
,

�

(89)

where F(λ) denotes

F(λ) ≡
√

λ(λ+ 2E)σ̄σ̄′′

2D̄2 .� (90)
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One can easily verify that the profiles given by equations (88) and (89) are symmetric under 
the particle–hole exchange (23).

Using the modified symmetric profiles, we proceed similarly to sections 3.3 and 3.4, keep-
ing track of linear corrections in δρ. This changes equation (85), which shows the threshold 
values of λ at which a mode (n,ω) becomes unstable, to

λn,ω � −E ±
√

E2 +
2 (n4π4D̄2 + ω2)

n2π2σ̄σ̄′′ +
2D̄
σ̄

δρ.� (91)

Since δρ shifts every λn,ω by equal an amount, the symmetry-breaking DPT still occurs due to 
a time-independent mode, with a transition point shifted by

λc �→ λc +
2D̄
σ̄

δρ.� (92)

This leads to the same Landau theory given in equation (87) with a shifted λc. Therefore, to 
linear order in δρ, the physics in this case is identical to that or δρ = 0. Finally, we note that the 

CGF Ψ(λ) obeys the Gallavotti–Cohen symmetry Ψ(λ) = Ψ
(
−2E + 4D̄

σ̄ δρ− λ
)
 [70, 71].

4. Transitions in the J-ensemble

In this section we analyze the dynamical phase transitions directly in the J-ensemble. While 
in principle, as detailed below, one can directly obtain the results from the λ-ensemble, the 
calculation is instructive. In particular, it shows that first-order phase transitions arise in a 
similar but distinct mechanism from that suggested in [45, 46]. We begin by giving a quick 

0 λ

Ψ(λ)

−E

(a)

(b)

−E

0 λ

Ψ(λ)

0

0

λ+
cλ−

c

λ+
cλ−

c

Figure 4.  (a) A schematic illustration of the scaled CGF Ψ(λ) exhibiting symmetry-
breaking DPTs when E  >  0 and σ̄′′ > 0. The branch dominated by the symmetric 
(symmetry-breaking) profile(s) is marked with solid blue (red) lines. The dashed blue 
lines indicate the action of the symmetric profile when it is no longer dominant. (b) The 
behavior of Ψ(λ) when E  >  0 and σ̄′′ < 0.
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overview of the formalism, assuming the additivity principle (i.e. time independence of the 
optimal histories). After then we turn to discuss the phase transitions and the structure of 
optimal histories. For simplicity, we focus on equilibrium systems lacking any boundary or 
bulk driving (ρ̄a = ρ̄b = ρ̄  and E  =  0). A generalization to nonequilibrium systems satisfying 
equation (84) can be done using an approach similar to the one described in section 3.5.

4.1.  Additivity principle and Lagrangian formalism

We start by noting that the distribution of J can be written in a path-integral form as

P(J) =
∫

DρDj
〈
δ
[
∂tρ+ ∂xj

]
δ
[

j + D(ρ)∂xρ− σ(ρ)E −
√
σ(ρ)η

]

× δ

(
JT −

∫ T

0
dt

∫ 1

0
dx j

)〉
,

�

(93)

where the first two delta functionals impose the Langevin dynamics given by equations (1) 
and (3). The third delta function conditions the integral to paths whose time-averaged current 
is equal to J, thus implementing a J-ensemble.

The calculation of Φ(J) is simplified by assuming the additivity principle [44]. This states 
that the path integral is dominated by histories which are time-independent. Under this 
assumption, the path integral in equation (93) is simplified to

P(J) =
∫

Dρ exp

{
−LT

∫ 1

0
dx

[J + D(ρ)∂xρ− σ(ρ)E]2

2σ(ρ)

}
.� (94)

with J constant. For large T and L, saddle-point asymptotics leads to the LDF

ΦAP(J) = inf
ρ

∫ 1

0
dxΛ(ρ, ∂xρ),� (95)

Λ(ρ, ∂xρ) ≡
[J + D(ρ)∂xρ− σ(ρ)E]2

2σ(ρ)
,� (96)

where the minimization in the first equation is carried out over all density profiles ρ = ρ(x) 
satisfying the boundary conditions (2). Since equation (95) has the form of a least action prin-
ciple whose Lagrangian is given by equation (96), ΦAP(J) is determined by an optimal profile 
satisfying the Euler–Lagrange equation

∂Λ

∂ρ
− d

dx
∂Λ

∂ (∂xρ)
= 0.� (97)

Multiplying both sides of this equation by ∂xρ and integrating over x, we obtain the saddle-
point equation

J2 − D(ρ)2(∂xρ)
2 + σ(ρ)2E2

2σ(ρ)
= K(J),� (98)

where K(J) is independent of space and time.
The singularities of ΦAP(J) are found by examining the singular behavior of the solution to 

equation (98) as a function of J. In the rest of this section, we discuss how such singularities 
can be used to identify the DPTs in the J-ensemble.
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4.2.  Symmetry-breaking transitions at equilibrium

4.2.1.  A condition for DPT.  Recall that we consider systems with ρ̄a = ρ̄b = ρ̄ , E  =  0, and 
particle–hole symmetry. The odd-order derivatives of D(ρ) and σ(ρ) at ρ = ρ̄ are zero. 
Clearly, for such systems the flat profile ρ(x) = ρ̄ satisfies the saddle-point equation (98) with 
K(J) = J2/(2σ̄). As we now show, near the mean current 〈J〉 = 0, the flat profile is the opti-
mal profile that minimizes the action in equation (95). However, this flat profile is unstable 
against small density modulations for sufficiently large |J|.

As stated in equation (95), the LDF is obtained by minimizing the action

SJ[ρ] ≡
∫ 1

0
dx

[J + D(ρ)∂xρ]
2

2σ(ρ)
.� (99)

Denoting the density modulations around the flat profile by ϕ = ϕ(x), we obtain

δSJ[ϕ] = SJ[ρ̄+ ϕ]− SJ[ρ̄] �
∫ 1

0
dx

2D̄2σ̄(∂xϕ)
2 − J2σ̄′′ϕ2

4σ̄2 ,� (100)

where we have carried out an integration by parts and used ϕ(0) = ϕ(1) = 0. The flat density 
profile is unstable when δSJ[ϕ] < 0 for some ϕ. When σ̄′′ > 0, i.e. when σ(ρ) has a local 
minimum at ρ = ρ̄, the two terms in the integrand have opposite signs. While the positive 
term reflects the propensity of diffusion to flatten out the density profile, the negative term 
can be attributed to the fact that, for σ̄′′ > 0, a given current J is easier to carry when σ(ρ) is 
increased by density modulations ϕ moving ρ away from a local minimum of σ. The preva-
lence of the latter for sufficiently large |J| destabilizes the flat profile.

Applying a Fourier decomposition

ϕ(x) =
∞∑

n=1

An sin(nπx),� (101)

we can rewrite δSJ[ϕ] as a functional of the amplitudes A = (A1, A2, . . .); namely,

δSJ[A] �
∞∑

n=1

(2n2π2D̄2σ̄ − J2σ̄′′)A2
n

8σ̄2 .� (102)

This shows that the flat profile becomes unstable against sinusoidal modulations of the form 
ϕ ∼ sin(nπx) when J2 � 2n2π2D̄2σ̄/σ̄′′. As |J| is increased from zero, the first saddle-point 
instability occurs due to modulations of wave number n  =  1. This happens at critical currents 
J  =  Jc given by

Jc = ±
√

2π2D̄2σ̄

σ̄′′ .� (103)

4.2.2.  Derivation of Landau theory.  In this section we derive a Landau theory for the trans
ition directly in the J-ensemble. The above discussions imply that, when J is very close to Jc, 
ΦAP(J) is dominated by a density profile ρ(x) = ρ̄+ ϕm(x) with small modulations given by

ϕm(x) = m sin(πx) +
∞∑

l=2

mlϕl(x),� (104)

where each ϕl satisfies the boundary conditions
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ϕl(0) = ϕl(1) = 0.� (105)

Taking m to be the order parameter, the Landau theory can be formulated using the additional 
cost of action due to ϕm(x); namely,

LJ(m) ≡ SJ[ρ̄+ ϕm]− SJ[ρ̄].� (106)

From the least action principle (95), we get

ΦAP(J) = SJ[ρ̄] + inf
m

LJ(m) =
J2

2σ̄
+ inf

m
LJ(m),� (107)

so that ΦAP(J) is determined by the minimization of LJ(m).
In order to calculate LJ(m), we need to find a non-flat solution ρ(x) = ρ̄+ ϕm(x) for the 

saddle-point equation (98). For E  =  0, the equation simplifies to

J2 − D(ρ)2(∂xρ)
2 = 2K(J)σ(ρ).� (108)

It should be noted that ϕm can be expanded as in equation (104) only when J is sufficiently  
close to Jc. This condition is fulfilled by limiting the range of J, so that εJ ≡ (J − Jc)/Jc �  
cJ m2. Taking K(J) = J2

c/(2σ̄) + cKm2, equation (108) is automatically satisfied up to order 
m. The equation also holds at order m2 if

cK =
2cJJ2

c − π2D̄2

2σ̄
.� (109)

At order m3, equation (108) implies

π sin(πx)ϕ2 + cos(πx)∂xϕ2 = 0.� (110)

The only solution for this equation satisfying ϕ2(0) = ϕ2(1) = 0 is

ϕ2(x) = 0.� (111)

Proceeding to the next order, equation (108) implies

∂2
xϕ3 = −π2ϕ3 + 2π2

(
cJ −

D̄′′

4D̄
− σ̄′′

4σ̄
+

σ̄(4)

16σ̄′′

)
sin(πx)

+

(
π2D̄′′

2D̄
− π2σ̄(4)

24σ̄′′

)
sin(3πx).

� (112)

This equation has a solution with ϕ3(0) = ϕ3(1) = 0 if and only if

cJ =
D̄′

4D̄
+

σ̄′′

4σ̄
− σ̄(4)

16σ̄′′ ,� (113)

which leads to

ϕ3(x) =
(

D̄′′

16D̄
− σ̄(4)

192σ̄′′

)
sin(3πx).� (114)

As expected, equations (111) and (114) are in agreement with equations (49) and (53). Finally, 
using equations (99), (104), (106), (111) and (114), LJ(m) is obtained to order m4 as

LJ(m) � −π2D̄2

2σ̄
εJm2 +

π2D̄
64σ̄2σ̄′′

(
4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4)

)
m4.� (115)

It should be noted that all ϕl(x) with l � 3 do not contribute to LJ(m) at this order, which was 
also the case for Lλ(m) in equation (55). If the transport coefficients satisfy
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σ̄′′ > 0 and 4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4) > 0,� (116)

for εJ > 0 the minimum of LJ(m) is achieved by

m = m±
J ≡ ±

[
16D̄σ̄σ̄′′

4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4) εJ

]1/2

.� (117)

Using equations (107), (115) and (117), we therefore obtain

ΦAP(J) =

{
J2

2σ̄ if εJ < 0,
J2

2σ̄ − 4π2D̄3σ̄′′

4D̄′′σ̄σ̄′′+4D̄σ̄′′2−D̄σ̄σ̄(4) ε
2
J if εJ � 0.

� (118)

According to equation  (118), the second derivative of ΦAP(J) jumps from 
limεJ↑0 ∂

2
JΦ

AP(J) = 1/(2σ̄) to

lim
εJ↓0

∂2
JΦ

AP(J) =
4D̄′′σ̄σ̄′′ − D̄σ̄σ̄(4)

σ̄(4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4))
� (119)

as εJ  crosses zero from below. Thus, if the transport coefficients satisfy 4D̄′′σ̄σ̄′′ − D̄σ̄σ̄(4) > 0, 
ΦAP(J) is convex on both sides of εJ = 0. We recall that, as stated by equation (56), systems 
satisfying this condition as well as σ̄′′ > 0 have symmetry-breaking DPTs in the λ-ensemble, 
which are described by the Landau theory at order m4. Indeed, applying the inverse Legendre 
transform

Φ(J) = inf
λ
[λJ −Ψ(λ)]� (120)

to Ψ(λ) given by equation (58), one obtains ΦAP(J) = Φ(J). This, together with the Legendre 
transform (10), implies that the λ- and J-ensembles yield equivalent descriptions of the sym-
metry-breaking DPTs. An illustration of Φ(J) exhibiting such singular features is given in 
figure 5.

4.2.3. T → ∞ then L → ∞ versus L → ∞ then T → ∞.  Based on the equivalence of ensem-
bles discussed above, we can apply the theory of instantons in the λ-ensemble to predict the 

shape of typically observed histories for εJ > 0. Using equation (66) and the scaling mJ ∼ ε
1/2
J  

obtained in equation (117), the cost of each instanton can be written as ∆SDW
J ∼ ε

3/2
J . Thus 

the typical time between an adjacent pair of instantons scales as τdom ∼ ecLε3/2
J  with c  >  0. If 

T � τdom, the histories contain multiple excitations of instantons. In contrast, if T � τdom, 
only one of the two optimal profiles is observed with equal probability.

4.3.  Effects of weak particle–hole asymmetry at equilibrium

We now turn to address the effects of weak particle–hole asymmetry on the DPTs of systems 
at equilibrium (ρ̄a = ρ̄b = ρ̄ , E  =  0) in the J-ensemble. Here, as in the λ-ensemble, we treat 
the odd-order derivatives D̄(2n+1) and σ̄(2n+1) perturbatively to obtain a Landau theory for the 
transition. The Landau theory produces a nonconvex cusp singularity of ΦAP(J). Recalling 
that the additivity principle assumes optimal profiles with a uniform and time-independent 
current, this implies phase coexistence in time between two possible values of the current 
within an interval around the cusp singularity.

4.3.1.  Derivation of the Landau theory.  As done in equation  (67) for the λ-ensemble, 
we assume that the odd-order derivatives are small, with the lowest-order ones scaling as 
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D̄′ � cDm, σ̄′ � c1m3, and σ̄(3) � c3m. Then we can solve the saddle-point equation (108) 
order by order for density profiles of the form ρ = ρ̄+ ϕm, where ϕm satisfies equations (104) 
and (105). Proceeding as in section 4.2.2, for cK given by equation (109) and

cJ = − 2c1

πσ̄′′ −
2c3

3πσ̄′′ +
2cD

πD̄
+

D̄′

4D̄
+

σ̄′′

4σ̄
− σ̄(4)

16σ̄′′ ,� (121)

one obtains nonzero solutions for ϕl with 1 � l � 3. Using these results in equation (106), 
LJ(m) is obtained to order m4 as

LJ(m) �− 2πD̄2

σ̄σ̄′′ σ̄
′ m − π2D̄2

2σ̄
εJm2 − 2πD̄

9σ̄σ̄′′

(
D̄σ̄(3) − 3D̄′σ̄′′

)
m3

+
π2D̄

64σ̄2σ̄′′

(
4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4)

)
m4.

� (122)

When σ̄′ �= 0, the linear term of LJ(m) destroys the DPT in the vicinity of Jc — a result that 
was also seen in the λ-ensemble. If σ̄′ = 0, LJ(m) has two degenerate minima when

εJ = ε∗J ≡ J∗ − Jc

Jc
= −

128σ̄
(
D̄σ̄(3) − 3D̄′σ̄′′)2

81π2D̄σ̄′′
(
4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4)

) ,� (123)

with one minima located at m  =  0 and another at

0

x

ρ

(a)

(b)

(c)

0

m

J

Φ(J)

LJ

|Jc|−|Jc|

Figure 5.  (a) A schematic illustration of the LDF Φ(J) exhibiting second-order 
DPTs associated with particle–hole symmetry breaking. The branch dominated by 
the symmetric (symmetry-breaking) profile(s) is marked with solid blue (red) lines. 
The dashed blue lines indicate the action of the symmetric profile when it is no longer 
dominant. (b) The Landau theory LJ(m) in each regime of λ. (c) The optimal density 
profiles in each regime of λ.
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m = m∗ ≡
64σ̄

(
D̄σ̄(3) − 3D̄′σ̄′′)

9π
(
4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4)

) .� (124)

Using equations (122)–(124) in equation (107), one observes that ΦAP(J) has a jump discon-
tinuity in its first derivative

∆
(
∂JΦ

AP) ≡ lim
εJ↓ε∗J

∂JΦ
AP − lim

εJ↑ε∗J
∂JΦ

AP � −
1024Jcσ̄

′′ (D̄σ̄(3) − 3D̄′σ̄′′)2

81π2
(
4D̄′′σ̄σ̄′′ + 4D̄σ̄′′2 − D̄σ̄σ̄(4)

)2 .

� (125)
As shown in figure 6, the sign of this jump discontinuity is such that ΦAP(J) has a cusp point-
ing upward at J  =  J*. The resulting shape of ΦAP(J) is nonconvex. The implications of this 
nonconvexity is discussed below.

4.3.2.  Implications of the nonconvex ΦAP(J).  Following the ideas from equilibrium phase 
coexistence, we consider the convex envelope Φenv(J) of the nonconvex ΦAP(J) derived above 
(see figure 6 for a schematic illustration). Examining the behavior of ΦAP(J) in the vicinity of 
Jc given by equations (107) and (122), Φenv(J) is obtained as

Φenv(J) =

{
ΦAP(J−) +

ΦAP(J+)−ΦAP(J−)
J+−J−

(J − J−) if ε−J � εJ � ε+J ,

ΦAP(J) otherwise,
� (126)

where the endpoints of the linear regime (ε−J � εJ � ε+J ) are obtained by a common-tangent 
construction and given by

ε−J ≡ J− − Jc

Jc
� − 128(D̄σ̄(3) − 3D̄′σ̄′′)2

81π2D̄σ̄′′(4D̄′′σ̄′′ − D̄σ̄(4))
,� (127)

ε+J ≡ J+ − Jc

Jc
� ε−J +

1024σ̄′′ (D̄σ̄(3) − 3D̄′σ̄′′)2

81π2σ̄
(
4D̄′′σ̄′′ − D̄σ̄(4)

)2 .� (128)

Within this regime there is a coexistence between time-independent solutions corre
sponding to J  =  J− and J  =  J+ with instantons (domain walls) connecting them. In 
the T → ∞ limit, the contribution of the instantons to Φ(J) is negligible. For a cur
rent J = pJ− + (1 − p)J+ with 0 � p � 1, the system spends a total sojourn time of pT 
in the J  =  J− solution and time (1 − p)T  in the J  =  J+ solution. Clearly, in this region, 
Φenv

(
pJ− + (1 − p)J+

)
� ΦAP

(
pJ− + (1 − p)J+

)
. Hence, ΦAP(J) fails to give the correct 

description of Φ(J). Instead we have Φ(J) = Φenv(J), which describes the phase coexistence 
for ε−J � εJ � ε+J  (see figure 6).

One can check that such behavior of Φ(J) is consistent with that of Ψ(λ) in the vicinity of 
a first-order DPT (see the discussion in section 3.4): using equations (37), (70), (72) and (73), 

one can show λd = Φ′(J−) = Φ′(J+) and J± = 〈J〉±λd
. These equations reflect the validity of 

the inverse Legendre transform (120) and the one-to-one correspondence between Ψ(λ) and 
Φ(J) in the vicinity of Jc. Hence, at the level of large deviations, the first-order DPTs in the 
J-ensemble are equivalent to those in the λ-ensemble.

4.3.3. T → ∞ then L → ∞ versus L → ∞ then T → ∞.  Based on the equivalence between 
the λ- and J-ensembles discussed above, here we use the results obtained in section 3.4.2 for 
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the cost of instantons to understand how the order of the limits T → ∞ and L → ∞ affects 
the structure typical histories for ε−J � εJ � ε+J . Noting that λd = Φ′(J) in this regime, we can 
take ∆SDW

λd
, given in equation (83), to be the cost of each instanton. As in section 3.4.2, there 

are two possible scenarios depending on the basic excitation.

	 1.	Scenario I: if the basic excitation is an instanton from J  =  J− (m  =  0) to J  =  J+ 
(m = md ∼ |εd

J |1/2) and vice versa, for T � ecLm2
d there are multiple instantons between 

the two profiles, which obey the constraint that the total time spent in the J  =  J− (J  =  J+ ) 
profile is given by ∆t− = pT  (∆t+ = (1 − p)T ). For T � ecLm2

d, there is only a single 
instanton from J  =  J+ to J  =  J−, which occurs at t = (1 − p)T . Note that this instanton 
gains action while going from J  =  J− to J  =  J+ costs actions. This sets the order of 
appearance of J+ and J−.

	 2.	Scenario II: if the basic excitation is a pair of instantons from one profile to another 
followed by the reverse process, multiple instantons are observed for T � ecLm3

d, with the 
constraint on ∆t− and ∆t+ discussed above. If T � ecLm3

d, there is only a single instanton 
from J  =  J+ to J  =  J− occurring at t = (1 − p)T .

We note here that, in contrast to the case of the λ-ensemble, the strict constraint on the value 
of J enforces the existence of at least a single instanton.

(a)

(b)

(c)

m

LJ

J

Φ(J)

x

ρ

0
0−|J−|−|J+| |J+||J−|

|J∗|−|J∗|

Figure 6.  (a) The Landau theory LJ(m), obtained by assuming the additivity principle, 
in different regimes of J demarcated by J = ±|J∗|. (b) A schematic illustration of the 
LDF Φ(J) exhibiting first-order DPTs. The branch dominated by the flat (non-flat) 
profile(s) is marked with solid blue (red) lines, and the coexistence regimes of both 
profiles are marked with solid purple lines. The dashed blue (red) lines indicate the 
action of the flat (non-flat) profile when it occupies the entire history. (c) The optimal 
density profiles in each regime of λ.
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5.  Exactly solvable model

In this section  we analyze the symmetry-breaking transition in an exactly solvable model 
which we study both in the J and λ-ensembles. The model we consider is defined through

D(ρ) = 1, σ(ρ) = 1 + ρ2� (129)

and we consider the boundary conditions ρ̄a = ρ̄b = 0. This model represents a driven dif-
fusive system with a deep minimum of σ(ρ) at ρ = 0. As long as the optimal profiles support-
ing the current fluctuations are still in a regime where σ(ρ) is well described by a quadratic 
function around the minimum, this model provides a good description of the near-transition 
behaviors.

5.1.  Symmetry breaking in the λ-ensemble

Assuming that the additivity principle holds, the saddle-point equation (22) in the λ-ensemble 
reduce to their time-independent forms

∂x
[
∂xρ− (1 + ρ2)∂xρ̂λ

]
= 0, ∂2

x ρ̂λ + ρ (∂xρ̂λ)
2 = 0.

� (130)
The first equation implies

∂xρ̂λ =
∂xρ+ K1

1 + ρ2 ,
� (131)

where K1 is an integration constant. Substituting this into the second equations yields (after 
an integration)

K2
1 − (∂xρ)

2

1 + ρ2 = K2,
� (132)

where K2 is another integration constant. This implies by differentiation

−∂xρ ∂
2
xρ = K2 ρ ∂xρ.� (133)

Therefore, either ∂xρ = 0 so that ρ(x) = 0, or:

∂2
xρ+ K2 ρ(x) = 0.� (134)

Note that, as seen from (131) and the boundary conditions (17) on ρ̂λ(x), λ is related to K1 
through:

λ =

∫ 1

0
dx

∂xρ+ K1

1 + ρ(x)2 = −
[
arctan ρ(x)

]x=1

x=0
+ K1

∫ 1

0
dx

1
1 + ρ(x)2 = K1

∫ 1

0
dx

1
1 + ρ(x)2 .

�
(135)

Substituting (131) into the action, one obtains

ψ(λ) = − 1
T

Sλ[ρ, ρ̂] =
K2

1 − (∂xρ)
2

2(1 + ρ2)

(132)
=

1
2

K2.� (136)

With the above results we can now obtain an expression for the CGF. When ρ(x) is flat, one 
has
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λ
(135)
= K1 and ψ(λ)

(136)
=

1
2

K2
(132)
=

1
2

K2
1 =

λ2

2
.� (137)

On the other hand, equation (134) implies that a non-flat profile verifying the boundary condi-
tions can exist only if K2  >  0. This gives

ρn,m(x) = m sin(nπx) with K2 = n2π2, n ∈ N� and m �= 0 ,� (138)

from which one infers from (132) that

K2
1 = n2π2(1 + m2).� (139)

Substituting (138) into (135) gives K2
1 = λ2 (1 + m2), which together with equation  (139) 

implies that |λ| = nπ. From ψ(λ) = 1
2 K2 one finds that the lowest action is obtained for n  =  1 

and given by

|λ| = π.� (140)

The flat profile ρ(x) describes the solution for |λ| � λc with λc = π, while at |λ| = λc all 
profiles ρn=1,m(x) given by (138) are solutions to the saddle-point equations and give the same 
CGF ψ(±λc) = π2/2.

Combining all the above results we find that the CGF is given by

ψ(λ) =
λ2

2
for |λ| � π� (141)

with the values of λ bounded between −π and π (i.e. the CGF is defined on a compact 
domain). This saturation of the values of λ is reminiscent of the saturation of the chemical 
potential in a condensation of an ideal Bose gas [72]. Indeed, as we show below, to change to 
the J-ensemble one needs to consider finite-L corrections to ψ(λ). These can be obtained as 
detained in the appendix and are given by

ψL(λ) =
λ2

2
− 1

L2

1
2

∑
n�1

{
nπ

√
n2π2 − λ2 − n2π2 +

1
2
λ2}

� (142)

=
λ2

2
+

1
L2

1
8
F
(1

2
λ2),� (143)

with F(u) denoting the universal function [73]

F(u) = −4
∑
n�1

{
nπ

√
n2π2 − 2u − n2π2 + u

}
.� (144)

To perform the Legendre transform, one has to find λ = λ(J) which solves the relation 
J = ψ′

L(λ). Taking advantage of the parity symmetry, we focus on the domain J  >  0. Using 
equation (142), one finds that for λ ↑ λc

J = ψ′
L(λ) = λ+

λ

2L2

1√
π2 − λ2

,� (145)

or:

ψ′
L(λc − ε) = π +

1
L2

√
π

8
1√
ε

,� (146)
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where only the n  =  1 mode in (142) is accounted for in the λ ↑ λc asymptotics. Therefore, in 
the large L asymptotics, choosing λ(J) = π − ε with ε ∼ L−4 solves for values of J larger than 
π. Specifically we solve equation (145) to obtain

λ(J) = π
(

1 − 1
8L4J2

)
+ O(L−5).� (147)

Then, for J > π, we find the rate function for the current distribution:

ΦL(J) = J λ(J)− ψL
(
λ(J)

)
� (148)

(143)
= J π

(
1 − 1

8L4J2

)
− 1

2
π2

(
1 − 1

8L4J2

)2
− 1

L2

1
8
F
(1

2
π2)+ o(L−2)� (149)

=
1
2
π(2J − π)− 1

L2

1
8
F
(1

2
π2)+ o(L−2).� (150)

Thus, we obtain that for |J|  >  Jc (with Jc = π) the rate function Φ(J) = limL→∞ ΦL(J) 
has two affine branches—which could not be retrieved from the infinite-L CGF ψ(λ). In fact, 
it is rather straightforward to directly perform the calculation of Φ(J) and to obtain the same 
second-order phase transition in the MFT settings as we detail below.

5.2.  Symmetry breaking in the J-ensemble

Assuming time-independent optimal profiles, the action in the J-ensemble is given by

S[ρ, J] = T
∫

dx

[
J + D(ρ(x)) ∂xρ(x)

]2

2σ(ρ(x))
.� (151)

At dominant order, Φ(J) = 1
T S[ρ�, J] where ρ�(x) is the dominant solution of the saddle-point 

equation:

ρ(x)
[
J2 − (∂xρ(x))2

]
+ ρ(x)2 ∂2

xρ(x) + ∂2
xρ(x)

(ρ(x)2 + 1)2 = 0.� (152)

The only flat solution to this equation is given by ρ(x) = 0. Then trivially Φ(J) = J2/2.
We now look for possibles non-flat profiles with a lower action. Multiplying by ∂xρ(x), one 

finds that there is a conserved quantity given by

k =
J2 − (∂xρ(x))2

1 + ρ(x)2 .� (153)

Multiplying the previous equality by 1 + ρ(x)2 and differentiating with respect to x, one 
obtains that

∂2
xρ(x) + kρ(x) = 0.� (154)

The shape of the solution depends on the sign of k. This equation has non-constant solutions 
of the form

ρn,m(x) = m sin(nπx), with k = n2π2, n ∈ N� and m �= 0.� (155)

Using equation (153), we obtain
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J2 − π2
(
m2 + 1

)
n2

m2 sin2(πnx) + 1
= 0,� (156)

which gives

J2 = n2π2(1 + m2).� (157)

For a given value of n, this implies that non-flat profiles exist only for

|J| � J(n)
c ≡ nπ.� (158)

The corresponding optimal profiles read

ρn(x) = ±
√

J2

n2π2 − 1 sin(nπx).� (159)

Inserting this expression into (151), one finds the corresponding value of the LDF

Φn(J) =
1
2

nπ(2J − nπ), with |J| � J(n)
c ≡ nπ.� (160)

Comparing to the constant profile solution (ρ(x) = 0), one checks directly that the final LDF 
reads

Φ(J) =

{
1
2 J2 |J| � π,
1
2π(2J − π) |J| � π.� (161)

The transition corresponds to a symmetry breaking at |J| = Jc ≡ π from a flat profile to a pair 
of non-flat profiles given by (159) for n  =  1.

In appendix, we show that for |J|  <  Jc, the finite-size corrections to this result can be com-
puted by the MFT and are given by

ΦL(J) =
J2

2
− 1

8L2 F
(1

2
J2
)
+ o(L−2).� (162)

As we have seen at the end of the last section, these are important in order to understand the 
changes between the J- and the λ-ensembles. In the J-ensemble considered in the present sec-
tion, the picture of the symmetry breaking is more direct since two opposite profiles appear at 
|J|  >  Jc; in contrast, due to the linearity of Φ(|J| > Jc), the full symmetry-broken phases are 
reduced to the points |λ| = λc in the λ-ensemble.

6.  Conclusions

In this paper, we have studied symmetry-breaking and first-order dynamical phase transitions 
in one-dimensional diffusive systems connecting a pair of reservoirs. Based on the macroscopic 
fluctuation theory, we showed that the transitions are induced by time-independent unstable 
modes and can be described by Landau theories. We also showed that the order of the large-
time (T → ∞) and the large-system limits (L → ∞) plays an important role in the structure of 
dominating observed histories. We proposed two possible scenarios which distinguish a regime 
of static histories from that of multiple instantons (domain walls in time). These scenarios are 
based on arguments beyond the macroscopic fluctuation theory and thus remain to be checked 
numerically. Finally, we analyzed the symmetry-breaking DPT in an exactly solvable model 
and studied its leading finite-size corrections, providing an explicit non-perturbative example. 
In this model, the transition bears similarities with Bose–Einstein condensation.
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We also note that the transitions in diffusive systems with periodic boundaries, which are 
induced by time-dependent modes, can be similarly described by the Landau theory derived 
in this paper [11]. It still remains to be clarified whether diffusive systems with open bounda-
ries can have the transitions driven by time-dependent modes [33]. In addition, it would 
be interesting to identify DPTs that may occur for currents beyond the critical one that we 
identified [33].
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Appendix.  Finite-size corrections to the LDFs in the 1 + ρ2 model

A.1. The λ-ensemble

In the domain of definition |λ| � π of ψ(λ), we consider space-time fluctuations around the 
saddle-point as follows:

ρ(x, t) = ρ�(x) + φ(x, t) = φ(x, t), ρ̂(x, t) = ρ̂�(x) + φ̂(x, t) = λx + φ̂(x, t).
�

(A.1)

Expanding the action in powers of the small fields φ(x, t) and φ̂(x, t), one finds the quadratic 
form

δ2S[φ, φ̂] =
∫ T

0
dt

∫ 1

0
dx

[
φ̂ ∂tφ+ ∂xφ∂xφ̂− 1

2
(∂xφ̂)

2 − λ2

2
φ2
]

.� (A.2)

In order to integrate the corresponding Gaussian fluctuations, we introduce the fol-
lowing spatial Fourier decomposition, which obeys the spatial boundary conditions 
φ(0, t) = φ(1, t) = φ̂(0, t) = φ̂(1, t) = 0:

φ(x, t) =
∑
n�1

an(t) sin(nπx),� (A.3)

φ̂(x, t) =
∑
n�1

ân(t) sin(nπx).� (A.4)

Using then the trigonometric identities
∫ 1

0
dx sin(nπx) sin(mπx) =

1
2
δnm,� (A.5)

∫ 1

0
dx cos(nπx) cos(mπx) =

1
2
δnm,� (A.6)

the quadratic action becomes a sum over independent modes
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δ2S[φ, φ̂] =
1
2

∫ T

0
dt

∑
n�1

[
ân(t)∂tan(t) + n2π2an(t)ân(t)−

1
2

n2π2â2
n −

λ2

2
a2

n

]
.

� (A.7)

Using the rescaling an(t) �→
√

2an(t) and ân(t) �→
√

2ân(t), one obtains

δ2S[φ, φ̂] =
∫ T

0
dt

∑
n�1

[
ân(t)∂tan(t) + n2π2an(t)ân(t)−

1
2

n2π2â2
n −

λ2

2
a2

n

]
.

� (A.8)
The large-time behavior of this quadratic action is given by the sum of the ground-state eigen-
value of the following independent harmonic oscillators (see e.g. [52])

Hn = n2π2a†a − 1
2

n2π2a†
2 − 1

2
λ2a2.� (A.9)

Summing over the individual ground states, one finds the finite-size corrections to CGF from 
−δ2S as

ψL(λ) =
λ2

2
− 1

L2

1
2

∑
n�1

{
nπ

√
n2π2 − λ2 − n2π2 +

1
2
λ2}+ o(L−2)� (A.10)

=
λ2

2
+

1
L2

1
8
F
(1

2
λ2)+ o(L−2) ,� (A.11)

as announced in the main text.

A.2. The J-ensemble

The space-time fluctuations around the flat solution (i.e. for |J| � Jc) are

ρ(x, t) =
∑
n�1

an(t) sin(nπx) ≡ δρ(x, t),� (A.12)

j(x, t) = J +
∑
n�1

∂tan(t)
cos(nπx)

nπ
≡ J + δj(x, t),� (A.13)

which satisfy the continuity equation ∂tρ+ ∂xj = 0. Expanding the action up to second order 
for small δρ and δφ, one gets

δ2S[ρ] =
1
2

∫ tf

0
dt
∫ 1

0
dx

{(
δj(x, t) + ∂xδρ(x, t)

)2 − J2δρ(x, t)2
}

.� (A.14)

Using then (A.5) and (A.6), one finds
∫ 1

0
dx δρ2 =

1
2

∑
n�1

an(t)2,� (A.15)

∫ 1

0
dx δj2 =

1
2

∑
n�1

1
n2π2

(
∂tan(t)

)2
,� (A.16)
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∫ 1

0
dx (∂xδρ)

2 =
1
2

∑
n�1

n2π2an(t)2,� (A.17)

∫ 1

0
dx δj∂xδρ =

∑
n�1

∂t(an(t)2).� (A.18)

We note that terms in the form of the equation (A.18), when integrated over time, only contrib-
ute temporal boundary terms to the action. Bearing this in mind, one finally obtains

δ2S[ρ] =
1
2

∫ tf

0
dt
∑
n�1

1
2

{(
n2π2 − J2)an(t)2 +

1
n2π2

(
∂tan(t)

)2
}

� (A.19)

=
1
2

∫ tf

0
dt
∑
n�1

{
MnΩ

2
nan(t)2 + Mn

(
∂tan(t)

)2
}

.� (A.20)

This expression represents a collection of independent harmonic oscillators indexed by n with 
parameters

MnΩ
2
n =

1
2
(n2π2 − J2), Mn =

1
2n2π2 .� (A.21)

Assuming for simplicity that an(0) = an(tf ) = 0 (which should not be important at large tf) 
one can use the standard results on the Euclidean harmonic oscillator

∫
Da e−δ2S =

∏
n�1

√
MnΩn

2π sinh(Ωntf )
� (A.22)

= exp

[
1
2

∑
n�1

log
MnΩn

2π sinh(Ωntf )

]
.� (A.23)

At large times, the leading-order behavior arises from the sinh component; taking into account 
the effect of cut-offs (e.g. as in [73]), then from equation (A.23) and Ωn = nπ

√
n2π2 − J2, one 

obtains

δ2Φ =
1
2

∑
n�1

[
Ωn − Ωn|J=0 + correction terms from cut − offs

]
� (A.24)

=
1
2

∑
n�1

{
nπ

√
n2π2 − J2 − n2π2 +

1
2

J2}.� (A.25)

Using the definition of the universal function

F(u) = −4
∑
n�1

{
nπ

√
n2π2 − 2u − n2π2 + u

}
,� (A.26)

one obtains for |J|  <  Jc

ΦL(J) =
J2

2
− 1

8L2 F
(1

2
J2
)
+ o(L−2).� (A.27)
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(Note that the saddle-point term can also yield order L−2 corrections, which depend on the 
microscopic model [48, 73] and are not taken into account here.) This is the result announced 
in (162), which is compatible with the result obtained by Legendre transform from the finite-
size corrections to the CGF.
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