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Abstract
Path integrals are a central tool when it comes to describing quantum or 
thermal fluctuations of particles or fields. Their success dates back to Feynman 
who showed how to use them within the framework of quantum mechanics. 
Since then, path integrals have pervaded all areas of physics where fluctuation 
effects, quantum and/or thermal, are of paramount importance. Their appeal is 
based on the fact that one converts a problem formulated in terms of operators 
into one of sampling classical paths with a given weight. Path integrals are the 
mirror image of our conventional Riemann integrals, with functions replacing 
the real numbers one usually sums over. However, unlike conventional 
integrals, path integration suffers a serious drawback: in general, one cannot 
make non-linear changes of variables without committing an error of some 
sort. Thus, no path-integral based calculus is possible. Here we identify which 
are the deep mathematical reasons causing this important caveat, and we come 
up with cures for systems described by one degree of freedom. Our main 
result is a construction of path integration free of this longstanding problem, 
through a direct time-discretization procedure.
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1.  Introduction

Though the notion of path integration can be traced back to Wiener [1, 2], it is fair to credit 
Feynman [3] for making path integrals one of the daily tools of theoretical physics. The idea 
is to express the transition amplitude of a particle between two states as an integral over all 
possible trajectories between these states with an appropriate weight for each of them. After 
such a formulation of quantum mechanics was proposed, path integrals turned out to provide 
a set of methods that are now ubiquitous in physics (see [4–6] for reviews) and they have 
become the language of choice for quantum field theory. But path integrals reach out well 
beyond quantum physics and they are also a versatile instrument to study stochastic processes. 
Beyond Wiener’s original formulation of Brownian motion, Onsager and Machlup [7, 8], fol-
lowed by Janssen [9, 10], and De Dominicis [11, 12] (based on the operator formulation of 
Martin et al [13]), have contributed to establish path integrals as a useful tool, on equal footing 
with the Fokker–Planck and Langevin equations. The gist of the mathematical difficulty is to 
manipulate signals that are nowhere differentiable. Interestingly, mathematicians have mostly 
stayed a safe distance away from path integrals. Indeed, it has been known for many years 
that path integrals cannot be manipulated without extra caution in a vast category of problems. 
These problems, in the stochastic language, involve the notion of multiplicative noise (that we 
describe in detail below), and their counterpart in the quantum world has to do with quantiza-
tion on curved spaces [14].

The late seventies witnessed an important step toward the understanding of the subtleties 
of path integrals: the authors of [15–20] found how to formulate path integrals in terms of 
smooth (differentiable) functions. By construction, their formulation does not offer a direct 
interpretation in terms of the weight of the physical trajectories, which are non-differentiable. 
The goal of this article is to come up with the missing link: we construct path integrals for 
non-differentiable stochastic and/or quantum trajectories, free of any mathematical hitch, by 
a direct time-discretization procedure which endows them with a well-defined mathematical 
meaning, consistent with differential calculus.

2.  Result and outline

Consider a system described by a single degree of freedom x(t) with noisy dynamics (i.e. 
subjected to a random force). We give an unambiguous definition of the probability density P 
of a path [x(t)]0�t�tf in a form that is covariant under any change of variables u(t) = U(x(t)). 
Namely, denoting by xk and uk the sequences of values that the paths x(t) and u(t) take at 
discrete times indexed by an integer k, the probability density P of such sequences satisfies

N∏
k=0

dxk PX[{x�}] =
N∏

k=0

duk PU[{u�}],� (1)

with PX and PU  taking the same functional form for the processes {x�} and {u� = U(x�)}. In 
these expressions, U is an arbitrary invertible differentiable function and N is the number of 
time steps in which the time window [0, tf] is divided. The precise definitions of all the entities 
involved in the relation (1) will be given in the central part of this paper (section 4).

The continuous-time limit of P[x] reads N [x]e−S[x] where both the ‘action’ S[x] and the ‘nor-
malization factor’ N [x] are covariant: in the Lagrangian writing S[x] =

∫ tf
0 dtL(x, ẋ), switch-

ing between x(t) and u(t) merely amounts to applying the chain rule u̇(t) = ẋ(t)U′(x(t)). We 
emphasize that, from our theoretical physicist’s point of view, P[x] acquires the meaning of the 
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probability of a path only when a discretized version is given and such a discretization issue is 
not a mathematical detail: continuous-time writings of N [x] and S[x] do not allow one to iden-
tify without ambiguity the probability of a path4. The discretization scheme that we present in 
this work is compatible with the covariance relation (1) and solves the long-standing problem 
of building a well-defined path probability that is consistent with differential calculus.

In what follows, we construct our path integral by carefully manipulating non-differentiable 
trajectories, directly from a Langevin equation. The latter suffers from ambiguities that only a 
discretized formulation can waive, and we thus begin in section 3 with a review of discretiza-
tion issues in Langevin equations. With this settled, we present in section 4 the main outcome 
of our paper, a path probability (that includes a carefully defined normalization factor) that 
allows one to use the standard rule of calculus inside the action when changing variables, even 
in the time-discrete formulation (1) and for non-differentiable trajectories. Constructing the 
actual time-discrete path probability requires to focus on hitherto overlooked contributions 
in slicing up time-evolution, but also to resort to a new adaptive slicing of time. It amounts 

to identifying the correct discretization of the integral S[x] =
∫ tf

0 dtL(x, ẋ), an issue that goes 
well beyond the usual Itō-Stratonovich dilemma, and thus enforces us to implement a gener-
alization of the standard stochastic integral. In section 5 we compare our result and our con-
struction to other path-integral formulations. In section 6, we then show how to transpose our 
construction to the so-called Martin–Siggia–Rose–Janssen–De Dominicis [9–13] (MSRJD) 
path-integral representation of the path probability, that provides the Hamiltonian counterpart 
of the former Lagrangian formulation [the action S[x̂, x] now depending on a ‘response vari-
able’ x̂(t) conjugate to x(t)]. We finally provide in section 7 our conclusion and outlook.

3.  Stochastic processes

For concreteness, we focus on the problem of a point-like particle moving in a one dimen-
sional space.

3.1.  Langevin’s Langevin equation

Langevin introduced the celebrated equation that goes under his name to describe Brownian 
motion [24]. His idea was to start from Newton’s equation mv̇(t) = F(t) for the motion of 
the large particle with mass m and velocity v, and to mimic the effect of its contact with the 
embedding liquid through a phenomenological force F(t) made of two terms: a dissipative 
contribution, −γv(t), and a time-dependent random one, η(t). With this simple choice for the 
former and adopting adequate statistical properties for the latter, he represented the observed 
erratic motion of the particle, and understood the behavior of varied experimentally averaged 
observables, constructed in his formalism as averages (denoted 〈 · 〉) over the noise. Importantly 
enough, he assumed that the random force was Gaussian distributed at each instant, had zero 
mean, 〈η(t)〉 = 0, and was Dirac-delta correlated in time, 〈η(t)η(t′)〉 = 2Dδ(t − t′), assuming 
a strong separation of time-scales between the one of the motion of the Brownian particle and 
the ones typical of the motion of the constituents of the ‘bath’. Such a ‘thermal noise’ η(t) is 

4 We underline here an important cultural difference with a mathematician’s viewpoint which would consist in 
defining a path-integral action directly in continuous time, following Wiener [1, 2] (and others [21–23] for multipli-
cative processes). Our point of view is different: we prefer to keep an underlying time discretization with infini-
tesimal time step ∆t  which allows us to control the rest in powers of ∆t  when manipulating the action, evaluated 
on non-differentiable paths. From a mathematician’s viewpoint, we are interested in the probability density of the 
events {x(tk) = xk}.
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termed Gaussian white noise. Denoting by kB the Boltzmann constant and by T the ambient 
temperature, the parameter D is fixed to γkBT  in order to ensure kinetic energy equipartition. 
In the so-called overdamped limit one studies time-scales that are much longer than m/γ, 
neglecting inertia compared to the effect of other forces, and focuses on the particles’s posi-
tion x(t) that is ruled by ẋ(t) = f (x(t)) + η(t). In this notation the friction coefficient γ  was 
absorbed in a redefinition of time, and a term f (x(t)), proportional to an external force, was 
added to describe more general physical situations.

3.2.  Reductionism: other Langevin equations

Stochastic equations of the Langevin kind have later been derived for the dynamics of other 
degrees of freedom than the position, or of fluctuating order parameters in (even originally 
quantum) systems, after a model reduction that amounts to integrating over a large number 
of degrees of freedom in an interacting system, keeping only a few representative ones. The 
range of applicability of Langevin equations  therefore became much wider than originally 
expected [25, 26]. A large separation of time-scales is also usually advocated to claim that 
Gaussian white noise is a reasonable choice and, furthermore, the overdamped limit is also 
often justified.

3.3.  Multiplicative noise

In many cases of practical interest the noise is not additive as in Langevin’s original proposal 
but appears multiplied by a function of the variable of interest,

ẋ(t) = f (x(t)) + g(x(t))η(t),� (2)

still with 〈η(t)η(t′)〉 = 2Dδ(t − t′). Such a multiplicative noise is involved in a flurry of physi-
cal problems ranging from soft matter (e.g. diffusion in microfluidic devices [27]), to con-
densed matter (e.g. super paramagnets [28, 29]) or even inflational cosmology [30, 31]. It 
appears in other areas of science in which Langevin equations are present (e.g. Black–Scholes 
equation for option pricing [32]). Quantization on curved spaces (e.g. a particle on a sphere 
[33, 34] or more generic manifolds [35–38]) pertains to the same mathematical class of prob-
lems, even though their physical motivation has a different origin. Connections between ther-
mal and quantum noises were noted by Nelson [39], and it is therefore no surprise that our 
discussion addresses both class of problems.

3.4.  Discretization

Langevin defined his equation  and performed calculations in a continuous-time setting. 
However, an overdamped multiplicative Langevin equation such as (2) acquires a well-defined 
meaning only if a discretization scheme is chosen. We adopt here the physicist’s description 
where a time-discrete version of (2) is made explicit. Controlling the zero time-step limit in a 
careful way is crucial when dealing with stochastic equations because x(t) is not a differentia-
ble function. To address this issue with the appropriate rigor, mathematicians have developed 
the field of stochastic calculus (see for instance [40, 41] for reviews); thus, they often use the 
continuous-time Wiener measure as a reference to define other structures of interest, but we do 
not follow this approach here because our interest goes to explicit trajectory weights.

J. Phys. A: Math. Theor. 52 (2019) 50LT01
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The time interval [0, tf] is divided into N steps of equal duration ∆t , in such a way that 
tk = k∆t, with k = 0, . . . , N  and N∆t = tN = tf. The instantaneous noise ηk = η(tk), is drawn 
from the joint probability distribution function (pdf)

P[{ηk}] =
∏

0�k<N

√
∆t

4πD
e−

∆t
4D η2

k .� (3)

A set of noises drawn from this pdf are shown in figure 1 with stars. The measure over which 
functions of the noise are integrated over is Dη ≡

∏N−1
k=0 dηk . This pdf implies 〈ηk〉 = 0 and 

〈ηkηk′〉 = 2Dδkk′/∆t , making explicit that ηk = O(∆t−1/2) at each time step. To define the 
Langevin equation (2), one now specifies the time-discrete evolution for the xk ≡ x(tk)’s (with 
0 � k � N ). First, the time derivative ẋ(t) evaluated at tk represents the ratio ∆x/∆t  between 
the two forward increments, ∆x ≡ xk+1 − xk and ∆t = tk+1 − tk. Second, to specify how to 
evaluate x(t) on the right-hand side (r.h.s.) of (2), we denote by x̄k the arguments of the func-
tions f  and g in the time-discrete evolution. In conventional stochastic calculus, x̄k is given 
by a linear combination of xk and xk+1. A dependence on the sole pre-point x̄k = xk  is cho-
sen in the Itō scheme and, instead, the mid-point dependence x̄k = (xk + xk+1)/2 is taken in 
the Stratonovich one. Each form has its advantages and drawbacks. Within the Stratonovich 
convention, in the continuous-time limit, one can manipulate x(t) as if it were differentiable 
but xk+1 appears in implicit form in the discrete equation at time tk and this is not convenient 
for numerical integration. Instead, the Itō scheme yields a recursion particularly suited to the 
computer generation of an individual trajectory. However, in contrast to equation (2) under-
stood with the Stratonovich rule, one cannot manipulate x(t) as if it were differentiable. This 
problem was addressed by mathematicians who modified the rules of calculus to be able to 
work with x(t) in the continuous-time limit. This is the celebrated Itō’s lemma [42].

The continuous-time equation (2) is thus understood as a short-hand writing which acquires 
a well-defined meaning only through a limiting procedure ∆t → 0 which starts from a dis-
crete-time evolution in which a prescription (or ‘discretization scheme’) for x̄k is given. We 
focus on the Stratonovich choice henceforth, with the aim of building a path-integral formal-
ism in which the standard rules of calculus could also be used. The time-discrete evolution is 
therefore given by

Figure 1.  Comparison between Langevin paths discretized à la Stratonovich (circles, 
dashed line) and with the covariant rule (diamonds, full line), according to equations (5) 
and (9), respectively. The noise is represented with stars. The Langevin dynamics is 
defined by f (x) = 1 + x, g(x)  =  4x4, D  =  1, discretized with ∆t = 1/4.

J. Phys. A: Math. Theor. 52 (2019) 50LT01
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∆x
∆t

S
= f (x̄k) + g(x̄k)ηk (0 � k < N),� (4)

x̄k =
xk + xk+1

2
= xk +

1
2
∆x,� (5)

where S
= indicates that x̄k is Stratonovich-discretized. This implies that the typical ∆x is of 

order 
√
∆t, and not ∆t , reflecting the well-known fact that a Brownian motion is nowhere 

differentiable. Each choice of {ηk}0�k<N drawn from the noise pdf (3) yields a trajectory 
{xk}0�k�N , with x0 drawn from a distribution Pi. A sketch of such a trajectory is shown in fig-
ure 1 with circles. The probability density (or ‘path probability’) of such trajectories, PX[{xk}], 
will be the object of our study.

3.5.  Rules of calculus and covariance of the Langevin equation

Consider a change of variables u(t) = U(x(t)) of the process x(t), where U is a differentiable 
and invertible function. Natural questions are: is it valid to use the chain rule to compute 
u̇(t)? What is the Langevin equation governing the process u(t)? In discrete time, defining 
uk ≡ u(tk) = U(xk), one expresses ∆u ≡ uk+1 − uk = U(xk +∆x)− U(xk) using a Taylor 
expansion in powers of the increment ∆x,

∆u = U′(xk)∆x +
1
2

U′′(xk)∆x2 + O(∆x3)� (6)

that, using x̄k
S
= xk +

1
2∆x and ∆x = O(∆t1/2), becomes

∆u
∆t

S
= U′(x̄k)

∆x
∆t

+ O(∆t1/2).� (7)

In the continuous-time limit, the terms of order ∆t1/2 and higher in equation (7) are negligible, 

and one recovers the usual chain rule, u̇(t) S
= U′(x(t))ẋ(t), within the Stratonovich scheme.

To determine the evolution equation  verified by u(t) in the Stratonovich scheme, one 
defines ūk = (uk + uk+1)/2. Inserting (4) into (7)5, the time-discrete equation follows

∆u
∆t

= F(ūk) + G(ūk)ηk + O(∆t1/2)� (8)

where F(u) and G(u) are the force and the noise amplitude of the Langevin equation verified 
by u(t), defined as F(U(x)) = U′(x) f (x) and G(U(x)) = U′(x)g(x).

Consistently with the chain rule, at leading order in ∆t  and using the inverse function that 
leads from u(t) to x(t), one recovers equation  (4) for the original process x(t) from equa-
tion (8), thus proving that a Stratonovich-discretized Langevin equation is covariant. In short, 
with the Stratonovich discretization, the standard chain rule of differential calculus can be 
used without caution most of the time, even though none of the manipulated objects is actu-
ally differentiable! (These properties are generalized to other linear discretization schemes 
x̄k = xk + α∆x, including the celebrated Itō one, once the rules of calculus are modified 
appropriately [25, 26, 43].)

The subleading terms of order ∆t1/2 in equations (7) and (8) show that the chain rule or the 
Langevin equation for u(t) are not exact at finite ∆t , but become valid only in the continuous-
time limit. Computing such terms explicitly improves, for instance, the precision of numer
ical algorithms (inevitably defined in discrete time, see e.g. [44–49]). More importantly for 

5 And using h(x̄k)
S
= h(U−1(ūk)) + O(∆t) valid for any function h.

J. Phys. A: Math. Theor. 52 (2019) 50LT01
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our purposes, we will show that these subleading terms are responsible for the breakdown 
of covariance in the standard path-integral formalism. This raises a natural question that we 
address in the following section: whether there exists a discretization scheme for which the 
Langevin equations be exactly covariant, that is up to an arbitrary order in ∆t .

3.6.  Improved covariant discretization

A g-dependent discretization scheme of the form

x̄k
βg
= xk +

1
2
∆x +βg(xk)∆x2,� (9)

βg(x) =
1

24
g′′(x)
g′(x)

− 1
12

g′(x)
g(x)

,� (10)

yields an evolution equation (8) for u(t) valid up to order ∆t , namely one more order in ∆t1/2 
than the Stratonovich one. The ensemble of points {x�} generated by one such Langevin equa-
tion are shown with diamonds in figure 1. Such a scheme, that we call covariant discretiza-
tion (or for short βg-discretization), serves as a starting point for our construction of the path 
integral, where the argument of every function in the action will be understood as discretized 
according to equation (9). As described in appendix A.1, a full series in powers of ∆x can be 
added to equation (9) in order to yield a chain rule (8) that is exact to all orders in ∆t  (see the 
expansions of equations (A.2) or (A.5)). Yet, as we show later, the sole additional contribution 
βg(x)∆x2 in equation (9) is sufficient to immunize path integrals against the problems caused 
by nonlinear manipulations.

When used in the discrete Langevin equation (4), the covariant discretization (9) and (10) 
yields the same equation as the Stratonovich one in the ∆t → 0 limit: these two schemes are 
equivalent. An essential aspect of our construction is that such an equivalence becomes wrong 
in the path-integral action: as we will show, the covariant and the Stratonovich schemes are 
not equivalent discretizations when used in the Lagrangian.

Finally, note that for the covariant discretization to be well defined, we assume that the 
dynamics ensures that x(t) stays in an interval of the real line where g(x) > 0 and g′′(x)/g′(x) 
remains finite.

4.  Probability distribution function of a trajectory

We now focus on the construction of the path probability PX[{x�}]. Such an expression is 
handy since with it one can directly compute the average of any observable of interest, F [x], 
as the path-integral 

〈
F [x]

〉
=

∫
DxF [x]PX[x]Pi(x(0)) interpreted in the Feynman sense [3]: a 

sum over all possible trajectories in discrete time with the measure defined as Dx =
∏N

k=0 dxk. 
The initial condition is sampled by Pi. We will compare in section 5 our expression for the 
path probability to the many existing results in the literature.

4.1.  Propagator

The path probability of a trajectory is inferred from the infinitesimal propagator 
PX(x1|x0) ≡ P(x1,∆t|x0, 0) for the first time step, defined as the conditional probability that 
x(∆t) = x1 at time t1 = ∆t , given x(0)  =  x0 at time t0  =  0. Indeed, the full trajectory pdf reads

J. Phys. A: Math. Theor. 52 (2019) 50LT01
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PX[{x�}] =
∏

0�k<N

P(xk+1, tk+1|xk, tk) ≡ NX[{x�}] e−SX [{x�}].�
(11)

In the above formula we used a standard representation in which the path probability is written 
as the product of the exponential of an action S[x] and a normalization factor N [x]. Clearly, 
this separation is not unique as factors can be exponentiated in the action or vice versa. We 
adopt the convenient choice [20, 50]

NX[{x�}] ≡
∏

0�k<N

1√
4πD∆t

1
|g(xk+1)|� (12)

of discretizing at the endpoint, that is different from another standard convention in which 
the prefactor is discretized at x̄k [51–54]. The reason for adopting (12) instead of the latter is 
that when changing paths from {x�} to {u�}, the corresponding Jacobians and the conversion 
of the prefactor bring out factors |U′(xk+1)| and 1/|U′(xk+1)| (0 � k < N ) that cancel one by 
one, including at time boundaries. Another choice would lead to a normalization prefactor that 
is not covariant, implying that upon a change of variables extra terms coming from the prefac-
tor would impact the action (see for instance [55]). The choice (12) allows one to focus on the 
sole transformation properties of the action in the exponential. The full form (11) is inferred 
from the elementary propagator for the first time step that we write as

PX(x1|x0) =
1√

4πD∆t |g(x1)|
e−δS∆t

X .� (13)

4.2.  Stratonovich action

Following well-known routes [9, 51–60], one finds that, in the Stratonovich scheme, the ele-
mentary contribution δS∆t

X  to the action for the first time step between x0 and x0 +∆x reads

δS∆t
X

S
=

1
2
∆t
2D

[ ∆x
∆t − f (x̄0)

g(x̄0)

]2
+

∆t
2

[
f ′(x̄0)−

f (x̄0)g′(x̄0)

g(x̄0)

]

+
D
4
[
2g′(x̄0)

2 − g(x̄0)g′′(x̄0)
]
∆t,

�
(14)

that in the continuous-time writing yields the action

SS
X[x]

S
=

∫ tf

0
dt
{

1
4D

[ ẋ − f (x)
g(x)

]2
+

1
2

f ′(x)− f (x)g′(x)
2g(x)

+
D
4
[
2g′(x)2 − g(x)g′′(x)

] }
.

�
(15)

The reader can easily verify that this continuous-time action is not covariant. By this we mean 
that under a change of variables x �→ U(x), and using the chain rule u̇ = ẋ U′(x), one does 
not find the correct action SS

U , that has the same form as SS
X with the replacements f �→ F  and 

g �→ G (and similarly if one tries to reconstitute SS
X from SS

U). Such problems were noted in the 
early developments of path integrals (see e.g. [37, 61, 62]). The reason, originally identified 

in [63], is actually simple: going for instance from u to x, the dominant term (of order ∆t0) 

in δS∆t
U  is ∆t

4DG(ū0)2 [
∆u
∆t ]

2, see equation  (14). Changing variables, one uses the Stratonovich-
discretized chain rule (7). The dominant term in equation (7) yields the expected dominant 

term ∆t
4Dg(x̄0)2 [

∆x
∆t ]

2 in δS∆t
X , but the rest in equation (7) yields a double-product contribution 

J. Phys. A: Math. Theor. 52 (2019) 50LT01
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∆t
2Dg(x̄0)2

∆x
∆t × O(∆t1/2) which is of order ∆t  and thus cannot be neglected. The conclusion is 

simple: in the Stratonovich scheme, using the continuous-time chain rule u̇ = ẋ U′(x) in the 
action yields a wrong result because the rest O(∆t1/2) in equation (7) that could be neglected 
at the Langevin level (in equation (8) for instance) cannot be neglected in the action. While the 
Stratonovich discretization (5) was sufficient to render the Langevin equation (4) covariant, 
it fails to play the same role at the path-integral level. Changing variables is still possible in 
(15) but this involves highly intricate rules (see for instance [55]). At this stage, we recall the 
lesson of Edwards and Gulyaev [61]: path integrals are more sensitive to discretization issues 
than Langevin equations, and higher orders in ∆t  than those usually retained, eventually mat-
ter. This was also noted in [37, 62] in the quantum context, and further discussed in [20, 55, 
63, 64].

4.3.  A covariant action

If, instead of writing the infinitesimal action δS∆t
X  using the Stratonovich convention as in 

equation (14), one uses the covariant discretization,

δS∆t
X

βg
=

∆t
4D

[ ∆x
∆t − f (x̄0)

g(x̄0)

]2
+

∆t
2

[
f ′(x̄0)−

f (x̄0)g′(x̄0)

g(x̄0)

]
,� (16)

where βg
= indicates that x̄0 is βg-discretized as in equations  (9) and (10). Compared to the 

standard Stratonovich scheme (βg ≡ 0) one observes that equation (16) has less terms: the 
second line in equation (14) is now absent. This means that, in the ∆t → 0 limit, the covariant 
and the Stratonovich schemes are not equivalent when writing the action (while they are for 
the Langevin equation). This is a signature of the higher sensitivity of the path integral to the 
details of the discretization6.

The two expressions we have obtained for the infinitesimal action, equations (14) and (16), 
are both valid, and actually equal, even though they lead to visually distinct continuous-time 
writings of the action (compare (15) with (19), below). Changing βg(x) in equation (9) modi-
fies the continuous-time writing of the action (but not that of the Langevin equation). In the 
next section we prove that, in contrast to the Stratonovich case, the covariant discretization 
ensures the covariance of the action under a change of path x(t) �→ u(t) = U(x(t)) through 
the use of the chain rule.

We can draw here a helpful analogy: a multiplicative Langevin process can be described 
by equivalent but distinct continuous-time writings (depending on the discretization conven-
tions). These are equally valid but only the Stratonovich one benefits from covariance. The 
same happens for the path-integral: the infinitesimal actions (14) and (16) (and their continu-
ous-time writings (15) and (19)) are both correct but only (16) benefits from covariance.

4.4. The proof of covariance

For convenience we proceed backwards from u to x (see figure 2). The infinitesimal propaga-
tor for the process u(t) reads

6 Had we kept a term of the form γ(x)∆x3 in the expansion of equation (9), this would not have changed the form 
(16) of δS∆t

X  to the order relevant for the path integral (namely, up to O(∆t) included). The covariant discretization 
(9) thus goes up to the optimal order in powers of ∆x.

J. Phys. A: Math. Theor. 52 (2019) 50LT01



10

PU(u1|u0)
βG
=

1√
4πD∆t |G(u1)|

e
− 1

2
∆t
2D

[
∆u
∆t −F(̄u0)

G(̄u0)

]2

× e−
1
2 ∆t

[
F′(ū0)−

F(̄u0)G′ (̄u0)
G(̄u0)

]
.

�

(17)

We have to show that it yields back the infinitesimal propagator (13) and action (16) for the 
variable x(t) after a generic change of variables.

First, using that PX(x1|x0) = |U′(x1)| PU(u1|u0), one notices that the prefactor of the prop-
agator becomes the expected one, equation (13), for the variable x(t), thanks to the end-point 
discretized prefactor. Then, the difficulty is to shift from the βG-discretized variable u(t) to 
the βg-discretized variable x(t), but this only requires a correct expansion at O(∆t). With the 
recipe presented in the appendix A.2, one compares the following routes:

	(a)	�in equation  (17), express ū0 as a function of x̄0 and ∆x; expand in powers of  
∆x = O(∆t1/2) up to order O(∆t); and use the substitution rules (derived in [55] and 
recalled in appendix A.4) to handle powers of ∆x of degree higher than 1; 

	(b)	�naively replace ∆u
∆t  in equation (17) by U′(x̄0)

∆x
∆t ; F(ū0) by U′(x̄0) f (x̄0); and G(ū0) by 

U′(x̄0)g(x̄0).

Route (b) is in principle completely faulty because it misses many terms of orders O(∆t1/2) 
and O(∆t), as discussed in [55]. However, for the chosen βg-discretization of equation (9), it 
correctly matches the outcome of route (a)—which happens to be the expected infinitesimal 
propagator PX(x1|x0), given by equations (13) and (16). For other choices of time discretiza-
tion, including the Stratonovich one, route (b) does not yield the correct result.

Since taking route (b) amounts to using the standard rules of calculus in the action, we have 
thus shown that, for the βg-discretization (9), the correct rules of calculus in the infinitesimal 
propagator at small but finite ∆t  become identical to the standard rules of calculus in the 
continuous-time action when taking the ∆t → 0 limit. Showing the validity of the chain rule 
in this limit is simple for differentiable functions and significantly more intricate in a Langevin 
equation (where discretization issues matter), and it has demanded an even higher degree of 
caution inside the action, through the use of the covariant discretization (9) (see table 1).

Figure 2.  Schematic representation, for a change of variables x �→ u(x), of how the 
covariant discretization scheme allows one to use the same rules of calculus for a 
Stratonovich-discretized Langevin equation  and for their corresponding covariant 
Onsager–Machlup and MSRJD actions (19) and (21). Such a use of the chain rule 
would be incorrect in the traditional Stratonovich-discretized actions (15) and (22).
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4.5.  Summary and continuous-time writing

Our main result is the direct construction of the probability of a time-discretized path. It takes 
the form of a path-integral probability (11) with an endpoint-discretized prefactor N [x] (equa-
tion (12)) and a βg-discretized time-discrete action read from equation (16),

S∆t
X [x]

βg
=

∑
0�k<N

{
1
2
∆t
2D

[ ∆x
∆t − f (x̄k)

g(x̄k)

]2

+
∆t
2

[
f ′(x̄k)−

f (x̄k)g′(x̄k)

g(x̄k)

]}
.� (18)

Taking the continuous-time limit, the path probability N [x]e−S[x] of a trajectory [x(t)]0�t�tf 
that evolves according to the Langevin equation (2) (understood in the Stratonovich sense) 
has an action given by

SX[x]
βg
=

∫ tf

0
dt
{

1
4D

[
ẋ − f (x)

g(x)

]2

+
1
2

f ′(x)− 1
2

f (x)g′(x)
g(x)

}
� (19)

which is a short-hand writing for the discrete expression (18). Such continuous-time writing 
of the action turns out to coincide with the result of [15, 16, 56]. In our formulation, it benefits 
from an essential feature: it is covariant under the change of non-differentiable paths, in the 
sense that the path probability of a process u(t) = U(x(t)) has a βG-discretized action SU[u] 
that is inferred from the action equation (19) for x(t) by merely passing from the variable x to 
u through the use of the standard chain rule of calculus, see figure 2. Such property is verified 
in the continuous-time writing of equation (19) (in a computation that is valid for differentia-
ble paths); but its actual proof is done in discrete time, as presented in the previous paragraph, 
because the action we are interested in describes the path probability of non-differentiable 
trajectories, through equation (11).

Besides, if we were to read the action (19) as Stratonovich-discretized, the resulting 
expression would be incorrect: as directly checked, the summand of equation (18) evaluated 
for a Stratonovich-discretized x̄k and a covariant-discretized x̄k differ by non-constant terms 
of order ∆t , that cannot be discarded in the ∆t → 0 limit. This explains why continuous-
time derivations of the action (19), such as the one of Graham [16], are not amenable to an 
easy reconstruction of the path probability. For instance, in a subsequent work, Graham and 
Deininghaus [20] succeeded to do so, but at the price of multiplying the trajectory weight with 
a correction prefactor that is tuned in order to ensure covariance and probability conservation. 
In contrast, the construction we bring forward is self-contained and establishes that the covari-
ant action (19) simply has to be read with the covariant discretization scheme.

Table 1.  Minimal discretizations required for the chain rule of standard calculus to 
hold upon a change of variables u(t) = U(x(t)).

Situation
Required  
discretization

x(t) is differentiable Any can work

x(t) is a Langevin process, equation (2) Stratonovich, 
equation (5)

x(t) is a path in the covariant action, equations (19) or (21) Covariant, 
equation (9)

x(t) is a path in the standard action, equations (20) or (22) None works
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5.  Comparison to other path-integral constructions

5.1.  Different approaches

To write the explicit path probability of a trajectory, the time-slicing procedure can be imple-
mented in a variety of ways and, within the realm of stochastic processes, this was carried out 
in [7, 9, 11, 51, 58, 59]. The constructions proposed by these authors are not fully satisfactory 
as they all suffer from the same problem: their actions are neither covariant at the discretized 
nor at the continuous-time levels. A classical choice in these papers consists in writing the 
action in Stratonovich and discretizing the normalization prefactor N [x] in x̄k (replacing 
g(xk+1) by g(x̄k) in (12)). This leads to the continuous-time writing

S[x(t)] S
=

1
2

∫ tf

0
dt
{

1
2D

[
ẋ − f (x) + D g(x)g′(x)

g(x)

]2

+ f ′(x)
}

� (20)

which is not covariant under the standard rules of calculus. Several authors tried to cure this 
problem. We summarize these attempts, and why we think that the goal was not fully achieved, 
in the next paragraph. Fox also put forward a path-integral construction that relies on consid-
ering a colored instead of a white noise, with a finite correlation time τ  [65, 66]. Although 
this approach has the advantage to handle more regular paths, the τ → 0 limit yields back a 
Stratonovich-discretized action and is not covariant.

5.2.  Covariant approaches

The first important progress in solving this problem is due to Stratonovich [56, 57], who 
constructed a covariant continuous-time action, whose writing is the same as equation (19). 
Horsthemke and Bach [15] and Graham [16] independently derived the same action in one 
dimension, and Graham further achieved the same program in dimension larger than one. 
What they did was to build a path integral with an action expressed in continuous time that is 
consistent with the underlying Langevin equations, and that can be blindly manipulated with 
the usual rules of differential calculus, as if the paths were differentiable. However their con-
struction of the path integral is built from locally optimal differentiable paths. The action (19) 
thus bears different meanings in the mentioned references and in this work. Related works in 
mathematics have made such an approach rigorous. Either using changes of path probability 
[67, 68] or more direct techniques (see the work of Takahashi and collaborators [21, 22] and 
of Capitaine [23]), the idea is to determine the most probable path7 going from one point to an 
other as extremizing an Onsager–Machlup covariant action. Such constructions are possible 
but do not provide the path probability of an arbitrary non-differentiable trajectories (which is 
the aim of our theoretical physicist’s construction).

In the immediate aftermath of Graham’s result, the search for an ambiguity-free definition 
of the path probability of a trajectory began. This is commented by Graham in [17], and it 
triggered more works [6, 18–20, 55, 63, 64, 69–72] in the direction of finding a proper dis-
cretization, the continuum limit of which would fall back on the action (19). This problem 
was not solved until this paper: we have found for this action an explicitly discretized picture 
that plays an analogous role to the Stratonovich rule (equation (5)) for Langevin equations. 
In the context of quantum mechanics in curved spaces, DeWitt [35] followed a construction 
where the action is evaluated along a succession of infinitesimal optimal trajectories that obey 
Euler–Lagrange equation—a construction that also has been made rigorous by mathematicians  

7 A ‘path’ seen as an infinitesimal tube around a differentiable trajectory.
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[73, 74]. Such a procedure yields the same visual limit as the action (19) but endows it with a 
completely different meaning.

The covariant discretization that we propose in fact provides a step towards extending sto-
chastic calculus to path integrals, by defining the time integral of the action (19) through a pro-
cedure generalizing the usual stochastic integral. From our physicist’s viewpoint, stochastic 
calculus provides a definition of the integral 

∫
dt
[
A(x) + B(x)ẋ] in a limiting procedure that 

involves a careful choice of discretization, together with being compatible with continuous-
time rules of differential calculus (the standard chain rule). The construction we put forward 
allows one to do the same for 

∫
dt
[
A(x) + B(x)ẋ + C(x)ẋ2] inside an exponential.

6.  Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD) path-integral 
formulation

Since the early formulation of quantum mechanics in terms of path integrals, there have been 
two equivalent expressions for the transition amplitudes. One, that we have just discussed 
extensively, involves a single position field. An alternative one involves an additional conju-
gate momentum field. The latter can be removed or included at will by Gaussian integration. 
A mirror image of the auxiliary momentum field exists for stochastic dynamics: the alterna-
tive to the original Onsager–Machlup formulation is the MSRJD approach [9, 11–13, 75] 
and involves an additional so-called response field. The purpose of this section is to extend 
our findings to this formalism. Again, we adopt the language of stochastic dynamics, but our 
results equally apply to quantum mechanics.

6.1.  Continuous-time MSRJD covariant action

In the MSRJD approach one introduces a response field x̂(t) to represent the trajectory weight 
in a manner that allows one, for instance, to get rid of some non-linearities of the action (19). 
Physics-wise, this setting facilitates the study of correlations and response functions on an 
equal footing, and to linearize (to some extent) possible symmetries of the process under scru-
tiny (time-reversal, rapidity reversal, etc). We now present our result for the covariant MSRJD 
action before describing its construction and its full time-discrete implementation.

In the covariant discretization scheme of equation (9), the action

S[x̂, x]
βg
=

∫ tf

0
dt
{

x̂
(
ẋ − f (x) + D g(x)g′(x)

)
− Dg(x)2x̂2

+
1
2

f ′(x)− −D
4

g′(x)2 − 1
2

g′(x)
g(x)

ẋ
}�

(21)

describes the path probability measure as DxDx̂ e−S[̂x,x]. In this path integral one can directly 
change variables covariantly using the standard chain rule and avoiding any Jacobian contrib
ution. In continuous time, this property is tediously checked by direct computation using the 
chain rule of calculus together with the correspondence x̂(t) = U′(x(t)) û(t) between response 
fields. In contrast, the historically derived MSRJD action in Stratonovich discretization reads

∫ tf

0
dt

{
x̂
(
ẋ − f (x) + D g(x)g′(x)

)
− Dg(x)2x̂2 +

1
2

f ′(x)
}

� (22)

and applying the chain rule to it leads to inconsistencies [60].
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6.2.  Discretized MSRJD action

To construct the MSRJD representation, one rewrites the infinitesimal propagator for x(t) 
(equations (13) and (16)) by using at every time step a Hubbard–Stratonovich transformation 

of the form 
√

2π/a e−
1
2

b2
a =

∫
iR dx̂ e

1
2 ax̂2−bx̂ for the following choice of parameters a and b

a = 2Dg(x̄t)
2 ∆t, b =

[∆x
∆t

− f (x̄t)
]
∆t,� (23)

which gives

P(x1|x0)
βg
=

∣∣∣∣
g(x̄0)

g(x1)

∣∣∣∣
∫

iR
dx̂0 e−δS[̂x0,̄x0],� (24)

δS[x̂0, x̄0]
βg
= ∆t

{
x̂0

[
∆x
∆t

− f (x̄0)

]
− Dg(x̄0)

2x̂2
0

+
1
2

f ′(x̄0)−
1
2

g′(x̄0)

g(x̄0)
f (x̄0)

}
,

�
(25)

which completely encodes the continuous-time expression8

S̃[x̂, x]
βg
=

∫ tf

0
dt

{
x̂
(
ẋ − f (x)

)
− Dg(x)2x̂2

+
1
2

f ′(x)− 1
2

g′(x)
g(x)

f (x)

}
.

�
(26)

Up to a translation of the field x̂(t) by g′/(2g), one recovers equation (21). The symbol βg over 
the equality sign means that functions of the variable x are βg-discretized, i.e. evaluated at x̄k. 
The field x̂(t) is not discretized in the same way as the field x(t) is: a variable x̂t is introduced at 
each t and merely associated to x̄k. The proof of the covariance presents more intricate issues 
than for the Onsager–Machlup action, and is sketched in appendix A.3.

7.  Summary and outlook

When dealing with fluctuating signals as encountered in quantum mechanics or stochastic 
processes, whose shared trait is non-differentiability, physicists rely on a triptych of methods: 
solving a linear problem involving an operator (Schrödinger or Fokker–Planck equations), 
resorting to stochastic calculus (Langevin equations), or using path integrals (field theory). 
As we have discussed, there is a vast number of operations for which path integrals have been 
known to be badly flawed. This surely explains why path integrals never became a tool of 
choice for mathematicians working on similar problems. What we have shown in the present 
work is how to construct a path-integral calculus that directly manipulates physical paths and 
that is devoid of what we view as its biggest flaw. It is our belief that our proposed construction 
should not only trigger a revival of interest on the mathematics side, but also on the physics 
one. Mathematics-wise, though we would not blush with embarrassment about our physicist’s 

8 Note from equation (24) the appearance, in the discretized expression for the probability of a path, of a nor-

malization prefactor NMSR[x(t)] =
∏

0�k<N

∣∣ g(x̄k)
g(xk+1)

∣∣ in front of the exponential weight. This NMSR warrants 

that a change of path in the action (21) induces no spurious contribution coming from the Jacobian |U′(x1)| in 
PX(x1|x0) = |U′(x1)| PU(u1|u0).
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derivation, it is almost certain that many more steps are needed to bring our building of covari-
ant path integrals on a rigorous par with other aspects of stochastic calculus. Physics-wise, we 
see immediate consequences, and open questions. Among the former, given the pedagogical 
importance of path integrals in higher education, we would advocate strongly in favor of our 
presentation (which time and efforts will surely smoothen and hopefully simplify) rather than 
in existing ones which suffer from well-known problems. Second, given the lack of control, 
so far, in nonlinear manipulations of fields, which have been put to work in so many areas, 
it seems like a necessity to return to these and sort out whether and how path-integral based 
results are altered by taking our corrected formalism into account. Transformations of the 
action based on the chain rule, as simple as integrations by parts for instance, are in principle 
forbidden unless one uses the covariant discretization. This is especially important in areas of 
physics where no alternative to path integrals exist (like in path-integral based quantization 
issues). This brings us to future research directions, which we briefly list: What about higher 
space dimensions?, What about supersymmetries?, What about field theories expressed in 
second quantized form with coherent-states fields? 
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Appendix

A.1.  An exact covariant discretization of the Langevin equation

Since the path-integral formulation requires higher orders in ∆t  than usually, it appears cru-
cial to find a discretization scheme that is consistent with the chain rule to a high-enough 
order. Fortunately, such a scheme can be found, and this is one of the main results in this 
paper. The inspiration comes from the field of calculus with Poisson point processes [76–79], 
though our solution departs from anything that has already been proposed. We postulate that 
equation (2) is to be understood in the form

∆x = Tf ,gf (x(t))∆t + Tf ,gg(x(t))∆η� (A.1)

with ∆η = η∆t and where the operator Tf ,g acts on an arbitrary function h as

Tf ,gh(x) =
eD(x) d

dx − 1
D(x) d

dx

h(x) =
∑
n�0

(
D(x) d

dx

)n

(n + 1)!
h(x) .� (A.2)

Here9 D(x) = f (x)∆t + g(x)∆η acts as an operator, and it does not commute with d
dx. When act-

ing on f  the operator Tf ,g leaves us with a complicated function of both x(t) and ∆η, which, in 
an implicit fashion through equation (A.1), is then a function of x(t) and ∆x = x(t +∆t)− x(t). 
As is perhaps less obvious than in previous discretization schemes, the ∆t → 0 limit also gets us 
back to equation (2). This is because ∆η, which is of order ∆t1/2, also goes to 0. We remark here 
that truncating the sum at n  =  2 in (A.2) one recovers an expression that is close to the Milstein 

9 In the study of Poisson point-processes with multiplicative noise, the appropriate discretization restricts to 
D(x) = g(x)∆η, but in our context the supplemental term f (x)∆t is needed.
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[44, 45] scheme used in numerical simulations of Langevin equation (one has to discard a term 
∝ ∆t f (x) f ′(x) and switch from Stratonovich to Itō calculus).

The complex appearance of this discretization rule (A.1) and (A.2) should not conceal its 
central property: it is consistent with the chain rule for any finite ∆t . In other words, when the 
evolution of x is understood with equation (A.1), one can manipulate a function u(t) = U(x(t)) 
as if it were differentiable, and u̇ = du

dt = ẋ U′(x) holds in the sense that

u(t +∆t)− u(t)
∆t

= TF,GF(u(t)) + TF,GG(u(t))∆η,� (A.3)

where F(u) and G(u) are the force and the noise amplitude of the Langevin equation verified 
by u(t), defined as F(U(x)) = U′(x) f (x) and G(U(x)) = U′(x)g(x).

The unpleasant feature of the discretization rule in equation (A.2) is that it is expressed 
in terms of ∆η rather than in terms of ∆x, as we did in equation (5). This means that equa-
tion (A.2) cannot be used as such in the definition of the path integral in which the noise η(t) 
is eliminated in favor of x(t). We would rather express equation (A.1) in terms of a function 
δ(∆x) such that

Tf ,gh(x) = h(x + δ(∆x)).� (A.4)

An expansion of δ in powers of ∆x can be found:

δ(∆x) = α∆x + β(x)∆x2 + . . .� (A.5)

where α = 1
2, β = βg = 1

24
g′′

g′ − 1
12

g′

g , etc. We shall henceforth keep the functional depend

ence of these functions on g explicit. Keeping in mind that ∆x = O(∆t1/2) as ∆t → 0, at 
minimal order δ(∆x) = 1

2∆x  and we recover the Stratonovich discretization (5), for which 
the chain rule in equation (A.3) is valid with up to an error of order ∆t1/2. Including the β 
term in equation (A.5) with β = βg renders the error of order ∆t  (and so on and so forth when 
increasing the order of the expansion). Terms of order higher than β in (A.5) will prove useless 
for our purpose. This is the discretization scheme that we adopted in equations (9) and (10) in 
the time-slicing procedure involved in constructing our formulation of the path integral.

A.2.  Changing variables while respecting the discretization

We explain here the methodology used to manipulate the infinitesimal propagator in the small 
∆t  limit, following [55]. When passing from one infinitesimal propagator to another, one 
needs to reconstitute the βg-discretization of the variable x(t) in PX(x1|x0) (equations (13) and 
(16)) from the βG-discretization of the variable u(t) in PU(u1|u0) (equation (17)). The idea is 
to express the time-discrete values u0 = U(x0), u1 = U(x1) and ū0 appearing in the r.h.s. of 
equation (17) as a function of x̄0 and ∆x, using

ū0 = U(x0) +
1
2
[U(x1)− U(x0)] + βG(U(x0)) [U(x1)− U(x0)]

2,

x0 = x̄0 −
1
2
∆x −βg(x̄0)∆x2,

� (A.6)

x1 = x̄0 +
1
2
∆x −βg(x̄0)∆x2.� (A.7)

The strategy is the following: first, use these expressions in equation (17); second, expand this 
equation in powers of ∆t  and ∆x, keeping in mind that the latter is O(∆t1/2). The result takes 
the form
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N
|g(x1)|

e
− 1

2
∆x2

2Dg(̄x0)
2∆t ×

[
1 + polynomial in ∆x and ∆t

]
.� (A.8)

The fraction in the exponential is O(∆t0) and cannot be expanded; in fact, it defines the 
dominant order O(∆t1/2) of ∆x. The polynomial contains terms of the form ∆tn∆xm which 
are of order O(∆t1/2) and O(∆t). Higher-order terms (O(∆t3/2) and higher) can be discarded 
because they do not contribute to the action. Many of the terms in the polynomial do not 
present an obvious ∆t → 0 limit (e.g. ∆x4 ∆t−1) but the substitution rules derived in [55] 
allow one to take the continuous-time limit. For completeness, these are recalled (and slightly 
reformulated) in appendix A.4. The last stage of the procedure consists in reexponentiating 
the resulting factor [1 + . . .] obtained from equation (A.8). One then recovers the expected 
propagator PX(x∆t|x0) of equations (13) and (16) as announced.

The same procedure allows one to change variables in the historical action (20) but this 
involves rules of calculus sharing little kindred with the standard ones (see [55]). The covari-
ant discretization, instead, yields back the usual chain rule as ∆t → 0.

A.3.  Sketch of the derivation of the covariance of the MSRJD path-integral

The actual derivation of the covariance property involves a careful handling of the time-dis-
crete infinitesimal propagator, by analyzing the contributions that arise order by order in pow-
ers of ∆t  upon the change of variables U(t) = u(x(t)).

One proves that only for the covariant discretization it is valid to naively change variables 

in equations (24) and (25): namely, going from the fields (û, u) to (x̂, x), one can replace ∆u
∆t  by 

U′(x̄0)
∆x
∆t , F(ū0) by U′(x̄0) f (x̄0), and G(ū0) by U′(x̄0)g(x̄0). Such operations, combined with 

û0 = x̂0/U′(x̄0), would normally yield an incorrect result by missing essential contributions 
of order O(∆t1/2) and O(∆t). Satisfactorily, these manipulations are correct for our chosen 
covariant discretization. The proof follows a procedure similar to the one we presented for 
the Onsager–Machlup case by comparing a correct route (a) with a naive route (b), with three 
important caveats: (i) One has to pay attention to the fact that x̂t ∼ ∆t−1/2 at every time step, 
as inferred from the scaling of a in the Hubbard–Stratonovich transform (23), implying that 
the expansions in powers of O(∆t) bring in terms that one can be tempted to throw away at 
first sight; (ii) One has to design additional substitution rules in order to handle powers of x̂0 
larger than 1. This is done following a procedure similar to the one of [55] (see appendix A.4); 
(iii) Unexpectedly, in contrast to the Onsager–Machlup case exposed previously, the prefactor ∣∣ g(x̄0)

g(x1)

∣∣ in (24) brings a Jacobian contribution into the action upon the time-discrete change 

of variables of route (a), which compensates precisely a term that is missing when naively 

substituting ∆u
∆t  by U′(x̄0)

∆x
∆t  along route (b).

To summarize, we have shown that changing variables in the MSRJD action (21) can be 
done following the standard rules of differential calculus, provided that the discrete-time 
construction of the path-integral weight is performed according to the covariant discretiza-
tion of equations  (9) and (10)—leading to a modified action as compared to the historical 
Stratonovich-discretized one.

A.4.  Substitution rules

Denoting �∆x2� = 2Dg(x̄0)
2∆t, the substitution rules deduced in [55] can be reformulated 

as follows
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∆x2 �→ �∆x2�,� (A.9)

∆x3 ∆t−1 �→ 3 ∆x �∆x2�∆t−1,� (A.10)

∆x4 ∆t−1 �→ 3 �∆x2�2 ∆t−1,� (A.11)

∆x6 ∆t−2 �→ 15 �∆x2�3 ∆t−2.� (A.12)

Note that, as discussed in [55], the substitution rule (A.10) cannot be used inside the 
exponential of the infinitesimal propagator; indeed, since ∆x3 ∆t−1 = O(∆t1/2) one has 

eh(x)∆x3 ∆t−1
= 1 + h(x)∆x3 ∆t−1 + 1

2 [h(x)∆x3 ∆t−1]2 + O(∆t3/2) and the second term of 
this expansion would be wrong if one had first applied the rule (A.10) and then expanded. 
This is the trivial but shrouded reason why the procedure exposed in appendix A.2 has to be 
performed by expanding the terms of order ∆t>0 outside of the exponential of the infinitesi-
mal propagator of (A.8). This reflects the fact, known to mathematicians, that the validity of 
the continuous-time chain rule is relatively weak, even in the Stratonovich discretization: it 
cannot be manipulated without care by, for instance, taking its square and exponentiating 
it—as one would do by naively using it in the Onsager–Machlup action. For further discussion 
on this subject, see [55].

ORCID iDs

Leticia F Cugliandolo  https://orcid.org/0000-0002-4986-8164
Vivien Lecomte  https://orcid.org/0000-0003-4025-5852
Frédéric van Wijland  https://orcid.org/0000-0002-3335-8573

References

	 [1]	 Wiener N 1923 Differential-space J. Math. Phys. 2 131–74
	 [2]	 Wiener N 1924 The average value of a functional Proc. Lond. Math. Soc. s2–22 454–67
	 [3]	 Feynman R P 1948 Space-time approach to non-relativistic quantum mechanics Rev. Mod. Phys. 

20 367
	 [4]	 Chaichian M and Demičev A P 2001 Stochastic Processes and Quantum Mechanics (Path Integrals 

in Physics vol 1) (Bristol: Institute of Physics Publishing)
	 [5]	 Zinn-Justin  J 2002 Quantum Field Theory and Critical Phenomena (International Series of 

Monographs on Physics vol 113) 4th edn (Oxford: Clarendon)
	 [6]	 Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial 

Markets (Singapore: World Scientific)
	 [7]	 Onsager L and Machlup S 1953 Fluctuations and irreversible processes Phys. Rev. 91 1505–12
	 [8]	 Machlup S and Onsager L 1953 Fluctuations and irreversible process. II. Systems with kinetic 

energy Phys. Rev. 91 1512–5
	 [9]	 Janssen  H-K 1976 On a Lagrangean for classical field dynamics and renormalization group 

calculations of dynamical critical properties Z. Phys. B 23 377–80
	[10]	 Janssen H-K 1979 Field theoretical methods applied to critical dynamics Lecture Notes in Physics: 

Dynamical Critical Phenomena and Related Topics vol 104, ed C P Enz (Berlin: Springer) p 26
	[11]	 Dominicis C D 1976 Techniques de renormalisation de la théorie des champs et dynamique des 

phénomènes critiques J. Phys. Colloques 37 C1

J. Phys. A: Math. Theor. 52 (2019) 50LT01

https://orcid.org/0000-0002-4986-8164
https://orcid.org/0000-0002-4986-8164
https://orcid.org/0000-0003-4025-5852
https://orcid.org/0000-0003-4025-5852
https://orcid.org/0000-0002-3335-8573
https://orcid.org/0000-0002-3335-8573
https://doi.org/10.1002/sapm192321131
https://doi.org/10.1002/sapm192321131
https://doi.org/10.1002/sapm192321131
https://doi.org/10.1112/plms/s2-22.1.454
https://doi.org/10.1112/plms/s2-22.1.454
https://doi.org/10.1112/plms/s2-22.1.454
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1103/PhysRev.91.1512
https://doi.org/10.1103/PhysRev.91.1512
https://doi.org/10.1103/PhysRev.91.1512
https://doi.org/10.1007/BF01316547
https://doi.org/10.1007/BF01316547
https://doi.org/10.1007/BF01316547
https://doi.org/10.1051/jphyscol:1976138
https://doi.org/10.1051/jphyscol:1976138


19

	[12]	 De Dominicis C and Peliti L 1978 Field-theory renormalization and critical dynamics above Tc: 
helium, antiferromagnets, and liquid-gas systems Phys. Rev. B 18 353–76

	[13]	 Martin P C, Siggia E D and Rose H A 1973 Statistical dynamics of classical systems Phys. Rev. A 
8 423–37

	[14]	 Bastianelli  F and Van Nieuwenhuizen  P 2006 Path Integrals and Anomalies in Curved Space 
(Cambridge: Cambridge University Press)

	[15]	 Horsthemke  W and Bach  A 1975 Onsager–Machlup function for one dimensional nonlinear 
diffusion processes Z. Phys. B 22 189–92

	[16]	 Graham R 1977 Path integral formulation of general diffusion processes Z. Phys. B 26 281–90
	[17]	 Graham R 1977 Covariant formulation of non-equilibrium statistical thermodynamics Z. Phys. B 

26 397–405
	[18]	 Weiss U 1978 Operator ordering schemes and covariant path integrals of quantum and stochastic 

processes in curved space Z. Phys. B 30 429–36
	[19]	 Kerler W 1978 Definition of path integrals and rules for non-linear transformations Nucl. Phys. B 

139 312–26
	[20]	 Deininghaus U and Graham R 1979 Nonlinear point transformations and covariant interpretation 

of path integrals Z. Phys. B 34 211–9
	[21]	 Takahashi Y and Watanabe S 1981 The probability functionals (Onsager–Machlup functions) of 

diffusion processes Stochastic Integrals (Lecture Notes in Mathematics) ed D Williams (Berlin: 
Springer) p 433

	[22]	 Hara K and Takahashi Y 1996 Lagrangian for pinned diffusion processed Itô’s Stochastic Calculus 
and Probability Theory ed N Ikeda (Tokyo: Springer) p 117

	[23]	 Capitaine J M 2000 On the Onsager–Machlup functional for elliptic diffusion processes Séminaire 
de Probabilités XXXIV ed J Azéma et al (Berlin: Springer) p 313

	[24]	 Langevin P 1908 Sur la théorie du mouvement brownien C. R. Acad. Sci., Paris 146 530–3
	[25]	 van Kampen N G 2007 Stochastic Processes in Physics and Chemistry (North-Holland Personal 

Library) 3rd edn (Amsterdam: Elsevier)
	[26]	 Gardiner  C  W 1994 Handbook of Stochastic Methods for Physics, Chemistry, and the Natural 

Sciences (Springer Series in Synergetics vol 13) 2nd edn (Berlin: Springer)
	[27]	 Grün G, Mecke K and Rauscher M 2006 Thin-film flow influenced by thermal noise J. Stat. Phys. 

122 1261–91
	[28]	 Genovese W, Muñoz M A and Garrido P L 1998 Mesoscopic description of the annealed Ising 

model, and multiplicative noise Phys. Rev. E 58 6828–31
	[29]	 Birner T, Lippert K, Müller R, Kühnel A and Behn U 2002 Critical behavior of nonequilibrium 

phase transitions to magnetically ordered states Phys. Rev. E 65 046110
	[30]	 Matacz A 1997 A new theory of stochastic inflation Phys. Rev. D 55 1860–74
	[31]	 Vennin V and Starobinsky A A 2015 Correlation functions in stochastic inflation Eur. Phys. J. C 

75 413
	[32]	 Black F and Scholes M 1973 The pricing of options and corporate liabilities J. Political Economy 

81 637–54
	[33]	 Cariñena  J  F, Rañada  M  F and Santander  M 2011 The quantum free particle on spherical and 

hyperbolic spaces: a curvature dependent approach J. Math. Phys. 52 072104
	[34]	 Cariñena  J  F, Rañada  M  F and Santander  M 2012 The quantum free particle on spherical and 

hyperbolic spaces: a curvature dependent approach. II J. Math. Phys. 53 102109
	[35]	 DeWitt B S 1957 Dynamical theory in curved spaces. I. A review of the classical and quantum 

action principles Rev. Mod. Phys. 29 377–97
	[36]	 McLaughlin D W and Schulman L S 1971 Path integrals in curved spaces J. Math. Phys. 12 2520–4
	[37]	 Gervais J L and Jevicki A 1976 Point canonical transformations in the path integral Nucl. Phys. B 

110 93–112
	[38]	 Grosche C and Steiner F 1987 Path integrals on curved manifolds Z. Phys. C 36 699–714
	[39]	 Nelson  E 1985 Quantum Fluctuations (Princeton Series in Physics) (Princeton, NJ: Princeton 

University Press)
	[40]	 Karatzas  I and Shreve  S 2012 Brownian Motion and Stochastic Calculus vol 113 (New York: 

Springer)
	[41]	 Øksendal B 2013 Stochastic Differential Equations: an Introduction with Applications (Universitext) 

6th edn (Berlin: Springer) (6 corrected printing edition)
	[42]	 Itō K 1944 Stochastic integral Proc. Imperial Acad. 20 519–24
	[43]	 Janssen H K 1992 On the renormalized field theory of nonlinear critical relaxation From Phase 

Transitions to Chaos (Singapore: World Scientific) p 68

J. Phys. A: Math. Theor. 52 (2019) 50LT01

https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1007/BF01322364
https://doi.org/10.1007/BF01322364
https://doi.org/10.1007/BF01322364
https://doi.org/10.1007/BF01312935
https://doi.org/10.1007/BF01312935
https://doi.org/10.1007/BF01312935
https://doi.org/10.1007/BF01570750
https://doi.org/10.1007/BF01570750
https://doi.org/10.1007/BF01570750
https://doi.org/10.1007/BF01321096
https://doi.org/10.1007/BF01321096
https://doi.org/10.1007/BF01321096
https://doi.org/10.1016/0550-3213(78)90193-1
https://doi.org/10.1016/0550-3213(78)90193-1
https://doi.org/10.1016/0550-3213(78)90193-1
https://doi.org/10.1007/BF01322143
https://doi.org/10.1007/BF01322143
https://doi.org/10.1007/BF01322143
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1007/s10955-006-9028-8
https://doi.org/10.1103/PhysRevE.58.6828
https://doi.org/10.1103/PhysRevE.58.6828
https://doi.org/10.1103/PhysRevE.58.6828
https://doi.org/10.1103/PhysRevE.65.046110
https://doi.org/10.1103/PhysRevE.65.046110
https://doi.org/10.1103/PhysRevD.55.1860
https://doi.org/10.1103/PhysRevD.55.1860
https://doi.org/10.1103/PhysRevD.55.1860
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1063/1.3610674
https://doi.org/10.1063/1.3610674
https://doi.org/10.1063/1.4757604
https://doi.org/10.1063/1.4757604
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1063/1.1665567
https://doi.org/10.1063/1.1665567
https://doi.org/10.1063/1.1665567
https://doi.org/10.1016/0550-3213(76)90422-3
https://doi.org/10.1016/0550-3213(76)90422-3
https://doi.org/10.1016/0550-3213(76)90422-3
https://doi.org/10.1007/BF01630607
https://doi.org/10.1007/BF01630607
https://doi.org/10.1007/BF01630607
https://doi.org/10.3792/pia/1195572786
https://doi.org/10.3792/pia/1195572786
https://doi.org/10.3792/pia/1195572786


20

	[44]	 Mil’shtejn  G 1974 Approximate integration of stochastic differential equations Teor. Veroyatn. 
Primen. 19 583–8

	[45]	 Mil’shtejn  G 1975 Approximate integration of stochastic differential equations Theory Probab. 
Appl. 19 557–62

	[46]	 Kloeden  P  E and Platen  E 1995 Numerical Solution of Stochastic Differential Equations 
(Applications of Mathematics) (Berlin: Springer) (2nd corr. print edition)

	[47]	 Mannella R 2002 Integration of stochastic differential equations on a computer Int. J. Mod. Phys. 
C 13 1177–94

	[48]	 Jentzen  A and Kloeden  P  E 2011 Taylor Approximations for Stochastic Partial Differential 
Equations vol 83 (Philadelphia, PA: SIAM)

	[49]	 Kloeden  P  E, Platen  E and Schurz  H 2012 Numerical Solution of SDE Through Computer 
Experiments (New York: Springer)

	[50]	 Hänggi P 1989 Path integral solutions for non-Markovian processes Z. Phys. B 75 275–81
	[51]	 Graham  R 1973 Statistical theory of instabilities in stationary nonequilibrium systems with 

applications to lasers and nonlinear optics Springer Tracts in Modern Physics ed G  Höhler 
(Berlin: Springer) p 1

	[52]	 Wissel C 1979 Manifolds of equivalent path integral solutions of the Fokker–Planck equation Z. 
Phys. B 35 185–91

	[53]	 Lau A W C and Lubensky T C 2007 State-dependent diffusion: thermodynamic consistency and its 
path integral formulation Phys. Rev. E 76 011123

	[54]	 Itami M and Sasa S-I 2017 Universal form of stochastic evolution for slow variables in equilibrium 
systems J. Stat. Phys. 167 46–63

	[55]	 Cugliandolo L F and Lecomte V 2017 Rules of calculus in the path integral representation of white 
noise Langevin equations: the Onsager–Machlup approach J. Phys. A: Math. Theor. 50 345001

	[56]	 Stratonovich R L 1962 On the probability functional of diffusion processes Sixth All-Union Conf. 
Theory Probability and Mathematical Statistics (Vilnius, 1960) (Russian) (Vilnius: Gosudarstv. 
Izdat. Političcesk. i Naučcn. Lit. Litovsk. SSR) pp 471–82

	[57]	 Stratonovich R L 1971 On the probability functional of diffusion processes Sel. Trans. Math. Stat. 
Probab. 10 273–86

	[58]	 Dekker H 1976 On the functional integral for generalized Wiener processes and nonequilibrium 
phenomena Physica A 85 598–606

	[59]	 Arnold P 2000 Symmetric path integrals for stochastic equations with multiplicative noise Phys. 
Rev. E 61 6099–102

	[60]	 Aron  C, Barci  D  G, Cugliandolo  L  F, González Arenas  Z and Lozano  G  S 2016 Dynamical 
symmetries of Markov processes with multiplicative white noise J. Stat. Mech. 053207

	[61]	 Edwards S F and Gulyaev Y V 1964 Path integrals in polar co-ordinates Proc. R. Soc. A 279 229–35
	[62]	 Salomonson P 1977 When does a non-linear point transformation generate an extra o(�2) potential 

in the effective Lagrangian? Nucl. Phys. B 121 433–44
	[63]	 Langouche  F, Roekaerts  D and Tirapegui  E 1979 Functional integrals and the Fokker–Planck 

equation Nuovo Cimento B 53 135–59
	[64]	 Apfeldorf K M and Ordóñez C 1996 Coordinate redefinition invariance and ‘extra’ terms Nucl. 

Phys. B 479 515–26
	[65]	 Fox  R  F 1986 Functional-calculus approach to stochastic differential equations Phys. Rev. A 

33 467–76
	[66]	 Fox R F 1987 Stochastic calculus in physics J. Stat. Phys. 46 1145–57
	[67]	 Tisza L and Manning I 1957 Fluctuations and irreversible thermodynamics Phys. Rev. 105 1695–705
	[68]	 Dürr D and Bach A 1978 The Onsager–Machlup function as Lagrangian for the most probable path 

of a diffusion process Commun. Math. Phys. 60 153–70
	[69]	 Langouche  F, Roekaerts  D and Tirapegui  E 1980 Comment on functional integration and the 

Onsager–Machlup Lagrangian in Riemannian geometries Phys. Rev. A 21 1344–6
	[70]	 Langouche  F, Roekaerts  D and Tirapegui  E 1982 Functional Integration and Semiclassical 

Expansions (Dordrecht: Kluwer)
	[71]	 Alfaro J and Damgaard P H 1990 Field transformations, collective coordinates and BRST invariance 

Ann. Phys., NY 202 398–435
	[72]	 Aron C, Barci D G, Cugliandolo L F, González Arenas Z and Lozano G S 2014 Dynamical symmetries 

of Markov processes with multiplicative white noise (arXiv:1412.7564v1 [cond-mat])
	[73]	 Inoue A and Maeda Y 1985 On integral transformations associated with a certain Lagrangian-as a 

prototype of quantization J. Math. Soc. Japan 37 219–44

J. Phys. A: Math. Theor. 52 (2019) 50LT01

https://doi.org/10.1137/1119062
https://doi.org/10.1137/1119062
https://doi.org/10.1137/1119062
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1007/BF01308011
https://doi.org/10.1007/BF01308011
https://doi.org/10.1007/BF01308011
https://doi.org/10.1007/978-3-662-40468-3_1
https://doi.org/10.1007/BF01321245
https://doi.org/10.1007/BF01321245
https://doi.org/10.1007/BF01321245
https://doi.org/10.1103/PhysRevE.76.011123
https://doi.org/10.1103/PhysRevE.76.011123
https://doi.org/10.1007/s10955-017-1738-6
https://doi.org/10.1007/s10955-017-1738-6
https://doi.org/10.1007/s10955-017-1738-6
https://doi.org/10.1088/1751-8121/aa7dd6
https://doi.org/10.1088/1751-8121/aa7dd6
https://doi.org/10.1016/0378-4371(76)90028-5
https://doi.org/10.1016/0378-4371(76)90028-5
https://doi.org/10.1016/0378-4371(76)90028-5
https://doi.org/10.1103/PhysRevE.61.6099
https://doi.org/10.1103/PhysRevE.61.6099
https://doi.org/10.1103/PhysRevE.61.6099
https://doi.org/10.1088/1742-5468/2016/05/053207
https://doi.org/10.1098/rspa.1964.0100
https://doi.org/10.1098/rspa.1964.0100
https://doi.org/10.1098/rspa.1964.0100
https://doi.org/10.1016/0550-3213(77)90165-1
https://doi.org/10.1016/0550-3213(77)90165-1
https://doi.org/10.1016/0550-3213(77)90165-1
https://doi.org/10.1007/BF02739307
https://doi.org/10.1007/BF02739307
https://doi.org/10.1007/BF02739307
https://doi.org/10.1016/0550-3213(96)00451-8
https://doi.org/10.1016/0550-3213(96)00451-8
https://doi.org/10.1016/0550-3213(96)00451-8
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1103/PhysRevA.33.467
https://doi.org/10.1007/BF01011160
https://doi.org/10.1007/BF01011160
https://doi.org/10.1007/BF01011160
https://doi.org/10.1103/PhysRev.105.1695
https://doi.org/10.1103/PhysRev.105.1695
https://doi.org/10.1103/PhysRev.105.1695
https://doi.org/10.1007/BF01609446
https://doi.org/10.1007/BF01609446
https://doi.org/10.1007/BF01609446
https://doi.org/10.1103/PhysRevA.21.1344
https://doi.org/10.1103/PhysRevA.21.1344
https://doi.org/10.1103/PhysRevA.21.1344
https://doi.org/10.1016/0003-4916(90)90230-L
https://doi.org/10.1016/0003-4916(90)90230-L
https://doi.org/10.1016/0003-4916(90)90230-L
http://arxiv.org/abs/1412.7564v1
https://doi.org/10.2969/jmsj/03720219
https://doi.org/10.2969/jmsj/03720219
https://doi.org/10.2969/jmsj/03720219


21

	[74]	 Andersson L and Driver B K 1999 Finite dimensional approximations to Wiener measure and path 
integral formulas on manifolds J. Funct. Anal. 165 430–98

	[75]	 Kubo R, Matsuo K and Kitahara K 1973 Fluctuation and relaxation of macrovariables J. Stat. Phys. 
9 51–96

	[76]	 Paola M D and Falsone G 1992 Stochastic response on non-linear systems under parametric non-
Gaussian agencies Nonlinear Stochastic Mechanics (IUTAM Symp.) (Berlin: Springer) p 155

	[77]	 Di Paola M and Falsone G 1993 Stochastic dynamics of nonlinear systems driven by non-normal 
delta-correlated processes J. Appl. Mech. 60 141–8

	[78]	 Di Paola  M and Falsone  G 1993 Ito and Stratonovich integrals for delta-correlated processes 
Probab. Eng. Mech. 8 197–208

	[79]	 Kanazawa K, Sagawa T and Hayakawa H 2012 Stochastic energetics for non-Gaussian processes 
Phys. Rev. Lett. 108 210601

J. Phys. A: Math. Theor. 52 (2019) 50LT01

https://doi.org/10.1006/jfan.1999.3413
https://doi.org/10.1006/jfan.1999.3413
https://doi.org/10.1006/jfan.1999.3413
https://doi.org/10.1007/BF01016797
https://doi.org/10.1007/BF01016797
https://doi.org/10.1007/BF01016797
https://doi.org/10.1115/1.2900736
https://doi.org/10.1115/1.2900736
https://doi.org/10.1115/1.2900736
https://doi.org/10.1016/0266-8920(93)90015-N
https://doi.org/10.1016/0266-8920(93)90015-N
https://doi.org/10.1016/0266-8920(93)90015-N
https://doi.org/10.1103/PhysRevLett.108.210601
https://doi.org/10.1103/PhysRevLett.108.210601

