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Abstract Atypical, rare trajectories of dynamical systems are important: they are often the
paths for chemical reactions, the haven of (relative) stability of planetary systems, the rogue
waves that are detected in oil platforms, the structures that are responsible for intermittency
in a turbulent liquid, the active regions that allow a supercooled liquid to flow. . . . Simulating
them in an efficient, accelerated way, is in fact quite simple.

In this paper we review a computational technique to study such rare events in both
stochastic and Hamiltonian systems. The method is based on the evolution of a family of
copies of the system which are replicated or killed in such a way as to favor the realization
of the atypical trajectories. We illustrate this with various examples.

Keywords Large deviations · Rare events · Simulations

1 Introduction

When a dynamical system is complex enough, it becomes no longer feasible—or indeed,
interesting—to describe every possible trajectory. A first step is then to study what a ‘typical
trajectory’ does. For Hamiltonian dynamics, Statistical Mechanics provides us with pow-
erful techniques to compute some properties of such typical trajectories, but for generic
dynamics we must in most cases resort to simulations.
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There are many situations in which the trajectories that matter are not the typical ones, but
rather ‘rare’ ones reached from exceptional initial conditions, or particularly infrequently.
Consider the following examples:

• Planetary systems are in general chaotic, and the different sets of present conditions,
falling within the range of observational error, may lead to widely varying inferences
about the past and future. Because we do not expect that an observed system has been
created recently, or will be destroyed immediately, we must understand how this comes
about, and we are naturally led to a statistical study of the trajectories.

• Molecular dynamics is in many cases characterized by long periods of vibrations around
a local metastable configuration, punctuated by relatively rapid but infrequent ‘activation’
events, leading to a major rearrangement. Because they are the essential steps of chemical
transformations, it is of the greatest importance to be able to simulate such events in an
accelerated way, without having to wait for them to happen spontaneously. There is a vast
literature on this subject.

• In a similar fashion, supercooled liquids and glasses are characterized by vibrational dy-
namics, with events localized in time and space where the transformations take place.
These ‘dynamic heterogeneities’ are the analogues of reaction paths in chemical systems.

• It has long be known that, in a liquid undergoing fully developed turbulence, due to the
presence of abnormally large fluctuations of velocities, the dynamics are intermittent. The
natural question is which dynamic features are responsible for this.

• In the sea there have been reports of (‘rogue’) waves of exceptionally large amplitudes.
They are rare, but much more common than one would expect from a Gaussian distribu-
tion. The subject is of obvious interest, and is still very much open.

• Transport of energy or particles across a sample is facilitated by exceptional ‘ballistic’
trajectories, or hindered by situations resembling traffic jams.

• When a system is subject to external forcing, the power injected (or the entropy pro-
duction) during a given time is a quantity that depends on the particular trajectory it is
following. The Second Law of thermodynamics sets limits on the expectation value of
these quantities, but does not limit the extent of the (rare) fluctuations. Thus, one may
extract work from a system while lowering the total entropy, but the probability of this
goes down exponentially with its size, and with the interval of time.

All of these problems may be studied by simulating repeatedly, or for long times, the true
dynamics. However, as one may imagine, this procedure soon becomes unfeasible. There
are basically two types of methods to generate in a controlled way rare events. The Path-
sampling method amounts to Monte Carlo dynamics in trajectory space, correctly designed
to weigh each trajectory with the desired bias. A second strategy works directly in con-
figuration space: one introduces a population of copies of the initial system and relies on
a mixture including the original dynamics, supplemented with a ‘Darwinian pressure’—
again, in a controlled way—to favor the exploration of atypical trajectories. In this review
we concentrate on the second class.

The paper is organized as follows. The population dynamics with cloning is introduced
in Sect. 2, where it is shown how it can be used to compute the large deviation function
(or rather its Legendre transform) of extensive observables of the trajectories of a diffusive
dynamics with drift and a multiplicative (cloning) term. The relative weight of the drift and
cloning terms is analyzed in Sect. 3, where it is shown how a change of bases can help
in adjusting their relative contribution. Then a series of examples from different contexts
follows. Purely stochastic systems are studied in Sects. 4 and 5, where the large deviations
of, respectively, the current in interacting particle systems and the dynamical activity in
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kinetically constrained models are analyzed. Sections 6 and 7 consider examples of deter-
ministic dynamics, such as the standard map and the Hamiltonian Fermi-Pasta-Ulam model,
for which trajectory with large or small Lyapunov exponent are studied, or the Sinai billiard,
for which the symmetry associated with the fluctuation theorem is easily verified. The last
Sect. 8 suggests how the numerical method of cloning could be used also in the study of the
stability of planetary systems.

2 Population Dynamics

To fix ideas, consider a noisy dynamics for a vector x whose components evolve as:

ẋi = fi(x) + ηi(t) (2.1)

with ηi a noise which for simplicity we shall suppose is Gaussian and white, with variance
2Ti . The probability of a trajectory up to time t is found by writing ηi = ẋi − fi(x):

P [x(t)] ∝ e
−∑

i

∫ t
0 dt ′ (ẋi−fi )

2

4Ti (2.2)

As an example, we wish to calculate the probability that a certain quantity A[x] takes a
time-averaged value A0:

p(A0) =
∫

D[x]P [x(t)]δ
{∫ t

0
dt ′ A(x) − t A0

}

(2.3)

It is more practical to compute the Laplace transform:

Zt(α) =
∫

dA0 p(A0)e
αt A0 =

∫

D[x]P [x(t)]e{α ∫ t
0 dt ′ A(x)}

∝
∫

D[x]e−∑
i

∫ t
0 dt ′ (ẋi−fi )

2

4Ti
+α

∫ t
0 dt ′ A(x)

(2.4)

In particular, for large times p(A0) becomes a peaked function p(A0) ∼ e−tI (A0), with
I (A0) the large deviation function given by the Legendre transform [1]:

I (A0) = sup
α

[

A0α − lim
t→∞

1

t
logZt(α)

]

(2.5)

The last line of (2.4) may be interpreted as a sum over paths with a modified weight, and
may be simulated with path sampling methods. The strategy we describe in this paper is
instead to notice that (2.4) may be interpreted as describing the following dynamics:

• Consider a population of infinitely many non-interacting ‘clones’ of the system xa(t) sat-
isfying the original dynamics ẋa(t) = f(xa) + ηa . The noise of each clone is independent
from the others.

• At each time interval δt , each clone is either killed or replicated, so that it is replaced on
average by exp(αA(xa) δt) clones.

This population dynamics is such that the average cloning or pruning rate of clones yields
at large times Zt(α). In practice, we do not simulate infinitely many clones of the initial
system and we explain in the following how to adapt the dynamics to work with a large, but
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finite, fixed number of clones (typically in the hundreds). We shall see how this simple idea,
originally applied in the context of Diffusion Monte Carlo [2], may be adapted to a number
of different problems. The actual specific form of the population dynamics involved depends
on the nature of the problem (continuous or discrete state space, continuous or discrete time,
etc.): we shall specify this in each example below. Similar strategies to simulate rare events
have been advocated in other context with great success, see for example [3–5].

We have mentioned so far large deviations of a quantity of the form:

F [x(t)] =
∫ t

0
dt ′ A(x(t ′)) (2.6)

In many cases, the functionals F depend also on the time-derivatives dx
dt

, and even are func-
tions that are non-local in time. In these cases, the cloning rate at time t depends as well on
the configurations at time t ′ < t .

The algorithms presented in this review give not only access to large deviations of the
observable F but also allow one to compute the average of any observable among the corre-
sponding, atypical, histories weighted by eαF , allowing to answer questions such as “what
happens with the vorticity of a fluid at a time and place where energy dissipation is unusually
large?”

The average of an observable O at the final time t

O(α, t) = 〈eαF O(x(t))〉
〈eαF 〉 (2.7)

is recovered from the corresponding average among the clones at that time. The averages

at intermediate times (for 0 	 t ′ 	 t ) O(α, t ′) = 〈eαF O(x(t ′))〉
〈eαF 〉 may also be recovered by

attaching to each clone at time t ′ the observed value of O, and then constructing the average
O(α, t ′) among the clones which have survived until the final time t . In the large time limit
t → ∞, this average is not sensitive to the precise value of t ′ and a better sampling is
achieved by attaching to each clone the average value of O around time t ′ [6–8].

3 Biasing the Stationary Distribution: Drift Versus Cloning

Equation (2.4) is nothing but the path-integral representation of the equation:

dP

dt
= −HαP (3.1)

with P (x) the probability distribution, and:

Hα = −
∑

i

Ti

∂2

∂x2
i

+
∑

i

∂

∂xi

fi − αA (3.2)

The three terms in Hα correspond to diffusion, drift, and cloning, respectively.
The technique of dynamic importance sampling can always be used to reshuffle the im-

portance of drift and cloning. It is implemented by making a change of basis:

H̃α = eφ(x)Hαe
−φ(x) =

∑

i

−Ti

∂2

∂x2
i

+
∑

i

∂

∂xi

f̃i − Ã (3.3)
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with:

f̃i = fi + 2Ti

∂φ

∂xi

Ã =
∑

i

[

Ti

(
∂φ

∂xi

)2

+ ∂φ

∂xi

fi + Ti

∂2φ

∂x2
i

]

+ αA

(3.4)

In general, there is not an optimal choice for the field φ. We will see examples later in
different contexts. Another way to understand (3.3) is to consider the dynamics (2.4) with a
modified large deviation function:

A → A + dφ

dt
; F =

∫ t

0
A(t ′) dt ′ + φ(t) − φ(0) (3.5)

Writing dφ

dt
= ∑

i
∂φ

∂xi
ẋi and expressing ẋi in terms of the equation of motion, we recover the

result (3.3), (3.4). Alternatively, we may of course always consider the modified dynamics
as the original one with a cloning rate A + dφ

dt
.

Trajectories are thus reweighted according to initial and final configurations. The many-
time expectation with respect to the original dynamics 〈O(t1)O(t2) . . .O(tn)〉 for t1 < t2 <

· · · < tn, starting from a distribution P0(x), corresponds to averages with the modified dy-
namics of 〈O(t1)O(t2) . . .O(tn)e

φ(tn)〉, starting from a distribution eφP0(x).
It is important to realize that this is not the usual Monte-Carlo importance sampling

technique used in equilibrium simulations, which consists simply of modifying the energy
in the sampling protocol E → E + B (for some suitably chosen B), and compensating by
calculating averages as follows:

〈O〉E → 〈OeβB〉E+B (3.6)

where 〈•〉E stands for average using a Monte Carlo scheme with energy E. With such a
technique, one cannot calculate many-time correlation functions, or trajectory probabilities,
since the dynamics are unrelated to the original ones; as one can see easily for the case B =
−E where the modified dynamics are simple diffusion, unlike the original ones. In out of
equilibrium situations, we do not have an explicit expression for the stationary distribution,
and there is no simple way to modify the dynamics in order that they remain probability
conserving and have a biased measure, i.e. there is no analog of (3.6).

3.1 Computing Large Moments of Instantaneous Quantities: The Example of Turbulence

It sometimes happens that we are interested in calculating the moments of an instantaneous
quantity. Consider for example the case of Navier-Stokes equations for driven turbulence.
A set of quantities that characterize intermittency are the so-called longitudinal-structure
functions [9]

Sp(R) = 〈|v(x + R) − v(x)|p〉 = 〈ep ln |v(x+R)−v(x)|〉 (3.7)

In order to compute these moments efficiently, we put, in the notation of the previous para-
graphs:

φ = p

2
ln |v(x + R) − v(x)|2 (3.8)
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We may run several parallel simulations of fully developed turbulence in the station-
ary state, each with its own realization of stochastic stirring, and supplement this with a
cloning/pruning rate equal to the time-derivative of (3.8), which may be expressed in terms
of the instantaneous velocities using the Navier-Stokes equations. The total average cloning
rate yields, for large times, Sp(R). Perhaps more interestingly, the configurations that dom-
inate the modified dynamics are the ones that contribute to Sp(R), and are continuously
being sampled. To the best of our knowledge, this strategy has not been implemented yet.

4 Transport

We now describe large deviations in non-equilibrium stochastic models of transport. In such
models the main observables (e.g. the current, the density, etc.) are functions of the sample
path of a Markov chain in a high-dimensional state space.

4.1 Discrete-Time Markov Chains

Imagine a discretization in space of the noisy dynamics (2.1), so that the phase space is given
by a finite set of configurations. If we assume that also time is discretized then the dynamics
can be described by a Markov chain {xn} with (n = 1,2, . . . , t). The evolution is specified
by a transition probability matrix whose elements are p(x, y) = P (xn+1 = y|xn = x) and
by an initial distribution P (y) = P (x0 = y). We consider a functional F [xn] which is the
sum of the local contributions to the current, an additive function of the transitions along the
trajectory up to time t :

F = F(x0,x1, . . . ,xt ) =
t∑

n=1

f (xn−1,xn) (4.1)

Note that f is, unlike the example in the introduction, a function of the position at two
successive times. For instance if one considers particles diffusing on a one dimensional
lattice and chooses f (xn−1,xn) to be ±1 depending on whether particles jump to the right
or the left, F is the time-integrated current flowing through the system from left to right.
The ‘partition function’ (2.4) is given by

Zt(α) = 〈eαF(x0,x1,...,xt )〉
=

∑

x0,x1,...xt

P (x0)p(x0, x1) · · ·p(xt−1, xt )e
αf (x0,x1) · · · eαf (xt−1,xt ) (4.2)

Just as in the previous section, we replace the initial evolution, given by a transition matrix
p(x, y), by a new evolution, given by a matrix p(x, y)eαf (x,y). We may decompose this as a
probability conserving transition matrix [6]:

pα(x, y) = p(x, y)eαf (x,y) 1

k(x)
(4.3)

and a cloning factor

k(x) =
∑

y

p(x, y)eαf (x,y) (4.4)
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We then have

Zt(α) =
∑

x0,x1,...xt−1

P (x0)pα(x0, x1) · · ·pα(xt−2, xt−1)k(x0) · · · k(xt−1) (4.5)

The convenient way to simulate (4.5) is to consider a cloning step of average factor k(x)

followed by an evolution step with the transition matrix pα(x, y). The former may by im-
plemented by substituting a given configuration by a number (0,1,2, . . . ) of equal clones,
with expectation value of the number equal to k(x), while the latter is a transition with prob-
ability pα(x, y).1 All in all, N (n, x)—the number of clones of in a configuration x at time
n—evolves as

N (n + 1, y) =
∑

x

pα(x, y)k(x)N (n, x) (4.6)

This yields immediately that Zt(α) is given by the ratio between the average total pop-
ulation at time t and the population at time 0 (at initial time every individual or clone has
type distribution P (x0))

Zt(α) = N (t)

N (0)
(4.7)

To cope with possible extinction or explosion of the initial population one works with incre-
ments [6]

Zt(α) = N (t)

N (t − 1)

N (t − 1)

N (t − 2)
· · · N (1)

N (0)
(4.8)

This allows to keep the population size constant during a simulation (with a uniform sam-
pling after the cloning with average factor k(·)) and the Zt(α) will be given by the products
of all renormalization factors.

There are many ways of implementing the Diffusion Monte Carlo dynamics described
by (4.3) and (4.4), which have been extensively discussed in the literature [10, 11]. For
instance, one may choose to run the clones sequentially, rather than simultaneously, and use
any cloning events as the starting point of new simulations [4]. This makes the algorithm
easier to parallelize by reducing the overhead but the total number of clones is then harder
to control.

4.2 An Example: The Totally Asymmetric Exclusion Process

The Exclusion Process on a lattice consists of particles which jump to their neighboring sites
at a given rate, conditioned to the fact that the arrival site is empty. The large deviations of
the total particle currents of a periodic chain of N sites with total asymmetry (TASEP) was
considered in [6]: in this case only jumps to the right are allowed.

The technique described above amounts to running various independent copies of the
chain, but cloning a copy in configuration x with an average rate proportional to

k(x) = 1 + (eα − 1)

N
× [number of particles in x with a free site to their right] (4.9)

1The evolution step can be easily parallelized by splitting the total population of clones over several nodes.
The cloning step however creates an overhead since one may have to copy clones from one node to another.
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Fig. 1 A shock in the TASEP.
Space-time diagram for a ring of
N = 100 sites, α = −50/N and
density 0.5. Time evolution of a
single clone. The shock is dense
and does not advance. Note the
logarithmic scale on the y-axis

Fig. 2 A moving shock in the
TASEP. Space-time diagram for
a ring of N = 100 sites,
α = −30/N and density 0.3. The
shock drifts to the right

The numerical results obtained for Zt(α) were compared to the analytic ones of Ref. [12]
finding an excellent agreement with a very modest numerical effort. Moreover the algorithm
allowed to probe the configurations of the system which are responsible for anomalous small
value of the current, the shocks, and, in the case of a moving shock, to follow the evolution
of the second class particle which set the front of the shock. In Fig. 1 we show a space-time
diagram of the system with N = 100 particles, density 0.5 and α = −50/N . The simulation
was done with L = 1000 clones, each of them initialized with random (uniform) occupancy
numbers, such that the configuration had density 0.5. As predicted by the theory [12] for
this value of the density, the shock does not drift, although different initial conditions lead to
different shock positions. Figure 2 shows the case α = −30/N , and density 0.3: we see that
the shock has a net drift to the right, again as predicted by the theory. Let us note here that
the configuration corresponds to the end of the time-interval; but one could have sampled
one at an intermediate time as explained just below (2.7).

The cloning algorithm has been applied for transport models such as the asymmetric ex-
clusion process and the Kipnis-Marchioro-Presutti model [13–15] and to study symmetries
in fluctuations far from equilibrium [16]. Such studies are useful as a test for the predictions
of Fluctuating Hydrodynamics [13, 17], but also to probe the limits of the cloning method
itself, when insufficient clone number may yield misleading results (a test criterion has been
devised in [14]).
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4.3 Continuous-Time Markov Chains

Many systems have dynamics that are naturally defined in continuous time. For instance,
spin flips in the Ising model, that takes the system from a configuration x to another
one y, can occur at any time with a given rate W(x → y). To simulate such systems,
one can discretize time and the choose a small time step dt , (transition probability writ-
ing p(x, y) = dtW(x → y)). One then distinguishes between time steps during which a
configuration change occurs (with probability, say, dtW(x → y)) and those where nothing
happens (with probability 1 − dt

∑
y W(x → y)). Doing this in the algorithm described in

the previous sections, one arrives in the limit dt → 0 at a continuous time version of the
cloning algorithm.

One can however also work directly with continuous time simulations. Each configura-
tion x has a total escape rate r(x) = ∑

y W(x → y), which is the rate at which the system
jumps from configuration x to any other configuration. One can choose a time interval δt

from an exponential clock, with probability p(δt) = r(x) exp[−r(x)δt], update the time
t → t + δt , and then decide which configuration changes to make. Going from x to y then
occurs with probability W(x → y)/

∑
z W(x → z). For traditional Monte Carlo algorithms,

this method has two advantages. First, one does not have to decide which dt to use and the
algorithm makes no discretization error. Second, there are no rejection events which can
slow down severely discrete time simulations. However all this comes at the cost of having
to generate two random numbers per configuration change (one for the time at which the
change occurs, one for the target configuration) while discrete time Monte Carlo only needs
one.

When simulating rare events, the continuous time method is more cumbersome to im-
plement but overcomes the problem of diversity of time scales typically met in these sim-
ulations. For instance, depending on the value of the bias α, the TASEP presented above
explores trajectories where the average time between two events ranges from order 1 (in a
traffic jam, only the leading particle can jump forward) to order 1/N (when all particles can
jump forward). When working with continuous time, the adjustment of the time-step is auto-
matic. In other systems, such as the kinetically constrained models presented in Sect. 5, the
situation is even worse. A typical trajectory can explore successive configurations where the
waiting times may change by a factor of the order of the system size. In such case, a discrete
time algorithm with a time step small enough to resolve the rapid configuration changes will
have a prohibitively large number of rejection events when visiting the slow configurations.

To work directly in continuous time, as exposed in [18], the idea is to write the dynamical
partition function as a sum over allowed values of F (cf. (2.6)):

Zt(α) = 〈eαF 〉 =
∑

x

∑

F

eαF P (x,F, t)

︸ ︷︷ ︸
≡P̂ (x,α,t)

(4.10)

where P (x,F, t) is the probability density of being in configuration x at time t , and having
observed a value F of the dynamical observable. The quantity P̂ (x,α, t) is its Laplace
transform. As in (4.1), we can choose F to be the sum of contributions f (x → y) occurring
at each configuration change. For instance, taking f (x → y) = +1 (resp. −1) each time a
particle jumps to the right (resp. left) in a 1d particle system corresponds to F being the
total particle flux flowing through the system from right to left. We can also consider the
case where F depends on the time average of some observable A(x), as in the introduction
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(see [8, 18]):

F =
K∑

k=1

f (xk−1 → xk) +
∫ t

0
dt ′ A(x(t ′)) (4.11)

where (x0 . . . xK) is the sequence of visited configurations of a given history presenting K

changes of configurations. A(x) can for instance be the magnetization of the configuration
x of a spin system and one is then looking for trajectories that have atypical time average of
the magnetization.

From the equation of evolution obeyed by P (x,F, t), one obtains the evolution
of P̂ (x,α, t):

∂t P̂ (x,α, t) =
∑

y

eαf (y→x)W(y → x)P̂ (y,α, t)

−
∑

y

W(x → y)P̂ (x,α, t) + αA(x)P̂ (x,α, t) (4.12)

which is of the form ∂t |P̂α〉 = −Hα|P̂α〉 where |P̂α〉 is the vector of components P̂ (x,α, t).
Just as in (3.2), the modified operator of evolution Hα does not conserve probability if α �= 0.
We have to proceed as in the steps leading to (4.3) and split the evolution in two contribu-
tions, one conserving probability and the other a purely cloning term. To do so we introduce
the modified transition rates Wα(y → x) = eαf (y→x)W(y → x) and the corresponding es-
cape rate rα(x) = ∑

y Wα(x → y). We can then rewrite (4.12) as

∂t P̂ (x,α, t) =
probability conserving

︷ ︸︸ ︷∑

y

Wα(y → x)P̂ (y,α, t) − rα(x)P̂ (x,α, t)

+ [
rα(x) − r(x) + αA(x)

]
P̂ (x,α, t)

︸ ︷︷ ︸
cloning

(4.13)

The first part is a modified dynamics of rates Wα(y → x) while the second part corre-
sponds to cloning at rate rα(x) − r(x) + αA(x). The method is then the same as for discrete
time dynamics (Sect. 4.1): one takes a large number of copies of the system, each of them
evolving in continuous time (i) through the modified rates Wα(y → x) and (ii) subjected to
a cloning probability e[rα(x)−r(x)+αA(x)]�t on each time interval �t where the configuration
does not change from x [8]. One can rescale the total clone population to keep its size con-
stant, storing as previously the overall cloning factor. The dynamical partition function is
then recovered from those factors as in (4.8) and the corresponding dynamical free energy
μ(α) is:

μ(α) = lim
t→∞

1

t
logZt(α) (4.14)

We provide in Appendix an example pseudo-code for the practical implementation of the
algorithm.

4.4 An Example: Density Profiles in the ASEP

Exclusion processes (such as the TASEP studied above) are interesting transport models in
which the cloning algorithms can be used and in particular compared to analytical results
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Fig. 3 Density profile in the
ASEP. α = −0.3, α conjugated
to the total current flowing
through the system. System size
is 400, with 200 particles, in
periodic boundary conditions,
with an asymmetry
E = 1

2 log p
q = −0.2

for the cumulant generating function μ(α) = limt→∞ lnZt(α)/t [13, 18], including finite
size effects [8]. In Fig. 3, we present an example of a mean profile at non-zero α for the
asymmetric exclusion process (compared to the TASEP, particles can jump to the left and to
the right with respective rates p and q). The parameter α is conjugated to the particle flux
through the system. We observe on Fig. 3 that, to minimize the overall current, the system
develops an asymmetric profile, where only the front particles can jump easily.

5 Fluctuations of Dynamical Activity

Driven systems may reach a non-equilibrium steady state, characterized by a non-zero cur-
rent the probability distribution of which can be studied as described in the previous section.
Another class of non-equilibrium systems is given by glassy systems. In the most simple
cases, these systems are out of equilibrium not because they are driven but because their dy-
namics is so slow that a macroscopic system never reaches Boltzmann equilibrium (or any
other steady state), despite the fact that the microscopic dynamics satisfy detailed balance.
In this context, it can be interesting to study trajectories of atypical mobility, for instance to
detect trajectories that are ‘faster’ or ‘slower’ than average, i.e. the dynamic heterogeneity.
To quantify this, one introduces the dynamical activity [19–21] (also termed traffic [22, 23]),
which provides a good description of dynamical heterogeneity in glass models, as we now
discuss.

On a time window [0, t] the dynamical activity K of a stochastic process is the number of
configuration changes undergone by the system, and is thus a random variable that depends
on the system’s trajectory.

Kinetically constrained models (KCMs), such as the Fredrickson-Andersen [24] or the
Kob-Andersen [25] models are such that static (one-time) properties are trivial in the most
simple cases, while their dynamical properties (e.g. two- or more times correlations) share
common features with generic glassy phenomena (see [26, 27] for reviews on KCMs). They
lend themselves rather easily for the study of their activity K , and for the analysis of the
results.

Let us focus for simplicity on the one-dimensional Fredrickson-Andersen (FA) model. It
consists in a 1d lattice of L sites. Each site is either excited (low density, active) or unexcited
(high density, inactive). The sites may flip from inactive to active (at rate c), and from active
to inactive (at rate 1 − c). These transitions are allowed on a given site provided at least
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Fig. 4 FA model (from Merolle
et al. [19]). Space-time diagram
of the FA model for atypical
(a and b) and typical (c)
histories. In the space direction,
active sites are represented in
black dots while inactive ones are
white. The picture is reminiscent
of the phase coexistence of a
static medium at a solid-liquid
coexistence point

one of the neighboring sites is active. This is the kinetic constraint, introduced as a way
to mimic the facilitated dynamics of molecular glasses, whereby active regions enhance
activity in their neighborhood. Clearly, for small values of c, the dynamics becomes very
slow.

It was observed in [19] that the FA model presents “dynamical coexistence” of active and
inactive regions in space-time (see Fig. 4), very similar to the phase coexistence of liquid
and solid at the coexistence point in a first order static phase transition—if one forgets that
one direction in Fig. 4 is the time.

The activity K of a configuration is defined as the number of active sites. In practice,
one may weight the trajectories followed by the system by a factor e−sK , to favor active
(s < 0) or inactive (s > 0) histories (in this section we take the convention s = −α to follow
the notation in the literature on KCMs). If the observed coexistence disappears for s �= 0
(that is, if there is a dynamical phase transition), it means that the system indeed sits on a
first-order dynamical coexistence point at s = 0.

The continuous time cloning algorithm [18] exposed in Sect. 4.3 enables us to compute
numerically the dynamical partition function

Zt(s) = 〈e−sK〉 ∼ etμL(s) (5.1)

for this system and other KCMs [7, 28]. The average is taken on histories of duration t , in
the large t limit, at fixed system size L. The non-analyticities of the dynamical free energy
μL(s) in the large-size limit, signal the existence of a dynamical phase transition.

5.1 Dynamical Phase Coexistence

As shown in [7, 28], several KCMs display a phase transition, in the large system size limit,
between an active phase (s ≤ 0) where the dynamical free energy 1

L
μL(s) is finite, and an
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Fig. 5 FA model (from Garrahan et al. [28]). Numerical evaluation of the “dynamical free energy”
1
L

μL(s) (left) and the density of occupied sites ρL(s) (right) for histories weighted by e−sK . As the system

size increases, 1
L

μL(s) approaches its singular limit where 1
L

μL(s) is zero for s > 0. In the same limit, the
density ρL(s) displays a discontinuity at s = 0, indicating a first order dynamical transition

inactive phase (s > 0) where is identically zero (see Fig. 5, left, for the 1d FA model). The
mean density of active sites (see Appendix for details on the practical computation of such
a weighted mean)

ρL(s) = 〈e−sK 1
t

∫ t

0
1
L

∑L

i=1 ni〉
〈e−sK〉 (5.2)

(here ni ∈ {0,1} is the activity at site i) also characterizes this transition (Fig. 5, right): it
remains finite in the active phase s ≤ 0 (a finite fraction of sites is active) while it goes
to zero in the inactive phase (only a finite number of sites remains inactive). Several other
glass formers display the same phenomenology (see [29] for a review), representative of
dynamical heterogeneities, that is, of the coexistence in the system of regions with high and
low dynamical activity.

An interesting question is to determine whether molecular models of glasses, such as
Lennard Jones mixtures, also present such a dynamical phase transition. A conceptual diffi-
culty that arises is to find a physically relevant measure of the mobility, that generalizes the
concept of dynamical activity to this context. In [30], the activity was defined as the number
of events where particles move sufficiently far in a given time-interval, thus averaging out
short-scale vibrations, whereas in [31], the activity was taken to be a time-average of the
modulus of the forces, in a continuous version of the model. In both approaches, numerical
results support the existence of a phase transition at some critical value sc. An open issue is
to characterize the inactive phase and to determine whether the effective finite-size critical
transition parameter sc(L) goes to 0 as L goes to infinity or not (that is to say: does the
standard dynamics at s = 0 lie exactly at the critical point?).

More generically, the phase transitions are also present in p-spin models [32] and in trap
models [33], where numerical approach support analytical results. These results are in favor
of a generic link between glassiness and dynamical phase coexistence, whose precise nature
remains to be understood.

6 Fluctuation of Chaoticity in Dynamical Systems

As explained in the previous section, large deviation theory plays nowadays an important
role in non-equilibrium statistical physics to study and quantify dynamical phase transitions.
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The first studies of large deviations of dynamical observables were however inspired by
another field, that of dynamical systems. It was argued in the 70s, following the seminal
works of Sinai, Ruelle, Bowen and others [34–37] that quantitative studies of dynamical
systems should rely on a construction analogous to statistical mechanics of trajectory space,
where the quantities playing the role of energy functionals for the trajectories are functions
of the Lyapunov exponents. This line of thought was very successful in terms of formalism
and theory, but progress was severely hampered by the difficulty of computing anything in all
but the most schematic systems. Indeed, many of the examples studied very low dimensional
systems—mostly maps of the interval, with notable exception of the Lorenz gas [38]. As we
show in the two following sections, the development of recent methods to compute the
fluctuations of Lyapunov exponents can fill this gap and hopefully lead to new insights in
the field of dynamical systems of many bodies.

For sake of concreteness, we will focus on Hamiltonian dynamics but one should keep in
mind that the method is much more general and can be applied, for instance, to dissipative
systems. We consider a system with 2N degrees of freedom whose dynamics is given by

ẋi = fi[x(t)]; with

{
x = (q1, . . . , qN ,p1, . . . , pN)

f = ( ∂H
∂p1

, . . . , ∂H
∂pn

,− ∂H
∂q1

, . . . ,− ∂H
∂qN

)
(6.1)

As usual to quantify the chaoticity of a trajectory we introduce the Lyapunov exponents. We
consider an infinitesimal perturbation δx(t) whose dynamics reads

δẋ = −A · δx; with Aij = −∂fi[x(t)]
∂xj

(6.2)

The evolution of the norm of such a perturbation is given by

d

dt
|δx|2 = −

∑

ij

2 δxi Aij δxj (6.3)

Introducing the normalized tangent vectors vi = δxi

|δx| whose evolutions are given by

v̇i = −
∑

j

Aij vj + vi

∑

kl

vkAklvl (6.4)

(6.3) can be recast as

d

dt
|δx(t)|2 = −

∑

ij

2viAij vj |δx(t)|2 (6.5)

and finally solved to yield

|δx(t)| = |δx(0)|e−∑
ij

∫ t
0 vi (t

′)Aij [x(t ′)]vj (t ′)dt ′ (6.6)

The largest Lyapunov exponent is then given by λ = limt→∞ λ(t), where the finite time
Lyapunov exponent λ(t) is

λ(t) = 1

t
log

|δx(t)|
|δx(0)| = −1

t

∫ t

0
dt ′

{∑

ij

vi(t
′)Aij [x(t ′)]vj (t

′)
}

(6.7)
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More generally, the exponential expansion of k-dimensional volume elements, rather that
vectors δx, yields in a similar way the sum of the first k Lyapunov exponents.

To characterize the fluctuations of chaoticity amounts to sampling the distribution of λ(t)

P (λ, t) = eS(λ,t) ∼
t→∞ ets(λ) (6.8)

One can understand that the exponent is generically extensive in time, as in usual thermo-
dynamic systems: one cuts a long trajectory of duration t in many segments of duration
δt much larger than the typical correlation time τ . Each segment can thus be considered
independent of the others and the probability that the total trajectory has an exponent λ is

P (λ, t) =
∑

(λ1+···+λt/δt )δt=λt

P1(λ1, δt) . . . Pt/δt (λt/δt , δt) (6.9)

=
∑

(λ1+···+λt/δt )δt=λt

eS1(λ1,δt)+···+St/δt (λt/δt ,δt) (6.10)

The exponent of each term of the r.h.s. is the sum of t/δt terms of order one and is thus
of order t . At large times, t/δt � 1, the distribution P (λ, t) concentrates around its typical
value, and the scaling law (6.8) is thus verified. This scaling breaks down in the presence of
diverging correlation times, a signature of dynamical phase transitions.

As in statistical mechanics, the derivation of the entropy s(λ) is difficult and one rather
works in a “canonical” ensemble by introducing a dynamical partition function

Zt(α) = 〈
eαtλ(t)

〉 ∼
t→∞ etμ(α) (6.11)

where the average 〈 . 〉 is made with respect to P (λ, t), i.e. over initial conditions, noise
realizations, etc. μ(α) plays the role of −βF in statistical mechanics, where F is a free
energy, and is called topological pressure.

From the definition of the finite time Lyapunov exponent (6.7), one sees that the com-
putation of Zt(α) amounts to the large deviation computation presented in the introduction,
with the observable A now given by

A(x) = −
∑

i,j

viAij (x)vj ; F =
∫

dtA(x) (6.12)

Let us now make a point that will be valid for all deterministic systems. In such cases,
the only source of fluctuations are the initial conditions. If the system is chaotic enough,
this should not be very important but, for example, in the case of mixed system, starting
from a regular island or a chaotic region yields a very different result, because trajectories
do not take from one to the other. In this review we consider a shortcut to this problem
which consists of adding a small amount of stochastic noise, so that the dynamics effectively
samples the whole trajectory space (for a discussion of the low noise limit see [40]). We thus
consider a slightly different set of equations

q̇i = pi; ṗi = −∂H

∂qi

+ √
2εηi (6.13)

The algorithm presented in the introduction of this paper can now be applied to our noisy
Hamiltonian dynamics. We consider a population of N clones in phase space of positions
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and momenta q and p. To each clone we associate a normalized tangent vector v. We then
choose a time step dt and a noise intensity ε and run the simulation over a large time t =
Mdt . At t = 0, the N copies of the system start from an arbitrary initial configuration
(the noise ensures the ergodicity of the algorithm). At each time step t ′ = ndt , we do the
following [39]:

(1) For each clone
• (q,p) evolve with the noisy Hamiltonian dynamics (6.13),
• v evolves according to the linearized dynamics

v̇i = −Aijvj (6.14)

• v is then renormalized to unity and we store the renormalization factor N(n) =
|v(t+dt)|

|v(t)| � e−v†·A·vdt .
(2) Each clone of the system is then pruned or replicated, with its rate N(n)α . To do so, we

pull a random number ε uniformly between 0 and 1 and we compute2 τ = �ε +N(n)α�,
• if τ = 0, the clone is deleted,
• if τ > 1, we create τ − 1 copies of the clone.

(3) The total population is now composed of N (n + 1) clones, instead of the initial N (n)

ones. We then store R(n) = N (n+1)

N (n)
,

• if N (n + 1) < N (n), we copy N (n + 1) − N (n) clones, chosen at random,
• if N (n + 1) > N (n), we delete N (n + 1) − N (n) clones, chosen at random.
Finally, we end up again with N (n + 1) = N (n) = N (0) clones.

The dynamical partition function is then obtained from R(n) through

Zt(α) =
M∏

n=1

R(n) (6.15)

while the topological pressure is given by

μt(α) = 1

t

M∑

n=1

logR(n) (6.16)

Let us now illustrate this algorithm, called “Lyapunov Weighted Dynamics”, with a low
dimensional system (the standard map) and a large dimensional one (a FPU chain of 1024
particles).

6.1 The Standard Map

The standard map is defined by the dynamics

pn+1 = pn + kδ

2π
sin(2πqn); qn+1 = qn + δpn+1 (6.17)

with (qn,pn) ∈ [0,1]× [−1,1]. It is one of the traditional models used to study transition to
chaos. It goes from an integrable system when k = 0 to a more and more chaotic one when
k increases. In Fig. 6 we show the typical trajectories that are localized by the Lyapunov

2�x� is the largest integer smaller than x.
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Fig. 6 Typical Configurations for α = ±0.04. Phase space trajectories of the standard map are shown
in light gray (light red in the web version) whereas the trajectories localized by the Lyapunov Weighted
Dynamics appear in dark gray (dark blue in the web version)

Fig. 7 Standard map.
Dynamical free energy μ(α) (red
crosses) and average Lyapunov
exponent 〈λ〉α = Z−1

t (α)〈λeαλt 〉
(blue squares) as a function of
the bias α. The discontinuity at
α = 0 of 〈λ〉α = μ′(α) is the
signature of a phase coexistence
between chaotic and integrable
trajectories in space time

Weighted Dynamics for very small bias (α = ±0.04). One sees that as soon as the system
is biased in favor of integrable trajectories (α < 0), the dynamics localizes on integrable
islands, whereas a tiny bias favoring chaotic trajectories (α > 0) detects the chaotic layers
surrounding these islands.

Computing the topological pressure (Fig. 7) shows that the system lies at a critical point
where chaotic and integrable trajectories coexist in phase space, in the manner of a first
order phase transition.

6.2 FPU Chains

Beyond the computation of dynamical free energies (or topological pressure), the algo-
rithm can be used to sample trajectories of atypical chaoticity. Let us show here on a high-
dimensional system, with 2048 degrees of freedom, which are the trajectories that realize
large deviations of the chaoticity in anharmonic chains of oscillators. We consider the fol-
lowing Hamiltonian

H =
N∑

i=1

p2
i

2
+

N∑

i=1

[
(xi+1 − xi)

2

2
+ β

(xi+1 − xi)
4

4

]

(6.18)

where xN+1 = x1. This system, studied in the 50s by Fermi, Pasta, Tsingou and Ulam, cor-
responds to N particles connected by anharmonic springs. The limit β = 0 corresponds to
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Fig. 8 Equilibrium
simulations of the FPU chain
(N = 128, α = 0). Time-line of
each of the 128 particles around
their [arbitrary] equilibrium
positions. We see a superposition
of localized breathers, ballistic
solitons and small fluctuations

Fig. 9 Looking for regular trajectories (N = 128, α = 5N ). Simulation at fixed energy (E = 1) with fixed
boundary conditions, starting from microcanonical equilibrium. The figure shows the time-line of each parti-
cles around its [arbitrary] equilibrium position. Several solitons are ballistically propagating from one end of
the system to the other, where it elastically bounce of fixed boundary condition. The Lyapunov exponent of
this trajectory is equal to half the average one

an integrable case: the springs are harmonic and the Fourier modes correspond to N inde-
pendent harmonic oscillators or frequencies

ωk = 2 sin

(
πk

N

)

(6.19)

There has been continuous interest in this model (for a review see [41]) because of its rich
phenomenology, and in particular, there has been some recent studies of the (Gaussian)
fluctuations of its Lyapunov exponent [42]. As soon as β is non-zero, the dynamics are
chaotic. However, starting from well chosen initial conditions, the model admits long-lived
solitonic modes, related to the Korteweg-de Vries modified equation [43]. Similarly, a mod-
ulational instability leads to short-lived chaotic breathers [44, 45], when energy is injected
in high-frequency modes. If one runs an equilibrium simulation of the anharmonic chain,
one typically observes a mixture of short-lived localized structures (solitons, breathers) and
a phonon bath (Fig. 8).

When applying the Lyapunov Weighted Dynamics, we add a small stochastic noise to
the system, taking care that the noise conserves the total energy and momentum and thus
preventing a slow, unphysical drift in these quantities.

If one biases the system in favor of regular trajectories, the phonons and breathers com-
pletely disappear and we observe a long-lived gas of solitons, propagating ballistically (see
Fig. 9). In this case, it is important to set the center of mass velocity to zero, because other-
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Fig. 10 Looking for chaotic trajectories (N = 128, α = 5N ). This simulation is realized at fixed energy
and total momentum (energy density E = 1) with periodic boundary conditions. The gray level represent
the total energy of each particles. Starting from an equilibrium configuration, the dynamics reveals a chaotic
breathers whose Lyapunov exponent is three time larger than the average one

Fig. 11 Looking for chaotic
trajectories (N = 1024,
α = 5N ). This simulation is
realized at fixed energy and total
momentum (energy density
E = 1) with periodic boundary
conditions. The gray level
represent the total energy of each
particles

wise the system can eliminate completely chaoticity by concentrating all its energy on the
center of mass motion.

On the other extreme, a bias in favor of chaotic trajectories localizes long-lived chaotic
breathers (see Fig. 10). We used periodic boundary conditions for this simulation to reduce
the interactions between the wandering breather and the boundaries of the system. Note that
running the same simulation in a much larger system (N = 1024) shows that the breathers
are much more localized than the solitons (Fig. 11).

Interestingly, the values of the bias α we have to use here are not of order one. Indeed,
as N increases, the distribution of the largest Lyapunov exponent becomes more and more
peaked. Let us assume for instance that s(λ) is extensive with some power of the system
size, so that one can write

P (λ1, t) = exp[Nξ ts̃(λ1)] (6.20)

with s̃(λ) of order 1 in both t and N . From the expression

Zt(α) = 〈
eαλt

〉 =
∫

dλ exp[Nξ ts̃(λ1) + αλt] (6.21)

one sees that the integral is dominated by a value λ∗ such that:

s̃ ′(λ∗) = − α

Nξ
(6.22)

When N → ∞, λ∗ satisfies s ′(λ∗) = 0 and is thus the typical value of the Lyapunov expo-
nent. One should thus use a bias that scales as α = Nξ α̃ to observe large deviations of the
Lyapunov exponents. Similarly, to access the dynamical free energy, one has to compute the
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exponent ξ and define

μ̃(α̃) = 1

tNξ
logZt(α) (6.23)

Such a calculation, which, as far as we know, has not been done so far, would tell if the FPU
chain lies at a critical point where breathers, solitons and phonons coexist in a first order
phase transition manner. The computation of the dynamical free energy for large dimen-
sional systems is now achievable numerically and is one of the exciting goal that are facing
us.

7 Work and Entropy Production

When a system is subjected to an external drive, the total energy absorbed (and the result-
ing entropy production), are quantities that fluctuate depending on the initial microscopic
configuration of the system and on the thermal bath, if there is one. Work and entropy pro-
duction are important quantities, because they concern the state of the system and are the
subject of the Second Law of thermodynamics. The Second Law as such concerns only av-
erage quantities, and not the fluctuations. It was only relatively recently realized that a wider
framework—based on considering the effect of time-reversal on the dynamics—allows to
derive a set of relations that are obeyed by the fluctuations—well beyond the linear regime—
and yields the Second Law constraints as particular cases.

(i) The transient Fluctuation Theorem relates, in the same context, the probability of a
given work W , and that of its opposite: P (W)/P (−W) = eW/T [46, 47].

(ii) The Jarzynski relation states that the average of e−W/T over all processes starting from
an equilibrium distribution at temperature T is one [48].

Both are very general, model-independent results, and were later shown to be particular
cases of the more general relation, Crooks’ relation.

(iii) The stationary fluctuation theorem involves the same relation for the work as the tran-
sient version, in a stationary (non-equilibrium) situation, and is valid only in the limit of
large times. The particular case in which the dynamics is deterministic (the Gallavotti-
Cohen theorem [47]) deserves special attention: the theorem is non trivial because the
nature of the stationary distribution is then dependent upon the ergodicity properties of
the system. These conditions involve not only chaoticity properties of the attractor, as
one would expect from any problem in ergodic theory, but also the fact that attractor
and repeller sets are sufficiently intertwined: large deviation trajectories that commute
between them generate the reversals in entropy production [49].

Systems with macroscopic, hydrodynamic degrees of freedom may have extremely large
fluctuations when subjected to strong forcing, due to excitation of macroscopic structures
[50]. The typical example is the (Rayleigh-Bénard) convection of a fluid between a hot Th

lower plate and a colder Tc top plate [51]. The heat is transported by fluid currents that have
macroscopic fluctuations, enormous compared with kbTh. The fluctuation theorem as such
involves the temperatures Th,Tc that are irrelevant for these fluctuations. The only way in
which the appearance of a Fluctuation Relation for the hydrodynamic modes may be justi-
fied, is to invoke the existence of a large effective temperature, related to the macroscopic
fluctuations. Bonetto and Gallavotti [52] have conjectured that this could be justified by con-
sidering the restricted space in which the macroscopic takes place. These questions are very
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Fig. 12 The Sinai billiard. The
radii are R1 = 0.39, R2 = 0.79.
We also show an example of
trajectory for the external field
�E = (1,0)

much open, and in order to make progress it would be useful to simulate the limits beyond
which the fluctuation theorem ceases to hold rigorously, because that is where new concepts
may arise. These are the limits in which large deviations are particularly hard to observe, if
one has to wait for them to happen spontaneously.

7.1 Sinai Billiard

The method of cloning has been shown to work efficiently in the verification of the
Gallavotti-Cohen theorem on a simple chaotic system given by the Sinai billiard. This sys-
tem consists of a particle moving inside a billiard as in Fig. 12, with periodic boundary
conditions. It is under the action of a force field �E, and is subject to a deterministic ther-
mostat that keeps the velocity modulus constant |�v| = 1. Between bounces, the equations of
motion are:

ẍi = −Ei + γ (t)ẋi , i = 1,2;
γ (t) =

∑

i

Ei ẋi .
(7.1)

We wish to calculate the fluctuations of the dissipated power γ and thus the dynamical
partition function

Zt(α) = 〈eα
∫ t

0 γ (t ′)dt ′ 〉 (7.2)

The fluctuation theorem arises from the symmetry

μ(α) = μ(−1 − α) (7.3)

with μ(α) = limt→∞ 1
t

lnZt(α). Therefore with reference to the notation of the first section
we have now

A(x) = γ (x) (7.4)

As in the previous section, the dynamics is deterministic, and hence to allow different clones
to diversify, we introduce a small stochastic noise, (cf. paragraph leading to (6.13)) and
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Fig. 13 The Gallavotti-Cohen
theorem. Plot of μ(λ) vs. λ for
the driven Lorentz gas. Data for
�E = (E,0), E = 1,2 and noise

intensity � = 10−3,10−4. The
Gallavotti-Cohen theorem
implies the symmetry around
λ = −1/2. The continuous lines
represents a polynomial fit,
quadratic for E = 1 (Gaussian
behavior), 4-th order for E = 2

check the stability of results in the limit of small noise. We evolve the system for macro-
scopic intervals T , and clone at time t ′ = nT with a factor

kt ′ = e
α

∫ t ′+T
t ′ γ (t ′′) dt ′′

Before each deterministic step of time T , clones are given random kicks of variance � in
position and/or velocity direction. The time-interval T and the noise intensity � are chosen
so that twin clones have a chance to separate during time T , and this depends on the chaotic
properties of the system. In the present case, 0.1 ≤ T ≤ 1 allows for a few collisions, which
guarantees clone diversity for 10−3 ≤ � ≤ 10−4.

In Fig. 13 we show the results of μ(α) for −2 ≤ α ≤ 1, and for �E = (E,0) with E = 1
and E = 2, both corresponding to very large current deviations (in the figure α is called λ).

8 Planetary Systems

Planetary systems are the epitome of deterministic systems. With their relatively small num-
ber of interacting bodies, they could easily be considered the systems that are further from
statistical treatment. And yet, statistical analysis of orbits becomes necessary: when we dis-
cover a planetary system we find that many amongst the observationally allowed configura-
tions are only stable in the immediate past or future [53]. Since we do not expect that just
by chance we came across a system that has just ejected (or will soon eject) a planet, we
tend to favor amongst configurations compatible within error with the data, those that have
an unusually high level of stability.

On a related line, it has been shown [54] that just considering a shift in the Earth’s present
position of the order of one hundred meters, the fate of Mercury may change dramatically, in
some cases leading its orbit to intersect the one of Venus. Consider for example the study by
Laskar [54]. In a first calculation, he integrated the orbit of Mercury starting from different
configurations, obtained by displacing the position of the earth by about 150 meters. The
orbits obtained this way were qualitatively similar, and yet different. Next, he repeated the
calculation but making a few clones of the trajectories, and choosing the one with largest ec-
centricity. After a few such steps, he reached orbits with great eccentricities, that could cross
the orbit of Venus. We recognize here a strategy that is very close to the one we are describ-
ing here, for the particular cases α = 0 and α = ∞, respectively. The small displacements
are in fact playing the role of our noise.
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Indeed, if at each cloning step we had cloned or killed configurations in a fraction propor-
tional to α times the eccentricity change during the corresponding time interval (cf. Sect. 3:
the eccentricity plays here the role of φ described there) we would have obtained the full
probability distribution of, say, the eccentricity at each time. Denote N(α) the total number
of clones at time t obtained without normalizing the clone population, or keeping track of
the normalizations if they were done. N(α) is the Laplace transform of the probability P (e):

N(α) =
∫

de e−αe P (e) (8.1)

Just as in the example of Sinai’s billiard, because the system is chaotic, the displacements
(or the noise level), may be essentially negligible—for example, compatible with all other
external sources of displacements which we have neglected—and yet yield all the variety of
trajectories.

It would be very interesting to see these methods applied to studying in detail the possible
future and past evolution of planetary systems, with a large deviation statistical analysis.
Many interesting questions concerning the self-organization of the stability of our solar
system could be investigated this way.

Appendix: Cloning in Continuous Time: An Example Pseudo-code

In this appendix we provide an example pseudo-code for the cloning of a system described
by a configuration conf, evolving with Markov dynamics in continuous time (see Sect. 4.3).
The dynamics of each clone consists in a succession of (i) Poissonian waiting times (sam-
pled with the function random.poisson) between jumps, (ii) change of configuration,
or “jumps” (performed by evolve()) and (iii) cloning, keeping the total number of clone
constant. The way in which the weighted average of a time-extensive observable obs is
computed is also explicited: a value of obs is attached to each clone and copied/pruned
with it.

alpha=0.1 # parameter conjugated to the observable F
N=500 # number of clones
time=0 # initial time
tmax=1000 # maximum simulation time
cloning=0 # logarithm of the global cloning factor

# at the end the ldf is given by cloning/time
conf.init() # initialization of the clones:

# conf[1] to conf[N] are set to given configurations
escaperate.init() # initialization of the alpha-dependent escape rates
obs.init() # initialize an observable obs that we want to average

# over weighted histories

# initialisation of first jump times
for c from 1 to N do:

jumptime[c]=random.poisson(escaperate[c]) # Poisson law of rate escaperate[c]

# main loop

while t<tmax do
(c,t)=next(jumptime) # returns the first clone c to jump, and its jumptime t
conf[c].evolve() # evolves the configurations clone c

# note that the observable obs is evolved accordingly
deltaT=random.poisson(escaperate[c])

# determines the time interval until the next jump
jumptime[c]+=deltaT # updates the jumptime
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K=conf[c].clfact(deltaT)# yields the cloning factor
# K=e^(deltaT*(deltaescaperate[c]+alpha*A[c]))

cloning+=log((N+K-1)/N) # updates the log of the global cloning factor

k=floor(K+random.real())# integer number k representing the number of clones
# replacing the current clone c

cases
k=0: # clone c is suppressed, i.e. replaced by another one chosen at random

do newc=random.integer(N) while newc==c
conf[c]=conf[newc]
obs[c]=obs[newc]
jumptime[c]=jumptime[newc]

k=1: # nothing is done
k>1: # k-1 copies of c have to be done; then, among the total N+k-1

# resulting clones, k-1 of them are pruned so as to keep N constant
indices=randomarray(N,k)

# puts in indices k-1 *different* random integers between 1 and
# Nclones+k-1
# (both included); only those less or equal than N will be replaced by c

for newc in indices do:
if newc<=N do:

conf[newc]=conf[c]
obs[newc]=obs[c]
jumptime[newc]=jumptime[c]

# output of results
ldf=cloning/time
print(’large deviation function = ’,ldf)
meanobs=sum(obs[c] for c in range(N))/N/time
print(’weighted mean of observable = ’,meanobs)
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