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1. Introduction

Large deviation theory is an increasingly useful tool for understanding dynamical fluctu-
ations in statistical mechanics [1–6]. For example, by analysis of probability distributions
of time-averaged quantities, one gains understanding of entropy production and dissipa-
tion [7–9], transport phenomena [2, 10–13], and metastability in glassy systems [14–17].
The tails of these probability distributions can have characteristic forms, which are
related to a particular type of dynamical phase transition [10, 14, 15]. These are analo-
gous to thermodynamic phase transitions, in that one analyses ensembles of dynamical
trajectories in a manner that is exactly analogous to the classical analysis of thermody-
namic ensembles. While the principles of thermodynamics are restricted to static and
quasistatic phenomena, applications of large deviation theory to trajectories of these
systems can be viewed as an extension of the thermodynamic formalism to the analysis
of dynamical phenomena [3, 4, 18, 19].

The analogy between static and dynamical phase transitions means that methods
from thermodynamics can often be generalised, in order to study dynamical transitions.
For example, the dynamical analogue of the free energy can be obtained as the solu-
tion to an eigenvalue problem [2, 5, 20], just as the thermodynamic free energy can
be obtained as the largest eigenvalue of a transfer matrix. The numerical method of
transition path sampling [21] generalises Monte Carlo (MC) sampling techniques from
static configurations to dynamical trajectories [19, 22]. However, there are also methods
that harness directly the dynamical aspects of trajectory ensembles, including cloning
(population dynamics) methods for numerics [23, 24], and control-theoretic approaches
that aim to describe dynamical rare events by constructing controlled processes where
these events become typical [16, 25, 26].

In a recent paper [27], we analysed the finite-size scaling of a first-order dynami-
cal phase transition in the Fredrickson–Andersen (FA) model [28]. This simple model
describes glassy systems [29, 30] and has been studied extensively in that context. Its
dynamical phase transition is also amenable to analytic and numerical studies [4, 14, 17,
27, 31–33]. In [27], we used a cloning method to demonstrate an exponential divergence
of the susceptibility with system size, and we explained this behaviour analytically.
This exponential divergence stands in contrast to the usual finite-size scaling behaviour
at thermodynamic first-order transitions, where one observes a power-law divergence
with system size. The different scaling behaviour arises from the way in which the
thermodynamic limit is taken: when considering the distribution of a time-averaged
quantity, the large-time limit is taken before the large system-size limit, requiring the
analysis of two distinct scaling variables. In this work, we analyse in more detail the
connection between finite-size scaling analyses for thermodynamic and dynamical phase
transitions.

Our results consist of two main parts. First, we define a two-dimensional (2D) spin
model whose behaviour can be related directly to trajectories of the one-dimensional
FA model. This spin model has a thermodynamic phase transition that reproduces
all aspects of the FA dynamical phase transition. We present numerical results that
illustrate this fact. In particular, we show that by considering systems on lattices with
different aspect ratios, we can capture the differences in finite-size scaling behaviour
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between the usual thermodynamic setting (aspect ratio close to unity) and the dynamical
one (very large aspect ratio). This observation is related to a theoretical analysis of
thermodynamic finite-size scaling by Privman and Fisher [34] and Borgs and Kotecký
[35, 36]. In the second part of this paper, we revisit the analytical results of [27], which
concern an interfacial model that captures quantitatively the finite-size scaling behaviour
of the FA model. We show how some of the results can be simplified by taking a suitable
limit, and we discuss the physical interpretation of this model in more detail. We explain
that our results for finite-size scaling behaviour are generic for first-order dynamical
transitions.

The paper is structured as follows: section 2 reviews the behaviour of the FA model
and its phase transition. Section 3 introduces the 2D spin model and section 4 has the
results for this model. Section 5 analyses the interfacial model. Our conclusions are
summarised in section 6.

2. Large deviations in the FA model

This section recalls the definition of the FA model [28] and summarises some previous
results for its dynamical phase transition [4, 14].

2.1. Model

The (one-dimensional) FA model is a Markov chain in continuous time. It consists
of L spins on a 1D lattice with periodic boundaries, the ith spin is ni ∈ {0, 1}. Let
n = (n1, n2, . . . , nL). Spin i can flip (that is, change its state) only if a constraint function
Ci(n) is non-zero. In this work we take Ci(n) = ni+1 + ni−1 − ni+1ni−1 so that Ci ∈ {0, 1}.
We also introduce a numerical parameter c ∈ (0, 1). Then, spins with ni = 0 flip to ni = 1
with rate c Ci(n); spins with ni = 1 flip to ni = 0 with rate (1− c)Ci(n). We note in
passing that some other studies take instead Ci = ni−1 + ni+1 which leads to very similar
behaviour. Our choice in this work is convenient because it simplifies the spin model
defined in section 3.2 below. Note also that no spin flips can ever cause the system to
enter or leave the state 0 = (0, 0, . . . , 0). Hence, in order to ensure that the dynamics is
irreducible, we define its configuration space as the set of all spin configurations except
for 0.

The FA model respects detailed balance with respect to a steady-state (equilibrium)
probability distribution where all spins are independent, and 〈ni〉0 = c. That is, in the
equilibrium state one has

p(n t) ∝ exp

(

−(h/T )
∑

i

ni,t

)

, (1)

where (h/T) = log[(1− c)/c]; we identify T as the temperature and h as the energy
difference between spins with ni = 1 and ni = 0. [To be precise, (1) is applicable only if
nt 6= 0]
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2.2. Large deviations

We briefly describe the large-deviation formalism for the dynamical activity. For full
details see [4], general discussions of large deviation theory can be found in [1, 5].
Consider a dynamical trajectory where the time t runs from 0 to τ . Let K(τ) be
the total number of spin flip events that occur during this time interval. The average
〈K(τ)〉0 = τkL with k = 2c2(2− c)(1− c). Since the model is a finite irreducible Markov
chain, the probability distribution for K(τ) obeys a large-deviation principle (LDP)
[1, 3–5, 37]:

Prob[K(τ) ≈ τkL] ≍ exp[−τIL(k)], (2)

where IL is the rate function, which is analytic and strictly convex. Note that the speed
of this LDP is τ and that the system size L is fixed as τ →∞.

Large deviation theory describes rare events where K(τ) takes a value far from its
mean. To analyse these rare events it is convenient to introduce a biasing field s and to
define the scaled cumulant generating function (SCGF)

GL,τ (s) =
1

τ
log
〈

e−sK(τ )
〉

0
. (3)

The angle brackets with subscript 0 indicate a steady-state (equilibrium) average over
trajectories running between time 0 and τ . Also define

GL(s) = lim
τ→∞

GL,τ (s). (4)

Then the rate function can be obtained as IL(k) = sups[−skL−GL(s)]. Also, the rare
events of interest can be analysed by considering biased ensembles of trajectories in
which the average of any (trajectory-dependent) observable O is

〈O〉s =
〈

Oe−sK
〉

0

〈e−sK〉0
. (5)

Results for equivalence of ensembles [3, 38] show that for a large class of observables
O, the biased average 〈O〉s converges (as τ →∞) to a conditional average of O in the
original (unbiased) process, where K(τ) is constrained to take a particular value. This
constraint is K(τ) = τL× kL(s) with kL(s) = −GL

′(s)/L.
Let pL,τ (K) be the probability to observe exactly K spin flips and let ρL,τ (k) = τL

× pL,τ (τLk) be an associated probability density for k = K/(Lτ). The rate function that
appears in (2) may be obtained as

IL(k) = lim
τ→∞

−1

τ
log ρL,τ (k). (6)

2.3. Dynamical phase transition

Since the FA model is an irreducible finite-state Markov chain, the Perron–Frobenius
theorem establishes that IL(k) and GL(s) are analytic and (strictly) convex [3, 5, 20]. To
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Figure 1. Sketches of I (k) and G(s) for the FA model, based on the theory of [4, 14].
The first derivative of I is continuous at k = k but the second derivative is discon-
tinuous there. (Note I ′(k) = 0 for k 6 k.) The first derivative of G is discontinuous
at s = 0 (with G′(s) = 0 for s > 0).

reveal the dynamical phase transition that occurs in the model, one defines a bulk free
energy density and a scaled rate function

G(s) = lim
L→∞

1

L
GL(s), I(k) = lim

L→∞

1

L
IL(k). (7)

The form of these limiting functions G, I is not constrained by the Perron–Frobenius
theorem, see [39] for a discussion. In the FA model, these functions have singularities, as
sketched in figure 1. Note in particular that I (k) = 0 for 0 < k 6 k and G(s) = 0 for all
s > 0 [4, 14, 31]. In the analogy with equilibrium statistical mechanics, this corresponds
to a first-order phase transition.

3. From the 1D FA model to a 2D spin system

In this section we formulate a discrete-time FA (dFA) model with synchronous spin
updates. The time between updates is δt and taking δt→ 0 recovers the (original)
FA model. We also explain how trajectories of this model can be mapped onto con-
figurations of a 2D spin system. Hence dynamical large deviations of the dFA and
FA models can be analysed by computing thermodynamic properties of this 2D spin
system.

3.1. Discrete-time FA model

The configuration of the discrete-time FA model at time t is nt. The configuration at
time t+ δt is generated by the following (stochastic) procedure. We first construct a
set of random variables mt = (m1,t,m2,t, . . . ,mL,t) with mi,t ∈ {0, 1}. The idea is that if
mi = 0 then spin ni cannot change its state between times t and t+ δt. The m-variables
are chosen from a distribution (independent of t and n):

p(m) =
1

z(γ)
exp

(

−γ
∑

i

mi

)

∏

i

C̃ i(mi,mi+1) (8)
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where γ is a parameter and z(γ) is a normalisation constant (see below); also

C̃(mi,mi+1) = 1−mimi+1, which enforces that adjacent sites cannot both have m = 1.
Given the vector mt, the spin variables ni,t+δt are then generated independently, by

the following rule:

If Ci(n t) = 0 or mi = 0 then ni,t+δt = ni,t

otherwise ni,t+δt = 1, 0 with probs c, (1− c) respectively (9)

The dependence on mi together with the constraint C̃ means that if spin ni flips on a
given time step then neither spin ni−1 nor spin ni+1 can flip. Hence, if spin i flips then
Ci(nt) = 1 = Ci(nt+δt). This last property can be used to show that the update rule
respects detailed balance with respect to the same steady state distribution as the FA
model.

Positive values of the parameter γ increase the probability that mi = 0 and reduce
the number of sites at which the n-spins can flip. It is easily seen that z(γ) is the partition
function for a gas of 1D hard rods with length 2 and chemical potential −γT, on a lattice
of size L. For large γ, the typical number of spins that are able to flip in a single update
is small, and z is close to the partition function for an ideal gas. This means that the
mi,t variables become asymptotically independent as γ →∞, and the fraction of such
variables with mi,t = 1 is 〈mi,t〉 = (1 + eγ)−1.

To match the behaviour of the dFA model to the FA model, one should reformulate
the FA dynamics as follows: every spin is proposed to flip with rate 1 (independently);
if the spin is facilitated then the relevant flip is accepted with probability c or 1− c,
according to its state. In the dFA model, m-variables with mi,t = 1 correspond to events
where spin i was proposed to flip, between time t and t+ δt. If these proposals are inde-
pendent and happen with rate 1 then we recover the FA dynamics. It is then sufficient
to take

γ = − log
δt

1− δt
, (10)

with δt→ 0. Then the m-variables are independent with 〈mi,t〉 = δt, as required.

3.2. Corresponding spin model

We now define the 2D spin model whose configurations correspond to trajectories of
the dFA model. For a trajectory of length τ , let Y = τ/δt be the number of time steps
in the discrete-time FA model. The 2D model is defined on a decorated lattice, illus-
trated in figure 2(a). The lattice contains (L×Y) primary sites, which are associated
with variables ni,y ∈ {0, 1} with i = 1, 2, . . . ,L and y = 1, 2, . . . ,Y. The index y indi-
cates the position along the time-like axis (horizontal in figure 2) and the index i

is the position on the space-like axis. The m-variables of the dFA model are defined
on the time-like bonds of the lattice. They are mi,y ∈ {0, 1} with i = 1, 2, . . . ,L and
y = 1, 2, . . . , (Y− 1).

The configurations of this model are in exact correspondence with trajectories of
the discrete-time FA model, as long as one enforces the following constraints: the FA

https://doi.org/10.1088/1742-5468/ab7af6 7
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Figure 2. Illustration of the 2D spin model. (a) The model is defined on a square
lattice. It is anisotropic, with a space-like direction corresponding to the 1D lat-
tice of the analogous FA model and a time-like direction that corresponds to
the time axis for the FA model. The vertices (sites) of the square lattice are
occupied by n-variables, and sites with niy = 1 are indicated with filled circles.
All other vertices have niy = 0. The horizontal (time-like) bonds are occupied by
m-variables: bonds with miy = 1 are indicated by open squares. (b) A representa-
tive configuration of this model obtained by MC sampling with c = 0.38, γ = 0,
and (L,Y) = (32, 128). Only the n-variables are shown. This resembles a typical
trajectory of the continuous-time FA model [29].

configuration 0 is not allowed so
∑

ini,y > 0 for all y; the m-variables on spatially adja-
cent sites cannot both be in state 1 so mi,ymi+1,y = 0 for all y; an FA spin can only flip
if mi,y = 1 and Ci(nt) = 1, so δ(ni,y − ni,y+1) +mit(ni−1,y + ni+1,y) > 0 where δ(x) = 1 if
x = 0 and δ(x) = 0 otherwise. These constraints define the configuration space of the
spin model.

We now define an energy function so that the Boltzmann–Gibbs distribution of the
2D model at temperature T = 1 corresponds to the steady-state trajectory measure for
the discrete-time FA model. This energy is

E0 = − log ρ0(n1)−
Y−1
∑

y=1

logP (ny+1|ny), (11)

where ρ0(n) is the steady-state probability of configuration n in the FA model, and
P(n|n′) is the transition probability for the discrete-time dynamics. The result is

E0 =
L
∑

i=1

Y−1
∑

y=1

{

γmit + Ci(ny)mi,y

[

log
1

1− c
− 1

2
(ni,y+1 + ni,y) log

c

1− c

]}

− 1

2

L
∑

i=1

(ni,1 + ni,Y ) log
c

1− c
. (12)

In deriving this, it is useful to note that the constraints on the configuration space of
the model imply that (ni,y+1 − niy) = Ci(ny)mi,y(ni,y+1 − niy); on summing this equation
over y the left-hand side reduces to ni,Y − ni,1. One sees from (12) that the energy is
symmetric under reversal of the time-like direction (ni,y,mi,y)→ (ni,Y+1−y,mi,Y−y). This
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symmetry is the same as time-reversal symmetry of the steady state of the dFA model,
which follows from its detailed balance property.

Correspondence between the continuous-time FA model and this spin model requires
that γ is large, by (10). This means that sites with mi = 1 are rare and also that
for a given trajectory length τ , it is necessary to use a very large lattice (because
Y is large). However, numerical simulations are inefficient in this case. All qualita-
tive features of this model depend weakly on γ, so we focus in the following on
γ = 0.

Figure 2(b) shows a representative configuration of the spin model with c = 0.38
and γ = 0, generated by MC sampling (see appendix A). Since the mapping between
the discrete-time FA model and the spin model is exact, this is also a representative
trajectory of the dFA model. (A dynamical simulation of the dFA model would be a
much simpler way to generate a similar trajectory, but this figure illustrates proof of
principle.) The trajectory shown in figure 2(b) is also consistent with the behaviour of
the FA model, see for example [29].

3.3. Free energy and large deviation formalism

The biased trajectory ensembles defined in (5) can be analysed by considering the 2D
spin model with a modified energy function. For any given 2D spin configuration, the
number of spin flips in the corresponding dFA model trajectory is

K =

L
∑

i=1

Y−1
∑

y=1

[niy(1− ni,y+1) + (1− ni,y)ni,y+1]. (13)

Hence the biased trajectory ensemble for the discrete-time FA model corresponds
to a Boltzmann–Gibbs distribution of the 2D spin model, where the energy E0 is
replaced by

Es = E0 + sK

= E0 + s
L
∑

i=1

Y−1
∑

y=1

[niy + ni,y+1 − 2niyni,y+1] . (14)

For s > 0, this represents an additional ferromagnetic coupling for the spins, along the
time-like bonds. The free energy difference (per site) between systems with energy Es

and E0 is a scaled cumulant generating function:

ĜL,Y (s) =
1

LY
log
〈

e−sK
〉

0
, (15)

where the angle brackets with subscript zero now indicate a Boltzmann average with
energy E0. This free energy Ĝ is analogous to (3), but note the different normalisation:
in the dynamical case we normalised by the trajectory length τ (analogous to Y in this
case); here we also normalised by L, to obtain a free energy per site. We use carets (hats)
to distinguish functions for the 2D spin model from their counterparts in the original
FA model.
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Dynamical phase coexistence in the Fredrickson–Andersen model

Also define ρ̂L,Y (k) as the probability density for k = K/(LY) [analogous to ρL,τ (k)
in section 2.2]. The analogue of (7) is

Ĝ(s) = lim
L→∞

lim
Y→∞

ĜL,Y (s), Î(k) = lim
L→∞

lim
Y→∞

−1

LY
log ρ̂L,Y (k). (16)

We identify Ĝ as the bulk free energy density. Note that there are no long-ranged terms
in the energy function and the spin model has no other pathological features so we expect
on general thermodynamic grounds that the order of limits should be irrelevant in these
definitions, and that Ĝ(s) and Î(k) should be related by Legendre transformation. We
have not proven these results rigorously but all our results (and previous results for the
FA model) are consistent with this hypothesis.

3.4. Periodic boundary conditions

In numerical studies of the dynamical phase transition that occurs in the FA model
and other glassy models [4, 14, 15], finite-size scaling analyses are affected by the initial
conditions in the trajectory averages of (3) and (5). For the 2D spin model considered
here, the equilibrium ensemble of trajectories of the dFA model corresponds to taking
free boundary conditions at y = 1 and y = Y, as in (12), (13).

However, for the spin model, it is much more natural to consider a fully peri-
odic system, instead of free boundary conditions. This also helps to reduce finite-size
effects. To achieve this, we introduce an extra column of m-variables to the picture
in figure 2(a), which are mY = (m1,Y,m2,Y, . . . ,mL,Y). We also periodize (12) and (13)
by adding extra terms that couple the spins n1,nY,mY. In terms of the dFA model,
this means that we consider the ensemble of trajectories that are periodic in time, see
also [40]. Thermodynamic arguments indicate that the bulk free energy density should

be Ĝ independent of boundary conditions. This result can be confirmed in this case
because

ĜL(s) = lim
Y→∞

ĜL,Y (s) (17)

can be obtained as the largest eigenvalue of a particular matrix [3, 4] (the tilted generator
[20]), and this result is independent of whether one uses periodic or free boundary
conditions at y = 1,Y.

All numerical results for the 2D spin model use periodic boundary conditions, except
where explicitly stated. Details of the simulation methods are given in appendix A
including some results with open boundaries. Note that some care is required with
simulation of this spin model, because MC moves that flip single n or m variables are
not sufficient to allow access to all configurations of the system, if periodic boundary
conditions are used. However, MC moves that additionally flip adjacent pairs of spins
are sufficient to allow exploration of the whole configuration space, as discussed in
appendix A.
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Dynamical phase coexistence in the Fredrickson–Andersen model

4. Phase transition in the 2D spin model: behaviour in finite systems

The dFA model has a dynamical phase transition, which corresponds to a thermody-
namic phase transition in the 2D spin model. This means that the functions Ĝ(s), Î(k)
in (16) have the same behaviour as was illustrated in figure 1 for G, I. This can be
proven by direct generalisation of the arguments of [4].

This section presents numerical results for the thermodynamic transition in the 2D
spin model. As usual for numerical studies of phase transitions, the results are obtained
in finite systems, so finite-size scaling analysis is required in order to interpret the results.
Since these systems are anisotropic, this analysis requires some care with the ratio of
Y/L, in the thermodynamic limit [34].

4.1. Dynamical phase transition

To analyse the phase transition using data for finite systems we consider

kL,Y (s) =
1

LY
〈K〉s = − d

ds
ĜL,Y (s), (18)

which is the mean value of the order parameter, as well as the associated susceptibility

χL,Y (s) = − d

ds
kL,Y (s), (19)

which is proportional to the variance of K. The system has an active phase with large
k and an inactive phase where most spins have ni = 0 and k is small. However, since
configurations with

∑

ini,y = 0 are forbidden, the inactive phase always includes at least
one excitation line.

Figure 3 shows results for a system with L = 32 and Y = 512. As expected, the
order parameter kL,Y shows a crossover as s increases, with an associated peak in χL,Y.
Define the field s∗L,Y to be the value of s that maximises χL,Y(s). Then the probability
distribution

ρ̂∗(k) = ρ̂L,Y (k|s∗L,Y ) (20)

has a characteristic bimodal form in which the two peaks correspond to configurations
from the active and inactive phases. The intermediate trough corresponds to configu-
rations at phase coexistence. The configurations that are typical of the trough of ρ̂∗
depend on details of the system, including the aspect ratio Y/L and the surface tension
between the phases. In this system, the fact that the inactive phase always contains at
least one excitation line is also relevant. For the case considered in figure 3, one sees that
phase coexistence corresponds to domains of active and inactive phases, with interfaces
that lie parallel to the time-like axis.

4.2. Finite-size scaling for L∼Y

The data of figure 3 show the classical features of a first order phase transition. However,
it is important to note that the behaviour of ρ̂ and the nature of the representative
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Dynamical phase coexistence in the Fredrickson–Andersen model

Figure 3. Results for the 2D spin model L = 32 and Y = 512 and fully peri-
odic boundary conditions. (a) Order parameter k(s). (b) Susceptibility χ(s). (c)
Histogram of the order parameter at s = s∗L,Y = 0.0043. (d) Representative config-
urations taken from the two peaks of the histogram (active/inactive phases) and
from the trough (phase coexistence). This is the expected behaviour in the regime
L ∼ Y.

configurations depend on the aspect ratio Y/L. The behaviour of figures 3(c) and (d) is
expected when L,Y are of the same order of magnitude, that is L ∼ Y [34]. In this case,
the two peaks of ρ̂∗(k) appear at values ka, k i that are characteristic of the phases and
depend weakly on L,Y. Hence the variance of k is of order unity, which corresponds to
a peak in the susceptibility whose height diverges with the total size of the system:

χ∗ = χL,Y (s
∗
L,Y ) ≈ LY (ka − ki)

2/4. (21)

Interfaces between active and inactive phases incur a free energy cost which depends
on their orientation with respect to the lattice axes. Hence we define two surface tension
parameters Γt, Γs, which are associated with interfaces that are parallel to the time-like
and space-like axes respectively. (See also [22].) Since the interfaces in figure 3(d) are
parallel to the time-like axis, we infer that the costs of the time and space directions
satisfy YΓt ≪ LΓs so that Γt ≪ (L/Y)Γs. The total length of the interface is 2Y, so the
peak-to-trough ratio of the distribution ρ̂∗L,Y scales as e−2Y Γt, if one considers systems
where the aspect ratio Y/L is held constant as Y→∞. With this scaling we emphasise
that for values of k within the trough (that is, ki < k < ka), one has

lim
L,Y→∞

−1

LY
log ρ̂L,Y (k|s∗L,Y ) = lim

L,Y→∞
(2Γt/L) = 0. (22)

Hence from (16) one has Î(k) = 0 throughout this range, consistent with figure 1. The
physical content of this result is that, in terms of cost, differences between configurations
from the trough and the peaks of ρ̂ are localised at the interfaces. Since the interfaces
occupy a vanishing fraction of the system, the difference in free energy between these
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Dynamical phase coexistence in the Fredrickson–Andersen model

configurations is subextensive, and the value of 1
LY

log ρ̂ is the same. This is related
to the Maxwell construction and the double tangent construction in thermodynamics
[41].

4.3. Finite-size scaling and consequences for dynamical large deviations

So far, we analysed the behaviour of a finite system following the standard methods of
thermodynamics. To make contact with the methods used for dynamical phase transi-
tions, recall from (4) that the dynamical free energy is conventionally defined with a
limit of large time τ at fixed system size L. In the 2D spin model, this corresponds to
taking Y→∞ at fixed L. The finite-size scaling behaviour for Y ≫ L is quite different
to that shown in figure 3, which applies for Y ∼ L. This distinction was discussed by
Privman and Fisher [34], who analysed thermodynamic phase transitions for different
aspect ratios Y/L. This section discusses the physical picture that follows from their
analysis. Its consequences for the dynamical phase transition in the FA model will be
discussed in section 4.5.

From general thermodynamic arguments, the free energy Ĝ and its Legendre trans-
form Î in (16) are bulk quantities, independent of the aspect ratio. In particular,
one should obtain the same result on interchanging the order of limits in (16), or on
taking L,Y→∞ together, with a fixed ratio Y/L. Moreover, figure 1 indicates that

Î = 0 for k < k in the FA model. Consistency of this picture with the dFA model
requires that 1

LY
log ρ̂L,Y (k|s∗L,Y )→ 0 in large systems, throughout the range 0 < k < k

[see equation (22)]. For the situation where L ∼ Y and the aspect ratio α = Y/L is fixed
in the thermodynamic limit, the expected behaviour is that

log ρ̂L,Y (k|s∗L,Y ) ≈ −LF∼(k,α, Γs, Γt), ki < k < ka (23)

where F∼ is the free energy cost for the interfaces associated with phase coexistence.
The function F∼ also depends on the boundary conditions. The general form (23) is
consistent with the behaviour of (22), which is relevant for the specific example in
figure 3(d): in that case F∼(k,α, Γs, Γt) = 2αΓt. We note that while rate functions and
SCGFs are defined by taking limits where L,Y→∞, the result (23) is for a finite
system. For this approximate equality to be valid, it is assumed throughout this section
that L,Y are both large compared to the microscopic correlation lengths of the 2D spin
model—for small c then the correlations become long-ranged and strongly anisotropic
so this requires [for γ = O(1)] that cL ≫ 1 and c3Y ≫ 1, by analogy with results for the
FA model in continuous time [42, 43].7

Note that (23) is an LDP with speed L, which describes the behaviour of the system
at phase coexistence. Compared with the bulk result (16), it gives a more detailed
description of the behaviour of ρ̂L,Y , for ki < k < ka. That is, the probability density ρ̂
obeys two LDPs: the ‘bulk’ result (16) which has speed LY and the ‘interfacial’ result
(23). The bulk LDP has rate function zero throughout 0 < k < k, and this is independent

7 If γ is also large then we require c3Ye−γ ≫ 1 because the effect of large γ is that correlations along the time-like direction become
scaling functions of ye−γ, consistent with the approach to the continuous-time limit as γ→∞, where ye−γ can be identified with
the time t, by (10). In general we quote all scaling predictions assuming γ = O(1), for simplicity. Cases where γ is large can be
obtained by treating t = ye−γ as a scaling variable.
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Dynamical phase coexistence in the Fredrickson–Andersen model

Figure 4. The finite-size scaling crossover of Privman and Fisher [34]. (a) For
systems with Y ∼ L, the classical picture of phase coexistence has a bimodal dis-
tribution of the order parameter. Representative configurations of the system are
illustrated. The peaks correspond to the pure phases (illustrated in white and grey)
and the trough corresponds to phase coexistence, shown here with domain walls
parallel to the horizontal axis, as in figure 3(b). For systems with Y ≫ L the situ-
ation is different. The distribution of the order parameter is unimodal and typical
configurations have many domains of both phases. The typical distance between
domain walls scales as eLΓs , see the text for a discussion.

of aspect ratio and boundary conditions. The interfacial LDP has a non-trivial rate
function in this range of k; it depends on both the aspect ratio and the boundary
conditions.

To make contact with dynamical phase transitions, we now consider systems with
Y ≫ L, which are relevant for the dynamical LDP (2) and for (7). Figure 4 shows the
behaviour of ρ̂L,Y predicted by the theory of Privman and Fisher [34], and corresponding
configurations of the system. For Y ≫ L, phase coexistence is dominated by interfaces
that are parallel to the space-like direction. The free-energy cost of a single interface is
ΓsL and these interfaces can appear anywhere along the time-like direction. It follows
that for very large Y, the statistical properties of these domain walls are those of a
one-dimensional ideal gas with density e−ΓsL. Hence their number follows a Poisson
distribution with mean

n ≈ Y e−ΓsL. (24)

Recalling (4) we are considering Y→∞ at fixed L: to saturate this limit requires n≫ 1
or Y ≫ eΓsL. In this work, we use Y ≫ L as a short-hand for the limit where Y→∞
before any limit of large L. This corresponds to an extremely large aspect ratio Y/L.
In thermodynamics, this regime is less often studied than the classical case Y ∼ L, see
however [34]. It is also harder to access by conventional MC simulations. However, it
is the natural limit for the population dynamics (cloning) methods that are used to
analyse dynamical large deviations [23, 24].

In this limit, the Poisson distribution for the number of domains means that the
distribution ρ̂∗(k) is peaked at (ka + ki)/2. The probability to have k ≈ ka or k ≈ ki
can be estimated as the probability to have no domain walls at all, which for a Poisson
distribution is simply e−n. In fact the statistics of the configurations shown in figure 4(b)
are exactly those of a one-dimensional Ising model of size Y where the density of domain
walls is e−ΓsL. Equivalently one can identify these configurations with trajectories of a
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Dynamical phase coexistence in the Fredrickson–Andersen model

two-state Markov chain where each state corresponds to one of the phases, and the rate
for transitions between the phases is e−ΓsL. In either case, the statistics of the activity
are easily computed (see appendix B) and one obtains

log ρ̂L,Y (k|s∗L,Y ) ≈ −Y F≫(k), ki < k < ka (25)

with

F≫(k) = e−ΓsLf

(

2(k − k0)

∆k

)

, f(x) = 1−
√
1− x2, (26)

where k0 = (ka + k i)/2 is the average activity of the two phases and ∆k = ka − ki is their
difference. Equation (25) is the analogue of (23) for systems with Y ≫ L. We identify it
as an LDP with speed Y. Again, this result gives extra detail on the behaviour of ρ̂L,Y ,
in the regime of phase coexistence. Consistent with the bulk LDP one has 1

LY
log ρ→ 0.

Note however that the LDP (25) is quite different from its counterpart (23) for L ∼ Y.
In particular, the rate function F≫ has a simple form that is convex, consistent with the
unimodal distribution ρ̂∗ in figure 4(b)—by (25) and (26) the distribution ρ̂∗ sketched
in that figure obeys a central limit theorem and has Gaussian behaviour close to k0,
with a small variance of order eLΓs(∆k)2/(4Y ). In contrast, F∼ in (23) is non-convex in
general, consistent with the bimodal distributions in figures 3(c) and 4(a).

Noting that the LDP (25) applies to the distribution ρ̂L,Y (k|s∗L,Y ), define s(k) =

s∗L,Y −F ′
≫(k), and note that the inverse of the function s(k) is kL,∞(s). Hence

kL,∞(s) = k0 −
(s− s∗L,∞)(∆k)2

2
√

(s− s∗L,∞)
2(∆k)2 + 4e−2ΓsL

(27)

which describes the crossover between the phases as shown (for example) in figure 5(a).
We will return to this result in section 5, below. Note that (25) and (27) are generic
for first-order dynamical phase transitions in two dimensions. The extension to higher
dimensions is straightforward in the case where the system size along one dimension is
much larger than the size along all others, in which case one should replace ΓsL by ΓsL

d−1

for a suitably-defined surface tension parameter Γs. For dynamical phase transitions of
mean-field systems, one expects a similar formula with an ‘interfacial cost’ ΓsN where N
is the system size, see [44]. In diffusive systems described by the macroscopic fluctuation
theory, see [45] for a discussion of similar phenomena.

4.4. 2D spin model for Y ≫ L

Figure 5 illustrates the finite-size scaling crossover for the 2D spin model with L = 16. If
Y is not too large then one observes a bimodal distribution of the order parameter, as in
figure 3. However, one sees for larger Y a crossover to a unimodal form, consistent with
figure 4. The representative configurations also show the crossover anticipated in figure 4,
although the typical configurations have only one active and one inactive domain, even
for the largest Y that we analysed. (To observe many domains would require even larger
Y, which is numerically expensive.)
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Dynamical phase coexistence in the Fredrickson–Andersen model

Figure 5. Results for L = 16. (a) Activity k(s) for different values of Y, as labelled,
the data for Y = 512 are very close to those for Y = 1024. (b) Susceptibility χ(s),
the symbols and colours are the same as for panel (a). (c) Histograms of the activity
at s = s∗. For smaller Y one sees a bimodal structure but for larger Y one sees a sin-
gle peak, this is the Privman–Fisher crossover [34]. (d) Configurations at Y = 256
showing behaviour that is representative of the two peaks in ρ∗ (inactive/active
phases), and of the intervening trough. (e) A configuration from Y = 1024 that is
representative of the peak of ρ∗, showing both phases coexisting in a single con-
figuration. For even larger values of Y, typical trajectories would include multiple
domains of each phase.

For large Y, one also sees that the order parameter kL,Y(s) approaches a limiting form
kL,∞(s). To understand this, note that the thermodynamic analogue of the dynamical
SCGF GL(s) in (4) is

ĜL,∞(s) = lim
Y→∞

ĜL,Y (s). (28)

(To be precise, this corresponds to GL(s)/L.) Following the same arguments as in the

dynamical case, this limit exists and ĜL,∞ is strictly convex and analytic. Its derivative
gives the limiting form of the order parameter kL,∞(s) = −G′

L,∞(s). From (27) one has
also the corresponding susceptibility which is

χL,∞(s∗) ≈ (∆k)2

4
eLΓs . (29)

This quantity diverges exponentially with L, in contrast to the power-law divergence of
(21), which we recall was applicable for L ∼ Y. This exponential scaling was observed
for the (original) FA model in [27], where the connection to the work of Privman and

https://doi.org/10.1088/1742-5468/ab7af6 16

https://doi.org/10.1088/1742-5468/ab7af6


J
.
S
ta
t.
M
e
c
h
.
(2
0
2
0
)
0
5
3
2
0
4

Dynamical phase coexistence in the Fredrickson–Andersen model

Fisher was identified. Quantitative predictions for Γs were also obtained in that case,
see section 5.

4.5. Connection to previous studies of dynamical phase transitions

We have used the 2D spin model of section 3.2 to illustrate the finite-size scaling crossover
of Privman and Fisher [34]. To connect this model to the FA model in continuous time,
we recall that Y = τ/(δt) and we require δt→ 0 with γ →∞ in accordance with (10).
Note also that the continuous-time SCGF is defined with a scaling factor of τ [in (4)]
while the SCGF for the dFA model is defined with a scaling factor of Y [in (15)]. Hence

translation from Ĝ to G requires a scaling by δt. Similarly the dFA activity kL,Y(s)
is defined per site, while the FA activity kL(s) is defined per unit time, so these also
differ by a factor of δt. In addition, the natural generalisation of aspect ratio α to the
continuous-time cases is αcont = τ/L which is αδt. It is a straightforward exercise to
translate results from the dFA to the FA context, and all results given here for scaling
behaviour are robust. For example, the analogue of (25) is given by

log ρL,τ (k)− s∗kLτ = −τF≫(k), ki < k < ka (30)

where ρL,τ (k) was defined in section 2.2 so the left-hand side is analogous to ρ̂L,Y (k|s∗);
on the right-hand side then F≫ is still given by (26), but with parameters ki, ka defined as
activities per unit time (instead of per site). The parameters s∗, Γs will also have different
numerical values, due to the rescaling. Nevertheless, all these parameters remain of order
unity on taking the continuous-time limit so the results that we have presented here for
the dFA model are all reproduced in the (continuous-time) FA model. (The validity of
(30) requires that αcont be large enough that a typical trajectory contains many domain
walls).

Since the thermodynamics of the 2D spin model are directly related to dynamical
large deviations of the dFA model (and the FA model), we are now able to rationalise
some of the previous work on finite-size scaling of dynamical phase transitions.

In particular, note that analysis of these phase transitions by transition path sam-
pling [21] typically focusses on finite-size scaling with L ∼ τ [15, 17], corresponding
here to L ∼ Y. For example the analysis of [15] assumes the scenario shown in figure 3,
with a bimodal histogram of the order parameter. The associated peak-to-trough ratio
increases with Y (or in that case τ), which was used in [15] as evidence for a first-order
transition. Similar behaviour is seen in [17, 46]. In those cases one expects a power-law
divergence of χL,Y(s∗).

On the other hand, analyses of dynamical phase transitions [23, 24] by cloning meth-
ods typically concentrate on the limit τ ≫ L (corresponding to Y ≫ L), as do analytical
(and other) methods that estimate of the largest eigenvalue of a tilted generator [33]. In
these cases the behaviour of ρ̂∗ close to its peak is described by (27), in which F≫ is a
convex function. It follows that ρ̂∗ is unimodal, consistent with figures 4(b) and 5(c). We
emphasise that this unimodal behaviour of ρ̂∗ is fully consistent with the existence of a
phase transition, despite some of the arguments presented in [47]. In this case the sus-
ceptibility χL,∞(s∗) is expected to diverge exponentially with L, as observed in reference
[27] for the FA model.
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5. Interfacial model of phase coexistence

We have combined general theoretical arguments about first-order phase transitions
with numerical calculations for the 2D spin model. We now take an analytic approach
to the dynamical phase transition in the FA model. Specifically, we expand on the work
of [27], and we also correct some typographical errors in that work.8 Our results yield
a detailed understanding of the phase coexistence regime presented in the last section,
and it gives a numerical value of the surface tension parameter Γs that determines the
rate of exponential growth of the susceptibility.

5.1. Definition of interfacial model

We describe the phase transition in the FA model by a simplified interfacial model [31,
32], see also [27, 48]. We assume that the FA model at time t has a single large inactive
domain where all spins have ni = 0. Following [31, 32], we consider a continuous time
Markov chain where the size of the active domain at time t is xt ∈ {1, 2, . . . ,L}, so the
size of the inactive domain is L− xt. A possible trajectory of this system is illustrated in
figure 6. The dynamical rule is that x follows an asymmetric random walk: it increases
by a step of 1 with rate 2q and decreases by a step of 1 with rate 2p. If such a jump
would lead to x > L or x < 1 then it is rejected and x is unchanged. To reproduce the
behaviour of the FA model requires

p = c(1− c), q = c. (31)

Since p < q then the random walk is asymmetric and biased towards x = 1 (which is the
active phase). To parameterise the asymmetry of the walk we define

F =
1

2
log

q

p
(32)

which is positive but small in magnitude for our examples (of order c). The natural
microscopic time scale in the problem is (p+ q).

For a trajectory of the FA model where the size of the active domain is x(t), one
expects a dynamical activity

K(τ) ≈ K(τ) = k

∫ τ

0

x(t)dt (33)

where the second equality defines K(τ), which is the dynamical activity of a trajectory
of the interfacial model. Equation (33) assumes that behaviour within the active domain
is close to the typical behaviour of the model, so the activity density there is close to k.
Note that k̄ = 4c2(1− c) in this model [27, 31, 32], different from the one introduced in
previous sections.

8 In particular, the main formula (9) of reference [27] is incorrect: F(c) in the left-hand side should be replaced by F(c)/2 and also
the definition of F(c) should be (1/2) log [1/(1 − c)] instead of (1/2) log [c/(1− c)].
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Figure 6. Sketch of a trajectory of the interfacial model. Grey shading indicates the
active phase (in space-time) and white indicates the inactive phase. At any given
time there is (at most) one large inactive domain whose size is L− xt; the size of
the corresponding active domain is xt.

For large L, it is convenient to replace the integer-valued domain size x by the fraction
of the system that is covered by this domain, that is

y(t) =
x(t)

L
. (34)

In [27], this variable y(t) was denoted by x̃(t). The analogue of the SCGF GL,τ (s) for
this model is ΨL,τ (sL) where

ΨL,τ (λ) =
1

τ
log
〈

e−λ
∫ τ
0 y(t)dt

〉

. (35)

To the extent that the interfacial model captures the relevant physics in the FA model,
we expect

GL,τ (s) ≈ ΨL,τ (sL). (36)

The interfacial model does not capture all aspects of the FA model, in particular the
fact that there are no fluctuations within the active phase is a coarse approximation.
However, we will find that it is valid (at best) in regimes where the trajectories of the
FA model contain large coexisting domains of active and inactive phases, with at most
one large domain being present at any time t. This corresponds to values of s that are
close to peaks of the susceptibility χ that can be seen in figures 3 and 5.

5.2. Large deviation analysis

We now consider large deviations of the interfacial model in the limit of large τ , so we
define

ΨL(λ) = lim
τ→∞

ΨL,τ (λ) (37)

analogous to GL(s) in the FA model, see (4). The following analysis applies for λ > 0 and
we also assume that F ≪ 1, which simplifies the analysis. The results are summarised
in figure 7. For large-L this result is consistent with figure 1(b), but we emphasise again
that the behaviour for finite L is specific to a system where the limit of large time τ
is taken before any limit of large L. Note also that ΨL is decreasing and convex, so we
have for λ > 0 that

−λk 6 ΨL(λ) 6 0. (38)
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Dynamical phase coexistence in the Fredrickson–Andersen model

Figure 7. Sketch of the SCGF ΨL(λ), shown as a solid line. The dashed lines show
the behaviour of the active and inactive phases. The active phase has Ψa ≈ −λk
with a correction at order 1/L (the mean activity K/(Lτ) of this phase is k). Also
Ψi ≈ −2

√
pqF 2, with a finite-size correction of order L−2/3, see (61). The dashed

lines cross at λ = λ∗ ≈ 2F 2√pq/k. The SCGF Ψ deviates from max(Ψa, Ψi) by a
quantity that scales as e−LΓ, where the constant Γ is given by (71). This means that
the curvature Ψ

′′
(λ) is exponentially large for λ ≈ λ∗.

5.2.1. Eigenvalue problem in continuous space. The SCGF can be obtained by solving
an eigenproblem, based on the master equation for the dynamics [4]. Within the bulk
of the system (y 6= 1

L
, 1) one has

ΨL(λ)PL(y) = 2p

[

PL(y +
1

L
)− PL(y)

]

+ 2q

[

PL(y −
1

L
)− PL(y)

]

− λykPL(y)

(39)

where the eigenvector PL is a (discrete) probability distribution for y. In the following
we sometimes omit the subscripts L, for compactness of notation. At the boundaries
one has

ΨP

(

1

L

)

= 2pP

(

2

L

)

− 2qP

(

1

L

)

− λk/L

ΨP (1) = 2qP

(

L− 1

L

)

− 2pP (1)− λk. (40)

Equations (39) and (40) define an eigenvalue problem for an L× L matrix, which is
easily solved numerically. Here we adopt an analytical approach, which gives insight
into the limit of large L. Our analysis also requires that F ≪ 1.

In the large-L limit, we find that the eigenvector P takes the form

P (y) = exp[Lf(y)], (41)

where f is of order unity. For example, in the absence of any bias, f(y) = 2Fy and the
distribution of y is exponentially increasing, with a maximum at y = 1. (This is the
active phase.)
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Dynamical phase coexistence in the Fredrickson–Andersen model

Figure 8. The rate functions f(y) and f̃(y) at coexistence, evaluated for finite values
of L by diagonalizing the eigenvalue problem (39). The value of c is set to 0.3. The
value of λ is tuned to the special value that maximizes the curvature Ψ′′(λ) for
each L. The figures show that f̃(y) has two maxima at coexistence, whereas f(y)
does not. As L→∞, the heights of the maxima are equal (consistent with phase
coexistence) and the positions of the maxima tend to 0 and 1, which are the average
values of y in the coexisting phases.

In general, the eigenfunction P gives the distribution of the size of the active domain,
evaluated at the final time τ . The meaning of (41) is that this size obeys an LDP with
speed L and rate function −f(y). It is convenient to define also Q(y) = P(y)e−LFy, in
which case Q(y)2 is a (non-normalised) probability distribution for the domain size yt,
where t is in the ‘bulk’ of the trajectory (i.e. far from initial and final times).9 In the
notation of [27], we thus have Pave(y) ∝ Q(y)2 and Pend(y) = P(y). One sees that Pave

also satisfies an LDP with speed L, that is

Q(y)2 = exp[Lf̃(y)], f̃(y) = 2[f(y)− yF ]. (42)

At the dynamical phase transition, f̃(y) presents two maxima as shown in figure 8
for finite L, and the corresponding values of y are the sizes of the active domain in the
coexisting phases. We emphasise however that the LDPs (41) and (42) for yt are distinct
from the LDP for the time-integrated quantity K that is our main interest here.

The passage from the discrete-space problem to a continuum one is discussed in
appendix C. We define

µ =

(

λk

2
√
pq

)1/3

, ψL =
ΨL(λ)

2
√
pq

+ F 2. (43)

Note that µ > 0 is known (it depends only on the parameters of the model) but ψL is
unknown (it depends on the eigenvalue ΨL). We recognise ψL as the difference between
the solid line and the horizontal dotted line in figure 7. The function Q satisfies the

9Note that Q(y)2/P(y) can also be characterised as the solution of an adjoint eigenproblem for (39), and that Q(y) can be
characterised as the solution of a corresponding symmetrised (self-adjoint) eigenproblem.
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self-adjoint eigenvalue equation (C.11) which reduces to

1

L2
Q′′
L(y)− µ3yQL(y) = ψLQL(y). (44)

This equation is to be solved subject to the boundary conditions (C.12) which are

Q′(0)

LQ(0)
= γ0 = F + (ψ − F 2) +O(F 3),

Q′(1)

LQ(1)
= γ1 = F + (ψ + µ3 − F 2) +O(F 3).

(45)

This equation defines γ0, γ1. (The quantities in round brackets are O(F2), we retain
them for later convenience. Note that ignoring terms at O(F3) can sometimes lead to
artificial solutions to the eigenproblem with ψ > 0, see appendix C.3).

Since the coefficient of Q
′′
in (44) is small, one may obtain approximate solutions to

the eigenproblem. This is equivalent to a WKB-like saddle-point analysis method. Here
we take a different route, using that (44) can be solved exactly using Airy functions.

5.2.2. Solution of the eigenvalue problem. The Airy functions are solutions of the Airy
equation f

′′
(x)− xf(x) = 0, and are denoted by Ai(x) and Bi(x). For negative x, these

functions oscillate around zero. For positive x, Ai is a decreasing function and Bi is
increasing. For large positive x they behave as

Ai(x) ≃ exp

(

−2

3
x3/2

)

1

2
√
πx1/4

[

1 +O(x−3/2)
]

,

Bi(x) ≃ exp

(

2

3
x3/2

)

1

2
√
πx1/4

[

1 +O(x−3/2)
]

. (46)

Note in particular that Bi(x) grows super-exponentially when its argument is large.
By changing variables in (44), its solution can be seen to be

QL(y) = âLAL(y) + b̂LBL(y) (47)

where âL, b̂L are coefficients with a normalisation condition âL + b̂L = 1 and

AL(y) = Ai

[

L2/3

(

µy +
ψL
µ2

)]

,

BL(y) =
1

Bi
(

L2/3
(

µ+ ψL
µ2

))Bi

[

L2/3

(

µy +
ψL
µ2

)]

. (48)

Note that B is normalised such that BL(1) = 1. From (38) and (43) we have

−µ3
6 (ψ − F 2) 6 0 (49)

which implies in particular that ψ + µ3 is (strictly) positive, and the asymptotic expan-
sions of (46) are relevant. To keep track of exponential factors in the large-L limit, it is
useful to define
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Dynamical phase coexistence in the Fredrickson–Andersen model

ǫL = exp

[

−2

3
L

(

µ+
ψL
µ2

)3/2
]

. (50)

which is exponentially small when L is large. With this choice one sees that AL(1) and

BL(0) are both of order ǫL × L−1/6.
The physical interpretation of (47) is that AL and BL have peaks near 0 and 1

respectively and represent contributions to the eigenfunction from the two phases. The
weights â, b̂ and the unknown quantity ψL must now be determined from the boundary
condition (45). This requires that

âL

b̂L
=

B′(0)− Lγ0B(0)
Lγ0A(0)−A′(0)

=
B′(1)− Lγ1B(1)
Lγ1A(1)−A′(1)

. (51)

Recall that B(0) and its derivative are exponentially small when L is large, and similarly
for A(1). To compensate these exponential factors, define

ηL = [B′(0)− Lγ0B(0)]/ǫL, ξL = [Lγ1A(1)−A′(1)]/ǫL. (52)

To simplify notation define also

VL = Lγ0A(0)−A′(0), WL = B′(1)− Lγ0B(1). (53)

Then the second equality in (51) is

ǫLηL
VL

=
WL

ǫLξL
. (54)

The objects ηL,VL,WL, ξL do not depend on âL or b̂L but they do depend on µ,F (which
are parameters of the model) and on ψL. The presence of the small quantity ǫL in these
equations allows the behaviour of ψL to be determined.

Observe that none of ηL,VL,WL, ξL grow exponentially with L. Hence there are three
possibilities in (54). The first is that WL is proportional to ǫ2L for large L, but VL is well-
behaved (in the sense that it does not have an exponential dependence on L). In this case

âL/b̂L is proportional to ǫL so the eigenfunction Q is dominated by a peak at y ≈ 1. This
will correspond to the active phase. The second possibility is that VL is proportional
to ǫ2L for large L, but WL is well-behaved. In this case b̂L/âL is proportional to ǫL so
the eigenfunction Q is dominated by a peak at y ≈ 0. This will be the inactive phase.
The third possibility is that both VL and WL are proportional to ǫL so that b̂L/âL is
well-behaved. This corresponds to phase coexistence.

We consider the three cases in turn. Note there is no symmetry between the two
phases in this problem.

5.2.3. Active phase. The active phase corresponds to exponentially small values of WL

which means that

B′(1) = Lγ1B(1) +O(ǫ2L). (55)
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Within the active phase, we ignore the exponentially small correction. For large x the
Airy function has Bi′(x)/Bi(x) ≈ x1/2 from which one obtains

µ3 + ψL ≈ γ2
1 (56)

Recalling that F is small, we have from (45) that γ2
1 = F 2 +O(F 3) which yields

ψL − F2 ≈ µ3 +O(F3) or equivalently

ΨL ≈ Ψa = −λk (57)

which was the result anticipated in figure 7 for the active phase. (The second equality
is the definition of Ψa, the first equality is approximate and holds up to corrections at
O(F3)).

5.2.4. Inactive phase. For the inactive phase then VL is small which means that

Lγ0A(0) = A′(0) +O(ǫ2L). (58)

As before we drop the term at order ǫ2L and obtain

Lγ0Ai(L2/3ψL/µ
2) = µL2/3Ai′(L2/3ψL/µ

2). (59)

Recall that γ0 = F+O(F2) is positive. The derivative Ai′(x) is negative for x > 0 so
ψL < 0. However, Ai′(x) oscillates for x < α0 where α0 ≈ −2.3 is the zero of Ai closest
to x = 0. It follows that for large L, the argument of the Airy function must converge
to α0 and one sees that

ψL ≈ −|α0|µ2L−2/3. (60)

Hence

ΨL(λ) ≈ Ψi(λ) = −2
√
pqF 2 +O(L−2/3) (61)

as anticipated in figure 7. This behaviour was discussed in [31, 32]. The non-integer
power in the finite-size correction reflects the fact that AL(y) tends to zero as y→ 0 but

it has a maximum at a value of order L−2/3, indicating that the typical value of x = yL

is large but subextensive, of order L1/3. That is, the inactive phase contains a single
domain where the activity is non-zero: this domain covers a large number of sites, but
not enough to constitute a finite fraction of the system [31, 32].

5.2.5. Phase coexistence. From the analysis of the two phases and recalling figure 7, we
see that the crossover between the phases takes place when Ψa ≈ Ψi, which corresponds
to µ = µ∗

L with

µ∗
L ≈ F 2/3 (62)

or equivalently

λ∗
Lk ≈ 2

√
pqF 2 (63)

consistent with figure 7. Note also that ψ∗
L ≈ 0 by (60). Within each individual phase,

one of the factors VL and WL in (54) is exponentially small, such that (51) is sat-
isfied. Close to λ∗, both these quantities are small. We analyse this situation in a
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general setting with minimal assumptions on the functions VL,WL. The method is
quite generic for first-order phase transitions: it amounts to constructing an eigen-
function QL from two basis functions (here A,B) which have exponentially small over-
lap. The aim is to compute the behaviour of the eigenvalue ψ as the parameter µ is
increased.

Consider (55), (58), and drop the correction terms at O(ǫ2L). These equations can be
solved simultaneously for (µ,ψ). We denote the solution by (µ∗

L,ψ
∗
L), which corresponds

to the point where Ψa = Ψi in figure 7. Note that if we substitute the values (µ∗
L,ψ

∗
L)

then VL = 0 = WL exactly but (54) is manifestly not satisfied in this case. In fact, the
true value of ψL at this value of µ differs from ψ∗

L by a correction at O(ǫL), recall again
figure 7.

We are not able to estimate (µ∗
L,ψ

∗
L) with exponential accuracy, but we are able to

make an expansion about µ = µ∗
L that captures the small deviation of ψL from ψ∗

L. To
this end, write

(µL,ψL) = (µ∗
L + δµ,ψ∗

L + δψ) (64)

and substitute in (54). Using ∂µ to indicate a partial derivative with respect to µ, and
similarly ∂ψ, one obtains

ǫ2LηLξL = [(δµ)∂µWL + (δψ)∂ψWL] · [(δµ)∂µVL + (δψ)∂ψVL] (65)

where all derivatives are evaluated at (µ∗,ψ∗). It is not necessary to estimate these
derivatives directly, instead we rewrite the equation in a generic form by introducing
new constants X1,X2,Z (dependent on the model parameters and on µ∗

L,ψ
∗
L), such that

(δψ +X1δµ) · (δψ +X2δµ)− ǫ2LZ
2(X2 −X1)

2 = 0. (66)

Consistency of this approach requires X1 6= X2 and Z2 > 0 but this is always the case in
practice. We take X2 > X1 without loss of generality. Solving for δψ, we obtain

δψ = ±1

2
(X2 −X1)

√

(δµ)2 + (ǫLZ)2 −
X1 +X2

2
δµ. (67)

We take the + sign for the square root because ψ is known to be a convex function of µ,

see also below. Using (43) one has for small δµ that λ− λ∗
L ≈ Cδµ with C =

6
√
pq

k
(µ∗

L)
2.

Hence

1

2
√
pq

ΨL(λ) = ψ∗
L − F 2 +

X2 −X1

C

√

(λ− λ∗
L)

2 + (ǫLZC)2 −
X1 +X2

2C
(λ− λ∗

L)

(68)

which is the finite-size scaling form for Ψ, valid for small λ− λ∗
L. Differentiating with

respect to λ gives the behaviour of the order parameter near the transition:

kL(λ) = −Ψ′
L(λ) =

√
pq

C

[

(X2 +X1)−
(X2 −X1)(λ− λ∗

L)
√

(λ− λ∗
L)

2 + (ǫLZC)2

]

. (69)
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Figure 9. The logarithm of the second derivative of SCGF at the transition point
λ∗L as a function of the system size L: Ψ′′

L(λ
∗
L). We numerically diagonalize the

matrix of the largest eigenvalue problem (39), evaluate the second derivative of the
largest eigenvalue ΨL(λ), and find the maximum of the second derivative Ψ′′

L(λ):
maxλΨ

′′
L(λ) ≡ Ψ′′

L(λ
∗
L). Red circles, blue squared, green diamonds, yellow trian-

gles correspond to c = 0.3, c = 0.5, c = 0.7, c = 0.9, respectively. We also plot the
analytical prediction equation (71) as solid lines: logΨ′′

L(λ
∗
L) = (2F/3)L+ const.

This function is of the same form as (27), showing that the general analysis of section 4.3
is consistent with the specific calculation of this section. It shows a crossover at λ = λ∗

L,
from a value 2

√
pqX2/C (at small λ) to 2

√
pqX1/C (at large λ). Comparing with (27) one

identifies these quantities as the activities of the two phases. The width of the crossover
is 1/(CZǫL), which diverges exponentially with the system size when L is large. From
(27) we identify this with eΓsL/(∆k)2 where ∆k is the difference in activity between the
phases. The maximal susceptibility is

Ψ′′
L(λ

∗
L) =

X2 −X1

2ZC2
· 1

ǫL
(70)

which indeed diverges exponentially with L, as anticipated in figure 7. The rate of this
exponential divergence is fixed by the scaling of ǫL. Using (62) and that ψ∗

L ≈ 0 one
obtains from (50) exponential divergence of the susceptibility:

Ψ′′
L(λ

∗
L) ∼ eΓsL, Γs = 2F/3 +O(F 2). (71)

The exponential scaling is consistent with the general arguments of section 4.4 and we
identify Γs as the surface tension. In figure 9, we compare (71) with numerical results
for Ψ′′

L(λ
∗
L), showing good agreement. The analysis of this section also predicts the

eigenfunction Q which gives the probability distribution of yt, at the coexistence point
[recall figure 8(b)]. Note that the prediction (71) for Γs is accurate up to corrections
at O(F 2). A more accurate numerical prediction is also available if one accounts for
higher-order terms when solving (56), see [27] for details.

We conclude that the interfacial model predicts the scaling of the order parameter
near the dynamical phase transition to be (69) and it also makes quantitative predictions
including (63) and (71). These have been shown [27, 33] to agree very well with numerical
computations on the FA model. This confirms the prediction (36) that the interfacial
model can capture the behaviour of the FA model close to its dynamical phase transition,
including the relevant phase behaviour.
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6. Conclusion

We have analysed the dynamical phase transition that occurs in the FA model, by
two methods. In section 4, we invoked a correspondence between FA model trajectories
and configurations of the 2D spin model, in order to relate dynamical properties of
FA model to thermodynamic properties of this spin model. We used the analysis of
Privman and Fisher [34] to rationalise the finite-size scaling properties of this spin
model, and we emphasised the differences in behaviour for systems with Y ∼ L and
Y ≫ L. In the dynamical analysis, the first case corresponds to trajectories where the
time τ and the system size L are both large; the second case is relevant on taking the
limit τ →∞ before any limit of large L, as is often the case in studies of dynamical
LDPs.

In this second case, we explained how the distribution of the order parameter at
phase coexistence takes a unimodal form for large τ , and the associated susceptibility
diverges exponentially fast with L. This is in contrast to the case Y ∼ L which is more
conventionally analysed in thermodynamics, where the distribution is bimodal and the
susceptibility diverges as a power law. For Y ≫ L, we also derived the general predictions
(25) and (27) for the finite-size scaling behaviour close to phase coexistence, based on
the physical picture of figure 4(b). See also [39].

We note that the mapping between trajectories of a d-dimensional system and con-
figurations of a (d + 1)-dimensional model is a very general idea [4, 16, 39], here we
have illustrated it by directly constructing the 2D spin model. Our analysis is rele-
vant for a first-order phase transition, but other phase transitions are also possible.
For example, large deviations of the 1D Glauber-Ising chain are related to the critical
point of the 2D Ising model [16, 39]: an explicit mapping like the one in this work
could also be made, leading to a 2D spin model that reproduces the Glauber dynam-
ics of the 1D Ising chain. There are also second-order phase transitions in softened
variants of the FA model [17]. An interesting open question concerns the situation for
exclusion processes and other interacting particle systems [2, 10, 45, 49] where large
deviations have been studied extensively, including dynamical phase transitions [6, 45,
50–53]. A mapping is possible from 1D exclusion processes to 2D spin systems in this
case, but the thermodynamic properties of the 2D systems are unusual, this is related
to the presence of slow hydrodynamic modes in the interacting particle systems, see
also [39].

In section 5 we performed a specific analysis of the behaviour close to dynamical
phase coexistence in the FA model, using the interfacial model discussed in [27], see
also [31, 32]. The result is consistent with the general formulae (25), (27) but it also
gives more detailed predictions, including the value of the surface tension parameter Γs,
and the forms of the eigenfunctions Q, which specify the probability distribution for the
instantaneous size of the large inactive domain in the system.

The FA model is simple enough to enable this analysis, but the phase transitions
that we have analysed exhibit the full phenomenology of first-order phase transitions in
finite-dimensional systems. We hope that these results will be useful in guiding the future
analysis of other dynamical phase transitions and their finite-size scaling properties.
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Appendix A. MC simulation of the 2D spin model

To analyse thermodynamic properties of the 2D spin model, we use MC simulations.
Given a configuration C we propose a new configuration C ′. The new configuration
is accepted with probability min(1, eEs(C)−Es(C

′)) where the energy Es is given by (14),
generalised to periodic boundaries if applicable. Otherwise the old configuration is
retained.

In the simplest MC algorithm, one chooses either a spin ni,y or mi,y at random
and one proposes a new configuration by flipping this spin. However, for systems with
periodic boundaries, the constraints on the n and m variables means that updating the
configuration in this way does not allow access to every possible configuration of the
system. As an example, consider the following configuration of a periodic system with
(L,Y) = (4, 5), where X and . indicate sites with ni = 1, 0 respectively and − indicates
a bond with mi = 1.

X X X X X

X–. .–X X

X X–. .–X

X X X X X

It can be checked that there is no sequence of single-spin flips that connect this
configuration to the state where ni,y = 1 for all i, y. The essential problem is that there
are two spins in the third column with ni,y = 0 (indicated by .), but neither of these
spins is able to flip, because of the constraint that mi±1 = 0 if mi = 1.

The solution is that in addition to proposed moves where only one spin is flipped,
we also propose occasionally moves where two spins ni,y and ni,y+1 are both flipped
simultaneously. We claim that this gives an MC method that samples the full configu-
ration space of the model. For small systems we have verified explicitly every allowed
configuration can be reached from every other configuration.

With this MC algorithm, the system explores its configuration space slowly, but
computations are feasible. For calculations in large systems close to phase transitions
(figures 3 and 5), we use two methods. For L = 16 we performed long simulations with
s ≈ s∗, so that the system visits both phases many times during the coarse of a single
MC run. A histogram of K is accumulated in this run, and k(s) and χ(s) are obtained
as weighted average with respect to that histogram. For L = 32 we performed parallel
tempering simulations in which multiple replicas of the system are simulated at different
values of s, with all values of s being close to s∗. The histograms from the data at
different s are combined using the unbinned weighted histogram analysis method [54],
which yields an estimate for the distribution of K. This distribution is then used to
derive k(s) and χ(s) by weighted averages.
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Figure 10. Data for the 2D spin model at L = 8. We show results for systems
with periodic boundaries (pbc), and for systems with energy (14), which includes
boundary terms that are chosen to recover the equilibrium trajectory ensemble of
the dFA model (eqm). (a) Order parameter kL,Y(s). (b) Susceptibility χL,Y(s), the
colours and symbols are the same as in panel (a). (c) Finite size scaling of ρ̂∗, only
for the periodic case. Even if the function kL,Y(s) has saturated to its large-Y limit,
the shape of this distribution still depends on Y.

Finally, to demonstrate the effect of different boundary conditions, figure 10 shows
data for a very small system (L = 8). Taking Y→∞ at fixed L, one expects convergence
of k(s) and χ(s) to smooth limiting forms at large Y. The figure shows that Y = 128 is
already very close to convergence of this limit in a system with periodic boundaries. By
contrast, the system which corresponds exactly to the equilibrium trajectory ensemble
of the dFA model has a much stronger finite-size effect, in that larger Y is required to
see convergence to the large-Y limit. The reason is that the regions close to y = 1 and
y = Y are biased by the boundary conditions towards the active phase, which hinders
characterisation of the phase coexistence regime. See also [17].

Appendix B. Simple model for multi-domain phase coexistence

We describe the fluctuations in configurations such as those sketched in figure 4(b).
These are representative configurations of the 2D spin model at s = s∗. They can be mod-
elled by considering a 1D Ising model with periodic boundaries whose typical domain
size is κ ≈ eΓsL ≫ 1. The same results may alternatively be obtained by considering large
deviations of a two-state Markov chain. Working at temperature T = 1 we introduce a
magnetic field h ≪ 1 so the free energy of the Ising model can be obtained by standard
methods as λ(h) = − 1

Y
logTr(MY

h ) where the transfer matrix is

Mh =

(

1 + h κ−1

κ−1 1− h

)

. (B.1)

where we work at leading order in h, κ−1. For large Y then λ(h) is given by (the negative
of) the largest eigenvalue of this matrix so λ(h) = −1−

√
h2 + κ−2. The SCGF for the

total magnetisation of the 1D Ising model (in this limit) is g(h) = λ(0)− λ(h) so

g(h) =
√
h2 + κ−2 − κ−1. (B.2)
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The derivative of this function gives the mean magnetisation as a function of the field

m(h) = g′(h) =
h√

h2 + κ−2
. (B.3)

The total magnetisation obeys an LDP whose speed is the number of sites in this
1D Ising model, which is Y. The rate function for this total magnetisation is J(m) =
suph(hm− g(h)) which yields

J(m) = κ−1(1−
√
1−m2), −1 < m < 1. (B.4)

This rate function describes the fluctuations of the amount of each phase, assuming that
the domain walls in the configuration of figure 4(b) are a dilute ideal gas. Neglecting
fluctuations within the phases, we identify the (intensive) activity of a configuration
as k = k0 + (m∆k/2) where k0 is the average activity of the two phases, and ∆k is the
difference between their activities. Hence (B.4) yields (25) and (26).

Appendix C. Discrete and continuous versions of the interfacial model

C.1. Continuum limit

We show how the interfacial model (defined on a discrete lattice) can be analysed by
considering a continuous probability distribution for y. Starting from (39) and using
(41) we obtain (after Taylor expansion of f with L ≫ 1):

Ψ + λyk̄ = 2p
(

ef
′(y)[1 + f ′′(y)/(2L)]− 1

)

+ 2q
(

e−f
′(y)[1 + f ′′(y)/(2L)]− 1

)

.

(C.1)

So far this result only requires that L is large. In order to obtain an eigenvalue problem
for the continuous function P, we now assume additionally that |f ′(y)| ≪ 1 everywhere,
which leads to

Ψ + λyk̄ = (2p− 2q)f ′(y) + (p+ q)[f ′(y)2 + f ′′(y)/L]. (C.2)

We will see that this corresponds physically to approximating the binomial distribution
of the discrete random walk by a Gaussian distribution, as in a diffusion process. When
considering the typical behaviour of the system, this approximation is exact for large L,
but large deviations can be sensitive to the full distribution of hop sizes. For the problem
considered here, we make an approximation when expanding over f ′ but the resulting
theory still gives semi-quantitative predictions (see figure 9 and figure C1). Identifying

Lf ′(y) =
d

dy
logP (y) =

P ′(y)

P (y)
(C.3)

and

Lf ′′(y) =
d2

dy2
logP (y) =

P ′′(y)

P (y)
− P ′(y)2

P (y)2
, (C.4)
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Dynamical phase coexistence in the Fredrickson–Andersen model

Figure C1. (a) The SCGF Ψ(λ) obtained from the discrete eigenvalue problem (39)
(solid lines) and continuous eigenvalue problem (44) (dashed lines). The value of c
is 0.3. The active and inactive solutions for the continuous problem are obtained
following the procedure detailed in the main text. (b) The behaviour of f(y) =
(1/L)logPL(y) in the inactive phase, for (c,λ) = (0.3, 0.2). We show good agreement
between solutions of the discrete problem [equation (39), solid lines] and those
obtained by solving the continuous problem [equation (44), dashed lines].

one obtains

(Ψ + λy)P (y) =
2(p− q)

L
P ′(y) +

p+ q

L2
P ′′(y) (C.5)

which is an eigenvalue equation for the continuous function P. The boundary conditions
(40) are treated similarly, in order to obtain constraints on f ′(0) and f ′(1). However, the
point about which the Taylor expansion is performed is optimised to minimise errors
associated with the expansion at small f ′. To this end note that

P ((n+ 1)/L)− P (n/L)

P ((n+ 1)/L) + P (n/L)
=

ef
′ − 1

ef ′ + 1
= tanh(f ′/2) =

f ′

2
+O(f ′)3 (C.6)

where we use the shorthand f ′ = f ′ (2n+1
2L

)

, for compactness of notation. The correction
on the right-hand side is O(f ′)3: other representations of the derivative are possible but
would have corrections at O(f ′)2 which is less accurate. The boundary conditions (40)
are

P (2/L)− P (1/L)

P (2/L) + P (1/L)
= c0,

P (1)− P ((L− 1)/L))

P (1) + P ((L− 1)/L))
= c1 (C.7)

with c0 =
2q−2p+ΨL

2q+2p+ΨL
and c1 =

2q−2p−ΨL−λk
2q+2p+ΨL+λk

. Hence (C.6) provides values for f ′ ( 3
2L

)

and

f ′ ( 2L−1
2L

)

which we identify (at large L) with f ′(0) and f ′(1). Using again (C.3) yields

P ′(0)

P (0)
= 2c0L,

P ′(1)

P (1)
= 2c1L. (C.8)

https://doi.org/10.1088/1742-5468/ab7af6 31

https://doi.org/10.1088/1742-5468/ab7af6


J
.
S
ta
t.
M
e
c
h
.
(2
0
2
0
)
0
5
3
2
0
4

Dynamical phase coexistence in the Fredrickson–Andersen model

C.2. Simplification for small F

Note that in addition to a large-L limit, we have assumed that f ′(y) ≪ 1. For
λ = 0 it is easily verified that the exact eigenvector of the discrete problem has
f ′(y) = 2F = log(q/p) so self-consistency requires that this parameter be small. Physi-
cally, this requires that the hop rate for the asymmetric random walk xt is much larger
than its drift, that is (p− q)/(p+ q) ≪ 1.

In this case it is consistent to identify (p− q) = 2
√
pq sinhF ≈ 2F

√
pq and (p+ q) =

2
√
pq coshF ≈ (2 + F 2)

√
pq. Using this result in (C.5) yields (at leading order)

1

2
√
pq

(Ψ + λky)P (y) =
2F

L
P ′(y) +

1

L2
P ′′(y) (C.9)

and the associated boundary conditions are

P ′
L(0)

PL(0)
= 2L · F

√
pq + (ΨL/4)√
pq + (ΨL/4)

,
P ′
L(1)

PL(1)
= 2L · F

√
pq − (ΨL + λk)/4

√
pq + (ΨL + λk)/4

.

(C.10)

To see that the small-F approximation is self-consistent, note that for λ = 0 one has
ΨL = 0 and this recovers P(y) = e2LFy, which is the exact result in the discrete case.

To transform the eigenvalue problem to a self-adjoint form we define Q(y) =
P(y)e−LFy, which yields

1

2
√
pq

(Ψ + λky)Q(y) =
1

L2
Q′′(y)− F 2Q(y). (C.11)

As L→∞, one sees (consistent with figure 7) that both Ψ and λk will be O(F2). Hence
the boundary conditions for Q can be derived as

Q′(0)

Q(0)
= L

(

F +
Ψ

2
√
pq

+O(F 3)

)

,
Q′(1)

Q(1)
= L

(

F − Ψ+ λk

2
√
pq

+O(F 3)

)

.

(C.12)

C.3. Numerical demonstrations

We use numerical results to compare solutions of the continuous eigenvalue problem (44)
and the original discrete eigenvalue problem (39), in order to demonstrate the validity
of the continuous limit.

For the discrete problem, we numerically diagonalize the matrix on the right-hand
side of (39) and obtain Ψ(λ) as the largest eigenvalue and PL(y) as the associated eigen-
vector. For the continuous problem, we use the general solution (47) of the eigenvalue

problem (44) and (45), where the parameter b̂L is set to 1 without loss of generality
and the parameter âL is determined using one of the boundary conditions (44) and
(45). The other boundary condition is used to determine the value of ψ (as the largest
solution that satisfies the boundary condition), from which we obtain Ψ(λ). There are
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two technical remarks related to the boundary conditions. First, depending on which
boundary condition is used to determine âL, the obtained solution ψ changes: if the
boundary condition for y = 0 (or y = 1) is used to determine âL, we obtain the solution
of ψ that corresponds to the active (or inactive) phase. This means that, irrespective
of the value of λ, we can construct both active and inactive solutions by exploiting this
property (see figure C1, the solution with larger ψ gives the free energy and the other
solution corresponds to a metastable state). Second, if we ignore the O(F 3) terms in the
boundary conditions (44) and (45), we may obtain an artificial solution in some cases
(with ψ > 0). To avoid this problem, we use the full expression of the boundary condi-
tions (i.e., the expression that includes O(F 3) terms10). Alternatively, this problem can
be avoided by retaining the truncated boundary conditions and restricting to solutions
with ψ < 0.

Figure C1(a) shows Ψ(λ) for these discrete and continuous problems. Figure C1(b)
shows f(y) = (1/L)logPL(y) for a representative state point in the inactive phase. For
large-L, there is good agreement between the solutions of the discrete and continuous
eigenvalue problems, as expected. Recall that we derived the continuous eigenvalue
equation (44) from the discrete eigenvalue equation (39) by assuming that the slope of
f(y) is small. Our numerical observation shows that f(y) has a zero slope for y ∼ 0.5,
and keeps a relatively small slope around y ∼ 0.5 (except for around y = 0 or y = 1),
which is consistent with this small-f ′(y) assumption. Figure C1 shows results for c = 0.3;
qualitatively similar results were also obtained in the range of c between c = 0.1 and
c = 0.7 (not shown).

To understand the physical interpretation of the results in figure C1(b), recall from
section 5.2.1 that the maximum of f corresponds to the most likely value of yτ , where
τ is the final time of the trajectory. The different behaviours of PL and QL [defined in
equations (41) and (42)] mean that the most likely value of yτ differs from the typical val-
ues of yt in the bulk of the trajectory (far from initial and final times). The average values
of yt in the bulk of these trajectories are (0.117, 0.0771, 0.0506) for L = (100, 200, 400);
these small values are consistent with the system being in the inactive phase.
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