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Abstract. We evaluate the steady-state distribution and escape rate for an
active Ornstein–Uhlenbeck particle (AOUP) using methods from the theory of
large deviations. The calculation is carried out both for small and large mem-
ory times of the active force in one-dimension. We compare our results to those
obtained in the literature about colored noise processes, and we emphasize their
relevance for the field of active matter. In particular, we stress that contrary
to equilibrium particles, the invariant measure of such an active particle is a
non-local function of the potential. This fact has many interesting consequences,
which we illustrate through two phenomena. First, active particles in the pres-
ence of an asymmetric barrier tend to accumulate on one side of the potential—a
ratchet effect that was missing is previous treatments. Second, an active parti-
cle can escape over a deep metastable state without spending any time at its
bottom.
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1. Introduction

The active Ornstein–Uhlenbeck process (AOUP in the following) is defined in one
dimension through the equations of motion{

ẋ = v − U ′(x),

τ v̇ = −v +
√
2Dξ(t).

(1)

The model can be interpreted as describing the overdamped dynamics of a particle
with position x in an external potential U (with the mobility set to one) and driven
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by a Gaussian noisy velocity v with zero average and a time–time correlation function
〈v(t)v(t′)〉 = D

τ
e−|t−t′|/τ . First studied in the context of Langevin equations with memory

[1–10], it has received much attention recently when it became one of the canonical
models used to describe the motion of active particles [11–16]. Active particles are a
particular class of systems where each particle consumes energy from its environment in
order to self-propel. This AOUP model captures this through the stochastic active force
v which has a persistence time τ that breaks time reversal symmetry, and therefore drives
the system out of equilibrium: when τ goes to zero, one recovers the model of equilibrium
Brownian particles, but as long as τ > 0, there is a nonzero entropy production (of order
τ 2 as τ → 0 [15]).

The model can be solved exactly when U is a harmonic potential. Then, it can be
shown that the AOUP process can be mapped to an equilibrium process. The invariant
measure in the potential and the escape rate, assuming that the particle escapes when
it reaches a given potential height, can be computed exactly (see for example, [17]). For
general potentials most of the work has focused on the limit τ → 0. There, approxima-
tion techniques, specifically the unified colored noise approximation (UCNA) and Fox
approximation, have been employed in order to obtain the steady-state distribution [9,
10]. These show that to first order in τ , the AOUP is similar to an equilibrium system
but with an effective local potential whose form can be obtained and which depends
on the second spatial derivative of U [13]. The term local emphasizes the fact that the
steady-state distribution is a local function of the potential and its derivatives. The
result, however, is restricted to convex potentials, with the additional constraint that
the ratio

√
〈v2〉 =

√
D/τ remains large compared to typical values of the force U ′. To

this end, bistable potentials which cannot be treated using the UCNA and Fox approx-
imations, have been studied numerically in [16] where an alternative approximation
scheme in the small τ limit was developed.

More recently the escape problem of an AOUP from a general trap was considered
in the large τ limit [17]. In this regime, it was shown that the behavior changes in a
drastic manner from the leading order in τ result at small τ . Specifically, the escape rate
from the trap does not depend on the maximum difference in the value of an effective
potential, but on the maximal force exerted on the particle inside the trap. This suggests
that the steady-state distribution takes on a very different form when orders higher than
τ are accounted for. The following paper pursues this line of thought by calculating both
the steady-state distribution and the closely related problem of the escape rate from a
trap, in the small D limit, both to order τ 2 and in the limit of τ →∞. We show that in
both limits the physics becomes completely different from that revealed by the leading
order in τ result. In particular, the steady-state distribution is now a non-local function
of the potential U. This is crucial since, as we illustrate, fundamental non-equilibrium
physical processes such as ratchet effects are only displayed when the non-locality of the
steady state appears. These, for example in the seminal work of [18–20], are considered
one of the hallmarks of active matter.

To obtain these results, as stated above and in contrast to previous studies of the
AOUP model, we focus on the small-noise limit. Namely, we consider the problem when
D, the amplitude of the noise which drives the variations in v, is small. The use of a
small noise asymptotic analysis to study the problem has been first applied about three
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decades ago in the context of Brownian motion subject to colored noise3. In particu-
lar, a path integral formulation was derived, despite the non-Markovian evolution of
the position [1, 2, 4–6, 21]. These formulations in turn allow one to study the D→ 0
asymptotic regime through an optimal path approach. In particular, they allow for the
computation of escape rates [4, 7, 21] including the sub-dominant prefactor [8] and
even accounting for inertia [22] (see also [2] for solutions of specific models or [23] for
other correlated noise). We also note an early work by K�losek-Dygas et al [3] who, by
means of a Fokker–Planck approach (and in a small-τ expansion), obtained many of
the results derived later through a path-integral approach. Below we compare in detail
our results to those obtained previously emphasizing technical differences, places where
we go beyond the early results, and putting them in the context of active matter. As
we show the focus on phenomena related to active matter allows us to uncover new
phenomena which were not discussed in the early works.

To study the D→ 0 asymptotics we apply recent techniques from the theory of
large deviations [24]. These enable us to relate the escape problem and the steady-state
distribution problem using standard results. In particular, if we consider a metastable
state x 0 and its basin of attraction B0 both the mean escape time 〈Tesc〉 and the invariant
measure ρ within B0 can be asymptotically computed from a single function Φτ called
the quasipotential as follows⎧⎪⎨

⎪⎩
ρ(x)

ρ(x0)
�

D→0
e−

Φτ (x)
D ,

〈Tesc〉 �
D→0

e
Φτ (xs)

D .

Here xs is the saddle point that needs to be crossed for the particle to escape from the
basin of attraction of x 0. The notation f �

D→0
g means logarithmic equivalence between the

functions f and g, that is log f ∼
D→0

log g. Using standard tools we compute the quasipo-

tential Φτ in both limits τ → 0 (to order τ 2) and τ → +∞, without any restriction on
U. Our main findings are:

(a) In the limit τ → 0, we find the asymptotic expansion

Φτ (x) ∼
τ→0

U(x)− U(x0) + τ
|U ′(x)|2

2
− τ 2

2

∫ x

x0

|U ′(y)|2U ′′′
(y)dy +O(τ 3).

(2)

The correction of order τ 2 in Φτ is the first nonlocal term of the invariant measure.
We interpret this contribution in terms of long-range interactions in the system.
These, as we show, lead to a ratchet effect where particles are driven in the presence
of an asymmetric potential (see section 2.2.2 and figure 2) [20]. We note that non-
local interactions have been already observed in active fluids [25] and therefore seem
to be generic for this class of systems. The non-local contribution, interestingly, is
absent for a harmonic potential. Our method can further be used to derive an

3 In an earlier version of the paper we were not aware of these pioneering works. We thank an anonymous referee for bringing our
attention to references [4, 6, 7] and apologize to their authors.
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expansion for Φτ to any order in τ . We note from a technical point of view that
the expansion (2) in powers of τ is non-intuitive: because of the existence of a
boundary layer in the instanton calculation used to evaluate Φτ (x), a standard
perturbative procedure fails and the calculation has to be carried out with some
care. The singular behavior of the instanton also brings an insight on how an active
optimal trajectory differs from an equilibrium one.

Comparing to earlier works, the O(τ) contribution to (2) was derived by Wio
et al in [21] using a path integral approach. The escape rate implied by (2) (i.e. for
x = xs) was derived in [4, 7] at order τ 2 and higher using path integrals. However, in
the latter case the optimal path is not singular, and the perturbation is organized
in even powers of τ . The methods of [4, 7] therefore allows one to determine the
escape rate but not the steady-state quasipotential for any x. However, as discussed
at the end of section 3, we note that expression (2) can be deduced from a result
of referene [3] which uses a Fokker–Planck approach. This provides an alternative
way to derive (2), but one does not uncover the singular nature of the instanton.
The approach we follow gives an insight on the typical trajectory taken by the
active particle to reach an arbitrary point.

(b) The limit τ → +∞ displays a different behavior. The quasipotential should be seen
as a functional of the force field F(x) = −U ′(x), rather than a functional of the
potential. We show that the quasipotential has a singularity at the inflection point
xcr where U

′′(xcr) = 0. Before the inflection point, Φτ is a local function of the force,
and is given by

forx < xcr, Φτ(x) ∼
τ→+∞

τ
|U ′(x)|2

2
+

|U ′(x)|2

2U ′′(x)
+O (1/τ) . (3)

However, beyond the inflection point, it is entirely controlled by the vicinity of xcr

forx > xcr, Φτ (x) ∼
τ→+∞

τ
|U ′(xcr)|2

2
+ τ 1/3 C|U ′(xcr)|2(√

1
2
|U ′′′(xcr)| |U ′(xcr)|

)2/3 +O(τ 0),

(4)

where C ≈ 0.8120 is a constant that can be computed numerically from the solution
of a non-dimensional equation (see equations (74) and (75) and section 4.1.2). This
demonstrates again the non-locality of the problem. The result implies that in the
large τ limit, the potential barrier seen by the active particle is controlled by forces.
For example, in the escape problem the particle has to overcome the maximal force
Fmax = U ′(xcr), as opposed to the equilibrium problem where maximal potential is
the bottleneck. The proof of equation (4) further reveals that the dynamical system
(1) has a bifurcating slow manifold that is used by the active particle to switch
between the metastable states. This particular kind of transition paths has been
already observed numerically for some multiscale systems in [26]. This gives rise
to interesting new phenomena, which we discuss, such as hopping over metastable
states (see especially section 2.3.1 and the supplementary movies, available online
at (stacks.iop.org/JPhysJSTAT/2020/063204/mmedia)).
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In comparison to previous works we note that the τ 1/3 scaling of the correction
(4) was hinted at in reference [4]. Expression (4), in the case x = xcr useful in the
escape problem, was derived in [7] through a path-integral approach, but again the
singular nature of the instanton (that appears only for x �= xcr) was not identified.
Finally, we comment that the steady-state quasipotential cannot be inferred from
the approach of reference [7].

The paper is organized as follows: for completeness we first give in section 2
a summary of the approach used for the calculations, before discussing their
consequences. The detailed derivations of the results are given in sections 3 and 4.

2. The approach and some implications of the results

2.1. Summary of the large deviation framework

In this section we describe the approach used to evaluate the quasipotential Φτ . For
completeness, the relation between the mean escape time and the quasipotential is
recalled in the appendix. In what follows, we assume for simplicity that ρ(x 0) = 1,
the generalization being straightforward. First, note that the invariant measure can be
expressed in terms of the transition probability of the AOUP as

ρ(x) = lim
T→−∞

∫ +∞

−∞
P (x, v, 0|x0, 0,−T )dv,

where P(x, v, 0|x 0, 0,−T) is the probability to be at (x, v) at time t = 0 starting initially
at the stationary point (x 0, 0) at t = −T. In this paper, we use both the Lagrangian and
the Hamiltonian formalism, and we briefly review both in the following.
Lagrangian formalism: the transition probability can then be expressed as an
Onsager–Machlup path integral [27]. This gives for the invariant measure

ρ(x) =

∫
D [x(t), v(t)] e−

1
DA[x,v], (5)

with

A[x, v] =

∫ 0

−∞
L (x, v, ẋ, v̇) dt (6)

L (x, v, ẋ, v̇) =

⎧⎨
⎩
1

4
(τ v̇ + v)2 if v = ẋ+ U ′(x)

+∞ otherwise.
(7)

Using the constraint on v the Lagrangian can be equivalently written as

L(x, ẋ, ẍ) = 1

4
(ẋ+ U ′(x) + τ (ẍ+ ẋU ′′(x)))

2
. (8)

The instanton trajectory is found by solving the Euler–Lagrange equation with the
boundary conditions
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x(t) →
t→−∞

x0 ; v(t) →
t→−∞

0

x(0) = x ; ẋ(0) = 0. (9)

The first line implies that the particle starts at the stationary state, while the second
assures that it arrives at x at time zero without overshooting. So far, expression (5) is
formally exact (with a proper interpretation/discretization of the action, see e.g. [28]).
In the limit D→ 0, one can use a saddle-point approximation to get∫

D [x(t), v(t)] e−
1
DA[x,v] �

D→0
e−

1
DΦτ (x),

where Φτ(x) is the quasipotential.
Hamiltonian formalism: the easiest path for obtaining the Hamiltonian formalism is
through the Martin–Siggia–Rose–Janssen–De Dominicis approach [29–33]. To do so we
rewrite the probability by reexpressing delta functions as

ρ(x) =

〈∫
D [x(t), v(t),Pv(t),Px(t)] e

− 1
D

∫ 0
−∞{Px(ẋ−v+U ′)+Pv(τ v̇−v−

√
2Dξ(t))}dt

〉
ξ

,

(10)

which after averaging over the noise ξ gives

ρ(x) =

∫
D [x(t), v(t),Pv(t),Px(t)] e

− 1
D

∫ 0
−∞ {Pxẋ+Pvv̇−H[Px,Pv ,x,v]}dt, (11)

where the Hamiltonian is given by

H (x, v,Px,Pv) = (v − U ′(x))Px −
vPv

τ
+

P 2
v

τ 2
. (12)

The instanton is then given by a solution of Hamilton’s equations⎧⎨
⎩ẋ = v − U ′(x)

v̇ = −v

τ
+ 2

Pv

τ 2

and

⎧⎨
⎩Ṗx = U ′′(x)Px

Ṗv =
Pv

τ
− Px

, (13)

with the boundary conditions

x(t) →
t→−∞

x0 ; v(t),Px(t),Pv(t) →
t→−∞

0. (14)

Pv(0) = 0 (15)

The boundary condition on Pv(0) can be deduced by noting that Pv = ∂vS, with S
the action corresponding to H, and that we are minimizing the action with respect to
the final velocity. It is equivalent to the Lagrangian one, equation (9). The bound-
ary conditions at t = −∞ results from demanding that we start at the stationary
point.
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Finally, note that the Hamiltonian has no explicit time dependence, ‘energy’ is con-
served along the optimal path. Evaluating the Hamiltonian (12) at t = −∞ gives the
constraint

H (x, v,Px,Pv) = 0. (16)

With the above we now turn to discuss the small and large τ expansions.

2.2. The small τ limit

We now explain how the value of the quasipotential at the saddle point Φτ (xs) can, for
the escape problem, be evaluated to order τ 2 using a standard perturbation theory [4,
7]. Note that this approach, as we discuss in section 3.1, in fact fails when the final
point x is not a saddle point xs, i.e. for the computation of the invariant measure Φτ (x)
at an arbitrary point x. We will show how the perturbation scheme has to be modified
in this case. For clarity, these subtleties will be illustrated for a harmonic potential
U(x) = 1

2
kx2 in section 2.2.1, where Φτ (x) is computed exactly. In what follows we

always take U(x 0) = 0.
To proceed, we first expand the square in the action (6) and (7) so as to write

A[x] = A0[x] + τA1[x] + τ 2A2[x].

Note that equation (7) implies that A1[x] =
1
2

∫ 0

−∞ v̇vdt = 1
4
v(0)2 is a boundary term.

Furthermore, since we are looking for action minimizers which reach the saddle xs, the
fluctuation path x̃ (or optimal path) has to reach xs with zero velocity. This can be
directly seen from equation (16) with the boundary condition equation (15). Therefore,
for xs a saddle, A1[x̃] = 0. Next, using equation (7)⎧⎪⎪⎨

⎪⎪⎩
A0[x] =

1

4

∫ 0

−∞
v2dt,

A2[x] =
1

4

∫ 0

−∞
v̇2dt.

(17)

As the action expansion has no terms proportional to τ , we can expand the fluctuation
path x̃(t) and the quasipotential Φτ (xs) in powers of τ 2

x̃(t) = x̃0(t) + τ 2x̃2(t) +O(τ 4) (18)

Φτ (xs) = Φ0(xs) + τ 2Φ2(xs) +O(τ 4) (19)

and solve the minimization problem up to order τ 2. The zeroth order is given by the
equilibrium fluctuation path{

˙̃x0(t) = U ′(x̃0(t)),

A0[x̃0] = U(xs),
(20)

and the mean escape time is given by the classical Arrhenius law, with the quasipotential

Φ0(xs) = U(xs)− U(x0).
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The second order correction to the quasipotential is given by

Φ2(xs) =

∫
δA0

δx
[x̃0(t)]x̃2(t)dt+A2[x̃0(t)].

Because x̃0(t) is a minimizer of A0, the first term vanishes and we are left with

Φ2(xs) = A2[x̃0(t)] =

∫ 0

−∞
(U ′U ′′)

2
dt, (21)

where the integral has to be evaluated along the equilibrium fluctuation path (20).
Finally, using dt = dx

|U ′ | , see equation (20), we obtain

Φ2(xs) =

∫ xs

x0

|U ′(y)| (U ′′(y))
2
dy. (22)

This relation gives the correction to order τ 2 for the Arrhenius mean escape time, as

〈Tesc〉 �
D→0

e
Φτ (xs)

D with the expansion given in equation (19).

As mentioned above the perturbative procedure described above and the result of
equation (22) (known since the works of Bray, MacKane and collaborators [4, 7]) cannot
be used, in a straightforward manner, to compute the perturbative corrections to the
invariant measure. The reason is that the fluctuation path which reaches a point x that is
not a saddle (i.e. x �= xs) displays a boundary layer of size τ close to t = 0. This peculiarity
of the fluctuation path gives local contributions to the quasipotential to any orders in
τ , that only vanish at x = xs. This effect is already present for the exactly solvable
case of harmonic potential as illustrated in section 2.2.1. The full computation of the
fluctuation path and the quasipotential for a general potential up to order τ 2 is rather
lengthy, and is detailed in section 3. The final result was announced in equation (2).
As emphasized previously, equation (2) shows that the second order correction to the
quasipotential is non-local . Several hallmarks characterizing active systems, such as
ratchet currents, originate from such contributions. We illustrate this on the ratchet
example in section 2.2.2.

2.2.1. Instanton path for the harmonic potential. To illustrate the subtle boundary
layer that emerges in the instanton path for τ > 0, we consider the AOUP in a harmonic
potential U(x) = 1

2
kx2. In this case, both the fluctuation path and the quasipoten-

tial can be computed exactly. Interestingly, all terms to order larger than τ in the
expansion vanish. Therefore, the problem reduces to an effective equilibrium Brownian
particle with an ‘effective temperature’ that depends on τ and the stiffness of the trap k
(see e.g. [17]).

To see this, define the variable p = v − kx, so that equation (1) become⎧⎪⎨
⎪⎩
ẋ = p,

ṗ = −
(
1

τ
+ k

)
p− k

τ
x+

√
2D

τ 2
ξ(t).
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Then, we can identify a friction coefficient γ = 1
τ
+ k, and effective potential Ueff(x) =

kx2

2τ
so that ⎧⎪⎨

⎪⎩
ẋ = p,

ṗ = −γp−∇Ueff +

√
2γD

τ + kτ 2
ξ(t).

(23)

equation (23) are exactly the equations of an underdamped equilibrium Brownian par-
ticle in a potential Ueff(x) and a temperature Teff = D

τ+kτ 2
. The problem can therefore be

solved exactly:

(a) The mean escape time satisfies the Arrhenius law

〈Tesc〉 � e
Ueff
Teff = e

(1+τk)
D k x2

2 , (24)

which corresponds to equation (2) where all terms of order τ 2 are zero.

(b) The fluctuation path is obtained using the time reversal symmetry of the
problem, namely, by reversing the friction term in the relaxation (noiseless)
equations {

ẋ = p,

ṗ = +γp−∇Ueff,

which equivalently gives

ẍ−
(
k +

1

τ

)
ẋ+

k

τ
x = 0. (25)

equation (25) together with the boundary conditions x(0) = x and ẋ(0) = 0 gives

x(t) =
x

1− kτ

(
ekt − kτe

t
τ

)
. (26)

The ‘bulk’ contribution (in the regime |t| 
 τ) and the boundary layer contri-
bution (in the regime |t| ∼ τ) are easily identified in equation (26) as the two
exponential terms. Figure 1 displays the fluctuation path (26) for decreasing
values of τ . It is clearly seen that the path comes closer to the equilibrium
fluctuation path of equation ẋ = kx, when τ decreases toward 0. However, the
fluctuation path always has to satisfy the boundary condition ẋ(0) = 0: this
constraint is responsible for the existence of the boundary layer of a size of
order τ , and creates a singularity at t = 0 in the fluctuation path in the
limit τ → 0. This surprising phenomenon explains the breakdown of the stan-
dard perturbative expansion of the fluctuation path, and creates, as we show,
non-trivial local contributions to the quasipotential equation (2) to all orders
in τ .
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Figure 1. Fluctuation path for the AOUP in a harmonic potential U(x) = x2

2
. Left:

the graph displays the fluctuation paths in the phase space (x, v), for the three values
τ = 1.0/0.2/0.05. The light blue arrows represent the vector field for τ = 0.5. The
dark blue line gives the conditions for spatial stationary state ẋ = 0, and the red
line is the equation v = 2U ′(x) for the equilibrium fluctuation path (i.e. τ = 0).
It can be seen that the convergence to the equilibrium path in the limit τ → 0
displays a singularity close to x(0) = 1.5. Right: the trajectories ẋ(t) for the same
values of τ as in the left picture. The fluctuation path satisfies ẋ(0) = 0, whatever
the value of τ . The boundary layer of size ∝ τ can clearly be identified close to
t = 0.

2.2.2. A ratchet. We next illustrate that a consequence of the non-local contribution
to the quasipotential (2) is a ratchet effect. We consider the AOUP in the domain
[−1, 1] with reflecting boundary conditions (walls) at x = ±1. We choose the continuous
asymmetric potential

U(x) =

{
1− 3x2 − 2x3 for x ∈ [−1, 0],

1− 6x2 + 8x3 − 3x4 for x ∈ [0, 1].

The function U(x) is the blue curve displayed in figure 2. For this problem, we compute,
using equation (2), the quasipotential Φτ defined by the relation

D log ρ(x) = Φτ (x) + C,

where C is some additional constant. Figure 2 displays the function Φτ(x) truncated
respectively to orders τ 0, τ and τ 2. It is shown that to order τ 2, there is an offset ΔΦ
given by

ΔΦ = Φτ(−1)− Φτ (1) = −τ 2

∫ 1

−1

|U ′(y)|2U ′′′(y)dy.

The offset is responsible for the accumulation of active particles on the right side of
the ratchet potential, according to the relation ρ(1)

ρ(−1)
�

D→0
e

ΔΦ
D . This effect is absent if one

considers the expansion of Φτ up to order τ only.
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Figure 2. The ratchet effect for AOUP. The blue curve is the ratchet potential
U(x), which also corresponds to the quasipotential at equilibrium Φτ=0. The figure
displays the quasipotential Φτ truncated to order τ (yellow curve), and τ 2 (red
curve), for τ = 0.1. It can be seen that an offset ΔΦ appears between the right and
the left of the ratchet to order τ 2, creating an accumulation of active particles on
the right of the ratchet.

2.3. The large τ limit

We now turn to discuss the large τ limit. In particular, we illustrate how results can
be obtained using heuristic arguments. The full details of the calculation are presented
in section 4. The limit is best understood by rescaling time according to t← t/τ and
D← D/τ in equation (1). This yields{

ẋ = τ (v − U ′(x)) ,

v̇ = −v +
√
2Dξ(t).

(27)

From this it is easy to see that in the large τ limit the dynamical relaxation time in
the trap is much smaller than the time scale associated with the variation of the active
force. In particular, in the strict limit τ →∞ the particle is in a quasistationary state
given by the equation

U ′(x(t)) = v(t). (28)

Since the dynamics of v does not depend on x, the location of the particle can be deter-
mined from equation (28) by inverting the function U ′. Figure 3 displays the dynamics in
phase space (x, v) for τ = 30. This implies that, for a typical barrier, the curve v = U ′(x)
has a stable manifold in an interval [x 0, xcr] and an unstable manifold in [xcr, xs]. Here
xcr is the (unique) inflection point at which U ′′(xcr) = 0.

This implies that in order to cross the barrier, the particle has to reach xcr by moving
along the stable manifold, and then, once xcr is reached, it can ‘fly over’ the barrier using
the deterministic dynamics. Namely, any position x > xcr can be reached without any
additional action cost, once the inflection point xcr has been crossed. We note that
this phenomenology seems to be generic for fluctuation paths in the presence of a slow
manifold as shown in [26].

The barrier displayed in figure 3 is thus a force barrier and not an energy barrier
as found in equilibrium problems. Then the mean escape time in the large deviation

https://doi.org/10.1088/1742-5468/ab7e2e 12
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Figure 3. (a) Phase space structure of AOUP in the large τ limit. The dynamics
along x is very fast compared to the v direction. The blue arrows represent the deter-
ministic dynamics for τ = 30, and U(x) = x2

2
− x3

3
. To escape from the metastable

state, the process first follows the stable manifold up to xcr and then can fly over
the barrier using the deterministic field. (b) Graph of the potential barrier U(x).
The saddle point is xs = 1 and the inflection point is xcr = 0.5.

regime D→ 0 is given by the mean time required for the Ornstein–Uhlenbeck process
v(t) to reach Fmax = −U ′(xcr). The result is

〈Tesc〉 �
D→0

e
|Fmax|2

2D . (29)

Following the same line of arguments, one can obtain the quasipotential in the large τ
limit

Φτ (x) →
τ→+∞

⎧⎪⎨
⎪⎩
1

2
|U ′(x)|2 for x0 < x < xcr,

1

2
|U ′(xcri)|2 for xcr < x < xs.

(30)

Whereas the result of equation (30) is relatively easy to obtain, the first order correction
is not. One has to deal with two different types of boundary layers in the fluctuation
path, depending on the value of x.

• For x < xcr, the fluctuation path has a boundary layer of size 1
τ
close to t = 0.

The expansion of Φτ can be done in powers of 1
τ
, and one obtains to leading

order

Φτ (x) ∼
τ→+∞

|U ′(x)|2

2
+

|U ′(x)|2

2τU ′′(x)
+O

(
1/τ 2

)
. (31)

Note that as required this expression agrees with the exact expression (24) obtained
for a harmonic potential.
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Figure 4. Left: the metastable potential U(x). The AOUP particle has to cross two
barriers at x1 and x2 to escape. The two wells are designed such that the maximal
slope of the first barrier is F, whereas the maximal slope of the second is F/2.Right:
the graph displays the average fraction of time 〈r〉 [defined in equation (33)] spent by
the particle in the second well, as a function of τ . When τ becomes large, the particle
just jumps ballistically over the second well and escapes. Thus 〈r〉 goes to zero for
large τ .

• For x > xcr, the boundary layer is located in the vicinity of xcr, with the particu-
lar scaling 1

τ 2/3
: this implies in particular that the correction depends only on the

expansion of U close to xcr. We obtain

Φτ (x) ∼
τ→+∞

|U ′(xcr)|2

2
+

C|U ′(xcr)|2(
τ
√

1
2
|U ′′′(xcr)| |U ′(xcr)|

)2/3 +O(1/τ), (32)

where C ≈ 0.8120 is a constant that can be computed numerically from the solution
of a non-dimensional equation (see equations (74) and (75) and section 4.1.2). This
result was derived in [7] for the special case of x = xcr that one has to consider for
the escape problem. The singular nature of the instanton is absent in this special
situation.

2.3.1. Hopping over metastable states. We now illustrate the implications of
equation (32) on escape processes. In particular, we show that an active particle can
hop over a metastable state without ‘feeling’ it. To see this, consider first the metastable
potential U(x) given in figure 4. The potential is composed of two wells of equal depth,
one for x < x1, and another one for x1 < x < x2. The maximal force to overcome in order
to leave the first well is U ′(xcr) = F, whereas the maximal force to overcome the second
well is F

2
. We look at the escape x > x2 of an active AOUP particle starting in the first

well at x = 0 with zero velocity.
For small values of τ , a velocity fluctuation v > F brings the particle out of the

first well, and then, it spends some time in the second well waiting for another velocity
fluctuation of size v > F

2
to escape. For large values of τ on the contrary, the particle

can use the velocity fluctuation v > F created to leave the first well in order to directly
escape over the second well, without further velocity fluctuations (see supplementary
movies). This behavior, as we emphasize, is a consequence of the flatness of the quasipo-
tential for x > xcr in the large τ limit, which means that the mean escape time to reach
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x > x2 is in fact the same as to reach x > x1. The fraction of time spent in the second
well x1 < x < x2 vanishes in the limit τ → +∞. To show this latter point, we imple-
mented a numerical simulation where we record the total times T1 and T2 spent by
each particle in the first and second well respectively, and we numerically compute the
ratio

〈r〉 =
〈

T2

T1 + T2

〉
, (33)

where the average is done over escape events, for each value of τ . Simple scaling
arguments show that the large τ behavior of 〈r〉 is

〈r(τ)〉 ∝
τ→+∞

log(τ)

τ
.

We show in figure 4 that the function 〈r〉 indeed decreases slowly with τ . In addition,
we illustrate the result with the two supplementary movies.

3. AOUP in the small τ limit

We now detail the full calculation of the quasipotential in the small τ limit. Here we use
a Lagrangian approach described in section 2.1, that allows for a generic organization
of the perturbation expansion. The Lagrangian is given in equation (8). Recall that the
quasipotential at a point x ∈ B0 is obtained by evaluating the action on the ‘instanton
trajectory’ whose solution is given through the saddle-point equation

ẍ− U ′(x)U ′′(x)− τ 2
(....
x + ẋ3U (4)(x)− ẍ

(
U ′′(x)2 − 3ẋU ′′′(x)

)
− ẋ2U ′′′(x)U ′′(x)

)
= 0,

(34)

Assuming that x 0 is the location of the optimal minimum (the generalization being
straightforward using standard methods, see for example [34]) the optimal path x(t)
starts from the local minimum x 0 of U in B0 at time t = −∞ and arrives in x at time
t = 0. The Hamiltonian boundary condition (14) on the momentum Pv vanishing at
t = 0 implies that ẋ(0) = 0. The boundary conditions on equation (34) are given in
equation (9). Finally, note that conservation of ‘energy’ [see equations (12) and (16)]
enforces the optimal path to satisfy

H(x, ẋ, ẍ,
...
x) ≡ −U ′(x)2 + τ 2

(
−2ẋ3U ′′′(x) + ẋ2U ′′(x)2 + ẍ2 − 2ẋ

...
x
)
+ ẋ2 = 0. (35)

3.1. Expansion order by order

As shown in section 2.2.1 (see figure 1) for the harmonic case, the instanton solution
x(t) presents two distinct regimes of time in the small τ limit: (i) a ‘bulk’ regime t � −τ
where the solution is uniformly close to the τ = 0 instanton, and where an expansion in
powers of τ is well defined; and (ii) a ‘boundary-layer’ regime t ∼ −τ where the instanton
cannot be obtained as a small perturbation around the τ = 0 instanton solution. One
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therefore has to treat the boundary layer using a singular perturbation theory. To this
end, in what follows we determine order by order in powers of τ the form of the instanton
in the bulk and in the boundary layer; these forms are determined up to constants that
we obtain using standard asymptotic matching techniques.

Namely, we write the instanton solution in the bulk regime as

x(t) = xB(t) ≡ x(0)(t) + τx(1)(t) + τ 2x(2)(t) + τ 3x(3)(t) + · · · , (36)

with the boundary condition xB(−∞) = x 0. In the boundary layer, following standard
approaches, we introduce x(t) = xbl(t/τ) and defines t ′ = t/τ . The solution in this regime
is expanded as

xbl(t
′) = x

(0)
bl (t

′) + τx
(1)
bl (t

′) + τ 2x
(2)
bl (t

′) + τ 3x
(3)
bl (t

′) + · · · , (37)

and equation (9) implies that xbl(0) = 0 and ẋbl(0) = 0. The bulk and boundary solution
can be asymptotically matched by demanding that xB(t)|t→0 and xbl(t/τ)|t→−∞ have the
same functional form. The overall structure of the perturbation theory is implemented
by enforcing the zero-energy condition (35) order by order in τ for both expansions for
the bulk (36) and the boundary layer (37).

In what follows we specify the solution order by order.

3.1.1. Zeroth order. In the bulk regime, using (36) with (35) one finds at zeroth order
in τ that (

U ′(x(0))
)2 − (

ẋ(0)
)2

= 0,

One thus sees that x(0)(t) is equal to the equilibrium instanton x̃(t), which is given by
the solution of

˙̃x(t) = U ′(x̃(t)) with x̃(−∞) = x0 and x̃(0) = x. (38)

Next, we express higher orders of the bulk expansion (36) as a function of x̃(t).
In the boundary-layer regime, using equations (35) and (37) one finds to zeroth order

in τ that

2ẋ
(0)
bl

...
x
(0)
bl −

(
ẍ
(0)
bl

)2

−
(
ẋ
(0)
bl

)2

= 0,

whose solution is

x
(0)
bl (t

′) =
(
2C1t

′ − C2
1e

−t′ + et
′
)
C2 + C3,

with Ck’s constants. The asymptotic matching condition implies that x
(0)
bl (t

′) has to
remain constant as t ′ → −∞. This imposes C2 = 0, which with the boundary condition

at t ′ = 0 implies C3 = x. Therefore, x
(0)
bl (t

′) = x.
The quasipotential is obtained by decomposing the time interval ]−∞, 0] into

]−∞,−Aτ]∪] −Aτ , 0] and using the bulk and boundary-layer expressions of the
instanton trajectory:

Φ(x) =

∫ −Aτ

−∞
L(xB, ẋB)dt+

∫ 0

−A

τL(xbl, τ ẋbl)dt
′, (39)
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Clearly, for this to be consistent the result should be independent of A in the large A
limit. Using the solution we have obtained one finds, as expected, that the boundary
layer does not contribute at order τ 0 and one recovers the equilibrium result

Φ(x) = U(x)− U(x0) +O(τ).

3.1.2. First order. In the bulk regime, using (35) and (36) and taking into account
zeroth order results, one finds that

˙̃xẋ(1) − ¨̃xx(1) = 0,

where we also used equation (38) for the equilibrium instanton x̃(t), to eliminate
derivatives of U. The solution is then

x(1)(t) = c1 ˙̃x(t). (40)

In the boundary-layer regime, equations (34) and (37) give

....
x
(1)
bl − ẍ

(1)
bl = 0,

whose solution, satisfying the boundary conditions4 at t ′ = 0 is

x
(1)
bl (t

′) = D1

(
et

′ − 1− t′
)
+D2

(
e−t′ − 1 + t′

)
and the zero-energy condition, together with the solution at zeroth order, imposes
(D1 + D2)

2 −U ′(x)2 = 0.
The asymptotic matching then imposes D2 = 0 so that D1 = ±U ′(x). To determine

the sign of D1 and the value of c1 in (40) one compares the asymptotic behaviors of the
bulk and the boundary-layer:

xB(t)| t=τ t′ ≈
t→0

x+ [c1U
′(x) + t′U ′(x)] τ + · · ·

xbl(t
′) ≈

t′→−∞
x− [D1(1 + t′)] τ + · · ·

(Note that for xB(t) both x(0)(t) and x(1)(t) contribute, and we used the equation of
motion ˙̃x(t) = U ′(x̃(t)) to evaluate ˙̃x(0) = U ′(x).) The asymptotic matching therefore
imposes D1 = −U ′(x) and c1 = 1. To summarize, the first-order perturbations in the
bulk and boundary layer are:

x(1)(t) = ˙̃x(t) ; x
(1)
bl (t

′) =
(
et

′ − 1− t′
)
U ′(x). (41)

We remark that at this first order, the boundary layer xbl(t/τ) contains terms pro-
portional to τet/τ which are non-perturbative in τ as τ → 0 at fixed t. This fact
explains how the boundary layer contributes to the expression of the quasipoten-

tial in Φ(x) =
∫ 0

−∞ L(x(t), ẋ(t))dt even though it only affects this time integral over a
duration τ .

4 Note that since xbl(0) = x the boundary condition on the higher order terms in t ′ = 0 are x
(k)
bl (0) = 0 and ẋ

(k)
bl (0) = 0 (k � 1).
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As we discussed before equation (39) the quasipotential is given by

Φ(x) = lim
A→∞

[
ΦA

B(x) + ΦA
bl(x)

]
(42)

with

ΦA
B(x) =

∫ −Aτ

−∞
L(xB, ẋB)dt and ΦA

bl(x) =

∫ 0

−A

τL(xbl, τ ẋbl)dt
′. (43)

Using the solution for xB(t) one finds to order τ

L(xB, ẋB) = ˙̃xU ′(x̃) + 4τ ˙̃x¨̃x = ∂t
[
U(x̃) + 2τ ˙̃x2

]
,

so that

ΦA
B(x) =

[
U(x̃) + 2τ ˙̃x2

]−Aτ

−∞ =
[
U(x̃) + 2τU ′(x̃)2

]−Aτ

−∞ .

Using then U ′(x̃(−∞)) = U ′(x0) = 0 and x̃(−Aτ) = x̃(0)− Aτ ˙̃x(0) = x̃(0)−AτU ′(x)
one finally has

ΦA
B(x) = U(x)− U(x0) + 2τ(−A+ 1)U ′(x)2 +O(τ 2). (44)

In the boundary layer one finds, up to order τ

τL(xbl, τ ẋbl) = τ
(
et

′ − 1
)2

U ′(x)2 +O(τ 2)

so that equation (43) gives

ΦA
bl(x) =

1

2
τ
[
2A− 3− e−2A + 4e−A

]
U ′(x)2 +O(τ 2). (45)

Adding (44) and (45) one sees that the terms linear in A compensate as we take A→∞.
We finally obtain from (42) the quasipotential to order τ

Φ(x) = U(x)− U(x0) +
1

2
τU ′(x)2 +O(τ 2). (46)

Remark. If we had ignored the boundary layer, we would obtain that c1 = 0 in (40) so
as to satisfy the boundary condition (9) in t = 0 [because ˙̃x(0) = U ′(x) �= 0 in general],
meaning that the instanton x(t) would present no correction of order τ . This would imply
that the only contribution of order τ to the quasipotential is given by the double-product
in the Lagrangian (8), that is:

1

4
τ

∫
∂t

[(
˙̃x+ U ′(x̃)

)2]
dt =

1

4
τ
[(

˙̃x+ U ′(x̃)
)2]0

−∞
= τU ′(x)2

which is wrong by a factor 1
2
compared to the actual result (46). This illustrates

how the presence of the boundary layer affects the determination of the quasipo-
tential: it modifies the boundary condition in t→ 0 seen by the instanton, and it
contributes at order τ (and higher orders) to the integral of the Lagrangian in the
action.
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3.1.3. Second order. In the bulk regime, inserting equation (36) in the zero-energy
condition (35) and taking into account the result obtained at zeroth and first order, one
finds that the second-order correction to the bulk instanton is given by the solution of

˙̃xẋ(2) − ¨̃xx(2) + 2(¨̃x2 − ˙̃x
...

x̃) = 0.

Here we used equation (38) to eliminate occurrences of U(x̃) and its derivatives. The
solution to this equation is given by

x(2)(t) = d1 ˙̃x(t) +
5

2
¨̃x(t),

where d1 is a constant. In the boundary-layer regime, inserting equation (37) in
(34) and using the results obtained at zeroth and first order one finds in a similar
manner

....
x
(2)
bl − ẍ

(2)
bl + U ′(x)U ′′(x) = 0.

Using the boundary conditions x
(2)
bl (0) = 0 and ẋ

(2)
bl (0) = 0 with the zero-energy con-

straint and demanding that the solution does not diverge exponentially as t→−∞, so
that the bulk solution can be matched, gives

x
(2)
bl (t

′) =

(
1 + t′ +

t′2

2
− et

′
)
U ′(x)U ′′(x). (47)

Then using asymptotic matching one finds d1 = −3
2
U ′′(x) so that finally

x
(2)
B (t) = −3

2
U ′′(x) ˙̃x(t) +

5

2
¨̃x(t). (48)

We now proceed to evaluate the quasipotential. The order τ calculation of the
quasipotential gave a local function of the potential, see equation (46). We now show
that at order τ 2 the quasipotential, as stressed in the introduction, becomes non-local.

We saw that the solution to order τ for the functions ΦA
B(x) and ΦA

bl(x) had divergent
contributions at order τ when taking the A→∞ limit which compensated each other
when ΦA

B(x) and ΦA
bl(x) were summed. Performing a similar analysis at order τ 2 (and

higher) is more complex. Here we avoid this procedure. To do so we replace L(x, ẋ) in
the integrals of equation (43) defining ΦA

B(x) and ΦA
bl(x) by

LF (x, ẋ) = L(x, ẋ)− ∂t[F0(x) + τF1(x) + · · ·︸ ︷︷ ︸
≡F (x)

]. (49)

Namely, we remove a counter-term that is a total derivative. In the action, the counter-
term becomes a boundary term that can be evaluated separately, before any expansion
(and before splitting ]−∞, 0] into a bulk and boundary-layer regime). In sum, we now
write

Φ(x) = [F (x(t))]xx0 + lim
A→∞

[
ΦA

B(x) + ΦA
bl(x)

]
, (50)
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with

ΦA
B(x) =

∫ −Aτ

−∞
LF (xB, ẋB)dt and ΦA

bl(x) =

∫ 0

−A

τLF (xbl, τ ẋbl)dt
′. (51)

The functions F0(x) and F1(x) in equation (49) are taken so that asymptotic matching
does not give any divergence as A→∞. Taking

F0(x) = U(x) and F1(x) = U ′(x)2, (52)

one finds after a straightforward expansion of the integrals in (51), separately, and using
(50) that, as announced previously

Φ(x) = U(x)− U(x0) +
1

2
τU ′(x)2 − 1

2
τ 2

∫ x

x0

[U ′(y)]
2
U ′′′(y)dy +O(τ 3). (53)

For instance, the choice of function for F0(x) avoids the appearance of terms linear
in A in the bulk and boundary-layer expressions (44) and (45) to order τ . At order τ 2

one finds by inserting the series (37) into (51) that the contribution of order τ 2 to the
integrand of (51) is

τLF (xbl, τ ẋbl)| τ 2 =
{
3U ′(x)2U ′′(x)e2t

′
+ U ′(x)

[
F ′
1(x)− (t′ + 5)U ′(x)U ′′(x)

]
et

′

+ U ′(x)
[
2U ′(x)U ′′(x)− F ′

1(x)
]}

τ 2. (54)

When performing the integral over t ′ in (51), the second line in (54) yields terms which
diverge with A→∞. The choice of function F1(x) in equation (52) then avoids this
divergence.

We note that the result (53), derived here through a singular perturbation the-
ory for the instanton, can also be obtained through a different approach. In an
early work, K�losek-Dygas et al [3] studied the escape problem using a Fokker–Planck
approach (and in the small τ expansion). The approach yields the steady-state solu-
tion Pst(x, ẋ) of the Fokker–Planck equation on the joint probability density P(x, ẋ, t),
within a large-deviation approach at small D. The authors obtain an expansion of
limD→0D logPst(x, ẋ) in powers of τ (their equation (21)). If one takes the marginal
over the variable ẋ in their results it is easy to check that the result is again (53).
This alternative derivation however does not unveil the singular nature of the optimal
trajectory.

4. AOUP in the large τ limit

In this part it is more convenient to use the Hamiltonian formalism. The large τ limit
is best understood by rescaling time according to t← t/τ . After the time rescaling, the
Hamiltonian (12) takes the form

H(x, v,Px,Pv) = τ (v − U ′(x))Px − vPv + P 2
v , (55)

https://doi.org/10.1088/1742-5468/ab7e2e 20

https://doi.org/10.1088/1742-5468/ab7e2e


J.S
tat.

M
ech.

(2020)
063204

Nonlocal stationary probability distributions and escape rates for an active Ornstein–Uhlenbeck particle

so that the instanton equations are{
ẋ = τ (v − U ′(x)) ,

v̇ = −v + 2Pv,
(56)

and {
Ṗx = τU ′′(x)Px,

Ṗv = Pv − τPx.
(57)

For ease of presentation, we now split the discussion in the escape problem and the
calculation of the general quasipotential. In both cases it will be useful to keep in mind
a general potential of the form presented in figure 3.

4.1. The quasipotential for x > xcr

As before we denote the position of the highest point of the potential by xs and the
position of the (unique) inflection point where U ′′(xcr) = 0 by xcr. To evaluate the
quasipotential we look for an instanton path by solving equations (56) and (57) with
the boundary conditions

x(t), v(t) →
t→−∞

0 ; Px(t),Pv(t) →
t→−∞

0. (58)

The boundary conditions at later times are more subtle. Initially using the time
translation invariance of the instanton path we choose

x(0) = xcr, (59)

but, as will become clear, we also have to specify boundary conditions at positive times.
This will be carried out below.

4.1.1. Bulk solution. We first show that Px = 0 to any order for t not close to t = 0,
where as we will show, a boundary layer appears. Consider δ > 0, and the instanton
path x(t) on the interval ]−∞,−δ]: as x(t) is a monotonic function of t, it is clear that
x(t) < x(−δ) < 0 on this part of the path. Moreover, since we assume the existence of a
single inflection point, U ′′ is strictly positive in [x 0, x(−δ)]. Therefore, there exists some
constant cδ > 0 such that

∀t < −δ, U ′′(x(t)) > cδ. (60)

Then the first equation of (57) shows that Ṗx > cδτPx over the time interval]−∞,−δ].
Thus, we deduce the bound

∀t < −δ, |Px(t)| < |Px(−δ)| ecδτ t.

The momentum Px relaxes faster than ecδτ t when t→−∞. A similar argument shows

that Px relaxes exponentially faster that ec
′
δτ t, with c′δ < 0 when t→ +∞. Therefore,

since we are interested in the limit τ →∞, these bounds prove that an expansion of Px

in powers of τ vanishes to any order in τ , except in the immediate vicinity of xcr = 0.
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This simple observation indicates the existence of a boundary layer in the vicinity of
t = 0 that connects the part ]−∞, 0 [ to the part ] 0, +∞ [of the instanton path. The
scaling with τ of the boundary layer is nontrivial, and will be derived in the following.

In this section, we solve equations (56) and (57) in the bulk regimes t < 0 and t > 0.
The boundary layer (t close to zero) is solved in section 4.1.2. With Px = 0, the instanton
equations in the bulk are⎧⎪⎪⎨

⎪⎪⎩
ẋ = τ (v − U ′(x)) ,

v̇ = −v + 2Pv,

Ṗv= Pv.

(61)

To solve the system (61), we expand the solution as

Pv(t) = P (0)
v (t) +

1

τn
P (1)
v (t) +

1

τ 2n
P (2)
v (t) + · · · , (62)

and similarly for x(t) and v(t). The exponent n is related to the size of the boundary layer
close to t = 0, and has to be determined self-consistently. However, before considering
the corrections we first solve the zeroth order of the problem.
Zeroth order: to this order we have, using equation (61)⎧⎪⎪⎨

⎪⎪⎩
U ′(x(0)) = v(0),

v̇(0) = −v(0) + 2P (0)
v ,

Ṗ (0)
v = P (0)

v .

(63)

The solution for P
(0)
v and v(0) is straightforward. Taking into account the boundary

conditions (58) in t = −∞, we get

t < 0 :

{
v(0)(t) = A0 e

t,

P (0)
v (t) = A0 e

t
and t > 0 :

{
v(0)(t) = B0 e

−t,

P (0)
v (t) = 0.

(64)

where A0 > 0. Since the third equation in (63) implies that Pv is either zero
identically or diverges to infinity for t > 0 one has to take Pv = 0 as expected.
Beyond xcr the motion of the instanton follows a noiseless relaxation path. There-
fore its contribution to the action is zero. Then the solution for v(0) follows with
B0 > 0.

The solution for x(0)(t) has to be computed from the first equation of (63), inverting
the function U ′. In the vicinity of xcr = 0, we can expand U ′ as

U ′(x) = β − γx2 +O(x3).

Then using U ′(x(0)) = v(0), and the solution (64) we get

x(0)(t) ∼
t→0−

√
1

γ
(β − A0 et).
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Note that since the instanton path for t > 0 does not contribute to the action we do not
have to consider the solution in that regime. The constraint x(0) = 0 imposes A0 = β
and thus

x(0)(t) ∼
t→0−

−

√
β

γ
|t| (65)

equation (65) gives the asymptotic behavior that the boundary layer solution has to
satisfy. As we show just below, it also constrains the size of the boundary layer.
Boundary layer scaling: in the vicinity of xcr = 0, the first equation of (57) gives

Ṗx = −2τγxPx. (66)

Plugging the solution (65) into (66) gives

Ṗx = −2τ
√

γβ |t|Px,

which can be integrated to give

Px(t) ∝ e−2
√
γβ 2τ

3 |t|3/2.

This proves that Px relaxes over a typical time scaling ∝ 1
τ 2/3

. The boundary layer scaling

variable is also τ 2/3t, as we show below. In what follows it will become clear that this
implies that for the expansion (62) to be consistent one has to take n = 1

3
.

Higher orders: using the linearity of the bulk equations for v and Pv, we can express
the solution to any order k as

t < 0 :

{
v(k)(t) = Ak e

t,

P (k)
v (t) = Ak e

t
and t > 0 :

{
v(k)(t) = Bk e

−t,

P (k)
v (t) = 0.

(67)

One can then find the solution x(k)(t) using the expansion of ẋ = τ (v − U ′(x)) to kth
order in 1

τ 1/3
. The constants Ak and Bk have to be determined by matching the bulk

solution to the boundary layer as we do below to up to order two. We now turn to
consider the solution in the boundary layer in the vicinity of xcr.

4.1.2. Boundary layer solution. To find the boundary layer equations, we take
equations (56) and (57) and again use the expansion of U ′(x) to second order near
xcr = 0

U ′(x) = β − γx2 +O(x3).

This gives {
ẋ = τ

(
v − β + γx2

)
,

v̇ = −v + 2Pv,
(68)

and {
Ṗx = −2τγxPx,

Ṗv = Pv − τPx.
(69)
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Using the two parameters β and γ, we can rescale all fields in order to arrive at non-

dimensional equations. We set τ ′ =
√
γβτ , v′ = v/β, Pv

′ = Pv/β, x′ = x
√

γ
β

and Px
′

= τPx/β. We get{
ẋ′ = τ ′ (v′ − 1 + x′2) ,
v̇′ = −v′ + 2P ′

v,
(70)

and {
Ṗx

′ = −2τ ′x′P ′
x,

Ṗv
′ = P ′

v − P ′
x.

(71)

Finally, we use the scaling of the boundary layer and we rescale time according to
t ′ = τ ′2/3t and for self-consistency define the variable x ′′ = x ′τ ′1/3 and P ′′

x = P ′
x/τ

′2/3.
Omitting the primes, the boundary layer equations are⎧⎨

⎩ẋ = τ 2/3 (v − 1) + x2,

v̇ = − 1

τ 2/3
v +

2

τ 2/3
Pv,

(72)

and ⎧⎨
⎩Ṗx = −2xPx,

Ṗv =
1

τ 2/3
Pv − Px.

(73)

We then expand the boundary layer solution as

xbl(t) = x
(0)
bl (t) +

1

τ 1/3
x
(1)
bl (t) +

1

τ 2/3
x
(2)
bl (t) + · · ·

and similar expansions for Px,bl, Pv,bl, vbl(t). We now turn to solve these equation order
by order.
Leading order: in this case the equations are dominated by terms of order τ 2/3. This
gives

v
(0)
bl = 1,

which is consistent with the bulk zeroth order solution found in (64) with A0 = β (see
the discussion before equation (65)). This also implies B0 = β. It is then easy to see that
the next term (of order τ 1/3) vanishes:

v
(1)
bl = 0,

which implies A1 = 0 and B1 = 0 in the bulk, and that all terms of order 1
τ 1/3

vanish in
the bulk solution (67).
Zeroth order: to next order the equation are⎧⎨

⎩ẋ
(0)
bl = v

(2)
bl +

(
x
(0)
bl

)2

,

v̇
(2)
bl = −1 + 2P

(0)
v,bl,

(74)
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and {
Ṗ

(0)
x,bl = −2x

(0)
bl P

(0)
x,bl,

Ṗ
(0)
v,bl = −P

(0)
x,bl.

(75)

The boundary conditions for the set of equations (74) and (75) can be found by matching
them with the bulk solution. The fact that Px = 0 to any order in the bulk gives

P
(0)
x,bl →

t→±∞
0. (76)

The matching with the bulk solution (64) with A0 = B0 = β gives⎧⎨
⎩
P

(0)
v,bl →

t→−∞
1,

P
(0)
v,bl →

t→+∞
0.

(77)

The bulk estimate (65) close to t = 0 gives

x
(0)
bl (t) ∼

t→−∞
−
√

|t|, (78)

and finally, the instanton path has to cross xcr = 0 at t = 0, and then leaves the vicinity
of xcr with ⎧⎨

⎩x
(0)
bl (0) = 0,

x
(0)
bl (t) →

t→+∞
+∞.

(79)

To this order we find a solution which obeys the symmetry⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(0)
bl (t) ↔ −x

(0)
bl (−t),

v
(2)
bl (t) ↔ v

(2)
bl (−t),

P
(0)
v,bl(t) ↔ 1− P

(0)
v,bl(−t),

P
(0)
x,bl(t) ↔ P

(0)
x,bl(−t).

(80)

The solution can be computed numerically using an iterative procedure. Figure 5
displays the resulting solutions.

The last step is to match the boundary layer solution at t→−∞ to the bulk solution
in the limit t→ 0, order by order in τ . In the bulk we have

v

(
t =

t′

τ ′2/3

)
=

(
A0 +

1

τ 1/3
A1 +

1

τ 2/3
A2

)
et

′/τ ′2/3 +O(1/τ)

∼
τ→+∞

(
A0 +

A1

τ 1/3
+

A2

τ 2/3

)(
1 +

t′

τ ′2/3

)
+O(1/τ),
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Figure 5. Numerical resolution of the undimensioned boundary layer equations
equations (72) and (73).

and the boundary layer solution vbl(t
′) up to second order gives

vbl(t
′) = βv

(0)
bl (t) +

1

τ ′1/3βv
(1)
bl (t

′)
1

τ ′2/3βv
(2)
bl (t

′) +O(1/τ ′)

∼
t′→−∞

β +
1

τ ′2/3β (C + t′) +O(1/τ ′),

where C > 0 is some positive constant (see figure 5). Self consistency of the boundary
layer expansion and the bulk solution requires A0 = β, A1 = 0, and

A2 =
βC(√
γβ

)2/3 . (81)

C can be expressed in term of the numerical solution of equations (74) and (75). Using

the equation for v
(2)
bl (t) we have

v̇
(2)
bl − 1 = 2

(
P

(0)
v,bl − 1

)
.

Both sides of the latter equation can be integrated, yielding∫ 0

−∞

d

dt

(
v
(2)
bl − t

)
dt = 2

∫ 0

−∞

(
P

(0)
v,bl − 1

)
dt.
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Using the symmetry (80) for P
(0)
v,bl and the definition of C, we get

C = v
(2)
bl (0) + 2

∫ +∞

0

P
(0)
v,bl(t)dt, (82)

which can be easily evaluated numerically to give C ≈ 0.8120.
The quasipotential for x > x cr: taking into account the rescaling of time, the
equations of motion and the fact that the instanton path satisfies H = 0, one finds
after some algebra that the quasipotential (see equation (11)) can be written as

Φτ =

∫ +∞

−∞

(
P̃ v(t)

)2

dt, (83)

where we denoted by P̃ v(t) the instanton solution. The strategy goes as follows: we
separate the contributions from the bulk and from the boundary layer in integral (83),
and we evaluate both terms separately. In order to obtain a finite contribution for
the boundary layer integral, we have to subtract the bulk solution from the bound-
ary layer solution. This means that we first split the instanton path into two parts
as

P̃ v = Pv(t) +
(
P̃ v(t)− Pv(t)

)
,

where Pv is the bulk solution, found in section 4.1.1. We then write Φτ as

Φτ =

∫ +∞

−∞

(
Pv(t) +

(
P̃ v − Pv(t)

))2

dt

=

∫ +∞

−∞
(Pv(t))

2dt+ 2

∫ +∞

−∞
Pv(t)

(
P̃ v(t)− Pv(t)

)
dt+

∫ +∞

−∞

(
P̃ v(t)− Pv(t)

)2

dt.

(84)

Next we define fbl = P̃ v − Pv. By construction fbl → 0 outside the boundary layer and fbl
has the same scaling as the boundary layer solution Pv,bl. More precisely fbl is a natural
function of τ ′2/3t . We now turn to compute the three different contributions in the right
hand side of equation (84):

Using equation (67), the bulk contribution is∫ +∞

−∞
(Pv(t))

2dt =

∫ 0

−∞

(
A0 +

A2

τ 2/3

)2

e2t dt =
A2

0

2
+

A0A2

τ 2/3
+O

(
1

τ

)
(85)

The bulk-boundary layer cross contribution can be equivalently written using the
definition of fbl

2

∫ +∞

−∞
Pv(t)

(
P̃ v(t)− Pv(t)

)
dt = 2

∫ +∞

−∞
Pv(t)f(τ

′2/3t)dt =
2

τ ′2/3

∫ +∞

−∞
Pv(t/τ

′2/3)fbl(t)dt

Using again equation (67) and the expansion of Pv and fbl to zeroth order we get

2

∫ +∞

−∞
Pv(t)

(
P̃ v(t)− Pv(t)

)
dt ∼

τ→+∞

2A0

τ ′2/3

∫ 0

−∞
f
(0)
bl (t)dt+O(1/τ),
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where

f
(0)
bl = β

(
P

(0)
v,bl(t)− 1[−∞,0]

)
.

Using then the symmetry of P
(0)
v,bl(t) (see equation (80)), we get

2

∫
−∞

+∞
Pv,B(t)

(
P̃ v(t)− Pv,B(t)

)
dt ∼

τ→+∞
− 2βA0

τ ′2/3

∫
0

+∞
P

(0)
v,bl(t)dt+O(1/τ).

(86)

The pure boundary layer contribution in equation (84) can be written∫ +∞

−∞

(
P̃ v(t)− Pv(t)

)2

dt =

∫ +∞

−∞

(
fbl(τ

′2/3t)
)2
dt

∼
τ→+∞

1

τ ′2/3

∫ +∞

−∞

(
f
(0)
bl (t)

)2

dt+O(1/τ)

∼
τ→+∞

2

τ ′2/3

∫ +∞

0

(
P

(0)
v,bl(t)

)2

dt+O(1/τ), (87)

where we have again used in the last equality the symmetry of P
(0)
v,bl(t) (see equation (80)).

Finally, summing the three contributions (85)–(87) and using the expressions for A0

and A2 in equations (81) and (82), we arrive to our main result

∀x > xcr, Φτ (x) =
β2

2
+

β2(√
γβτ

)2/3
[
v
(2)
bl (0) + 2

∫ +∞

0

(
P

(0)
v,bl(t)

)2

dt

]
+O(1/τ ).

(88)

Moreover, the computation has shown that the bulk solution satisfies Pv(t) = 0 to
any order in τ , for t > 0. This implies that the part of the instanton path after
xcr is a relaxation path, and has no contribution to the action (83). In particular,

equation (88) is valid for any xcr < x � xs outside a boundary layer of typical size 1
τ 1/3

√
β
γ

around xcr.
Comments on the solution:

(a) Both the leading order and the first correction in the limit τ →∞ are non-local ,
that is, they only depend on the structure of U(x) close to its inflection point xcr,
and not on the part x > xcr. Note that if U ′(xcr) = 0, using similar arguments as
was done to find the scaling of the boundary layer, one expects a correction scaling
as 1

τ 4/7
instead of 1

τ 2/3
.

(b) The correction at order 1
τ 2/3

given by equation (88) has two origins. The first con-
tribution comes from the fact that, for finite τ , the Ornstein–Uhlenbeck process
has to overshoot the velocity fluctuation above β. The fluctuation of the Orn-

stein–Uhlenbeck process up to the value β + β
τ ′2/3

v
(2)
bl (0) is simply

(
β+ β

τ ′2/3
v
(2)
bl (0)

)2

2
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= β2

2
+ β2

τ ′2/3v
(2)
bl (0) +O(1/τ 4/3). The integral correction in equation (88) can be inter-

preted as the price to pay for sustaining the active velocity at the value β during
the crossing of the inflection point. It thus comes from the fact that crossing the
inflection point takes a finite time, when τ is finite.

(c) Whereas the correction at order 1
τ 1/3

vanishes, there is no reason for the correction

at order 1
τ
to be zero, because the bulk instanton part has a contribution to this

order. One can thus expect the next order to scale as 1
τ
.

(d) A numerical resolution of the boundary layer equations (74) and (75) gives

v
(2)
bl (0) ≈ 0.5905 and 2

∫ +∞
0

(
P

(0)
v,bl(t)

)2

dt = 0.2215. The sum of these two values gives

the numerical constant C of the result announced in equation (4). For the escape
problem (x = xcr), our result coincide with that of [7], including for the numerical
estimate of the constant C (note also that the dominant order of (4) was derived
earlier in [2]). In [7] the perturbation theory presents no boundary layer.

4.2. The quasipotential for x < xcr

We now turn to the computation of the quasipotential for x < xcr. In the following,
we only sketch the computations as they are very similar to the case x > xcr. We look
for an instanton path solving equations (56) and (57) with the boundary conditions
equation (14).

4.2.1. Bulk solution. The argument developed in section 4.1.1 to show that Px = 0 to
any order in τ remains valid in the range x < xcr. The instanton equations in the bulk
are ⎧⎪⎪⎨

⎪⎪⎩
ẋ = τ (v − U ′(x)) ,

v̇ = −v + 2Pv,

Ṗv = Pv.

(89)

Contrary to the domain x > xcr, there is no anomalous scaling for the boundary layer in
the part x < xcr. We thus expand the solution as

Pv(t) = P (0)
v (t) +

1

τ
P (1)
v (t) +

1

τ 2
P (2)
v (t) + · · · , (90)

and similarly for x(t) and v(t). Thanks to the linearity of equation (89) for Pv and v,
the solution to any order k can be written

t < 0 :

{
v(k)(t) = Ak e

t,

P (k)
v (t) = Ak e

t.
(91)

One can then find the solution x(k)(t) using an expansion of ẋ = τ (v − U ′(x)) to k th
order in 1

τ
. The constants Ak have to be determined by matching the bulk solution to

the boundary layer as we do below to up to first order.
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4.2.2. Boundary-layer solution. The boundary layer equations are obtained from
equations (56) and (57) by rescaling time according to t ′ = τ t and expanding U ′ in
the vicinity of x as

U ′(x′) = β + γ(x′ − x), (92)

where β = U ′(x) and γ = U ′′(x). Note that both are strictly positive. We then define
the new variable y = x′ − x and we get the boundary layer equations⎧⎨

⎩ẏbl = vbl − γybl,

v̇bl = −vbl
τ

+ 2
Pv,bl

τ
,

(93)

and ⎧⎨
⎩

˙Px,bl = γPx,bl,

˙Pv,bl =
Pv,bl

τ
− Px,bl.

(94)

We then expand the boundary layer solution as

ybl(t) = y
(0)
bl (t) +

1

τ
y
(1)
bl (t) +

1

τ 2
y
(2)
bl (t) + · · ·

and use similar expansions for Px,bl,Pv,bl, vbl(t). We now turn to solve these equations
order by order.

Zeroth order: to this order we get⎧⎪⎪⎨
⎪⎪⎩
y
(0)
bl (t) = 0

v
(0)
bl (t) = β

P
(0)
v,bl = β(1− eγt).

(95)

Matching this with the bulk solution of equation (91) implies A0 = β.
First order: to order 1/τ we get⎧⎪⎨

⎪⎩
v
(1)
bl (t) = βt+

2β

γ
(1− eγt),

P
(1)
v,bl = βt+

2β

γ
(1− eγt),

(96)

and matching to the bulk solution of equation (91) implies A1 =
2β
γ
. Note that we do

not need to derive an explicit expression for y
(1)
bl in order to calculate the quasipotential.

The quasipotential for x < xcr: using the same decomposition as in equation (83)
and in the discussion that follows, we can express the quasipotential to order 1/τ as

Φτ (x) ∼
τ→+∞

∫ 0

−∞

(
P (0)
v (t)

)2
dt+

2

τ

∫ 0

−∞
P (0)
v (t)P (1)

v (t)dt

+
2

τ

∫ 0

−∞
P (0)
v (t)f

(0)
bl (t)dt+

1

τ

∫ 0

−∞

(
f
(0)
bl (t)

)2

dt, (97)
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where we have used again the notation fbl = P̃ v − Pv, with P̃ v the instanton path and
Pv the bulk solution. A straightforward evaluation of the different terms in equation (97)
using the solutions equations (91), (95) and (96) leads to the final result announced in
equation (3), namely

Φτ (x) ∼
τ→+∞

β2

2
+

β2

2γτ
+O(1/τ 2). (98)

5. Perspectives

We derived the escape rate and the stationary distribution of an AOUP, in expansions
at small and large correlation time τ . By focusing on the asymptotics of small activity
(in amplitude), we were able to use exact large-deviation techniques (i.e. without using
the UCNA or the Fox approximation schemes that are often employed to study systems
with colored noise). In the τ → 0 limit the quasipotential is local to first order, as already
known, but becomes non-local at second order in τ . In the large τ limit the quasipotential
is inherently non-local and singular. This leads to a host of physical consequences such
as a ratchet effect and a possible fly-over of metastable state facilitated by the memory
of the active noise.

The results we have described open many questions. The path-integral technique
used enables one to derive the quasipotential as a functional of an optimal trajectory
of an equilibrium problem; as we focused, for simplicity, on the one-dimensional case,
the explicit dependence on the time-dependent trajectory could be eliminated [see for
instance the passage from (21) to (22)]. This implies that the quasipotential can be
reexpressed as a functional of the potential only and not of the optimal trajectory. The
generalization of our computation to higher dimensions is rather immediate, but it is
not obvious that at the last stage one can similarly eliminate the explicit dependence on
the optimal trajectory. This could potentially lead to interesting effects in cases where
several optimal trajectories are in competition.

We have seen that the small-τ and the large-τ asymptotics present very different
physical features: at small τ , the optimal trajectory remains close to the equilibrium
one (that bypasses a potential barrier), while at large τ the dynamics is dominated by
a ‘barrier of force’ (i.e. the region of maximal force). The switch from a potential to a
force barrier dominated regime could either be a cross-over or signal a singularity as τ is
increased. However, our perturbative approach leaves this question open. Last, since our
technique allows for a treatment of generic colored-noise dynamics (in the small noise
limit), it could be instructive to compare its predictions to those of the UCNA and the
Fox approximations in a systematic way.
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Appendix. Mean escape time from a metastable state

Let us now recall how the quasipotential is related to the mean escape time from a
metastable state x 0. Again in the following, xs is the saddle point to escape from the
attraction basin of x 0. We show how the mean escape time 〈Tesc〉 can be computed
directly from the quasipotential in the limit where D is small.

The standard procedure is to compute the mean escape time 〈Tesc〉 from the
Fokker–Planck equation with absorbing boundary conditions: let J(t) be the outgoing
flux at x = xs, we have simply

〈Tesc〉 =
∫ +∞

0

tJ(t)dt. (99)

in general, there is no simple solution to this problem. But one can derive the result
when escape is a rare event, which correspond to the small D limit in equation (1). In
this limit, the outgoing flux is exponentially small in 1/D, such that the relaxation time
Trel of the particle inside the trap is much smaller than the mean escape time 〈Tesc〉. A
good approximation is then to consider that two consecutive escapes are independent
events, which means that escape is a Poisson process with rate λ. On the timescale
t 
 Trel, the probability M(t) that the particle is still in the trap within the interval
[0, t] follows the equation

dM

dt
= −λM.

This relation can be immediately integrated to give

M(t) = e−λt.

J(t) is related to M(t) through the simple relation

J(t) = −dM

dt
= λe−λt. (100)

It follows from equations (99) and (100) that the mean escape time satisfies

1

〈Tesc〉
= λ = lim

Trel�t�〈Tesc〉
J(t). (101)

On the other hand, J is related to the transition probability through

J(t) = P (Tesc = t) = P (xs, t|x0, 0) . (102)
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In the intermediate timescale regime Trel � t � 〈Tesc〉, the transition probability
P (xs, t|x0, 0) does not depend on t and is given by the large deviation principle

P (xs, t|x0, 0) �
D→0

e−
Φτ (xs)

D . (103)

Relations (101)–(103) together imply the large deviation result

〈Tesc〉 �
D→0

e
Φτ (xs)

D . (104)
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