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Abstract. We consider a particle with a Langevin dynamics driven by a uni-
form non-conservative force, in a one-dimensional potential with periodic bound-
ary conditions. We are interested in the properties of the system for atypical
values of the time-integral of a generalized particle current. To study these, we
bias the dynamics, at trajectory level, by a parameter conjugated to the current,
within the large-deviation formalism. We investigate, in the weak-noise limit, the
phase diagram spanned by the physical driving force and the parameter defining
the biased process. We focus in particular on the depinning transition in this
two-dimensional phase diagram. In the absence of trajectory bias, the depinning
transition as a function of the force is characterized by the standard exponent
1
2
. We show that for any non-zero bias, the depinning transition is characterized

by an inverse logarithmic behavior as a function of either the bias or the force,
close to the critical lines. We also report a scaling exponent 1

3 for the current
when considering the depinning transition in terms of the bias, fixing the non-
conservative force to its critical value in the absence of bias. Then, focusing on
the time-integrated particle current, we study the thermal rounding effects in
the zero-current phase when the tilted potential exhibits a local minimum. We
derive in this case the Arrhenius scaling, in the small noise limit, of both the
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particle current and the scaled cumulant generating function. This derivation of
the Arrhenius scaling relies on the determination of the left eigenvector of the
biased Fokker–Planck operator, to exponential order in the low-noise limit. An
effective Poissonian statistics of the integrated current emerges in this limit.

Keywords: stochastic particle dynamics, large deviations in non-equilibrium
systems, weak-noise limit in rare events
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1. Introduction

The dynamics of an equilibrium system can be described in many cases as a Langevin
dynamics [1, 2]. This dynamics can be driven out of equilibrium by introducing a non-
conservative force, that generates a current and breaks the microscopic time reversibility,
or detailed balance. Another way to bias the equilibrium statistics is by conditioning the
statistics of full trajectories to have a given average value of a time-integrated observable,
like the average particle current, the average activity, or the average energy dissipation
[3–7]. Such an approach relies on the full statistics of trajectories [8, 9] instead of the
single-time probability distribution of microscopic configurations. When trajectories are
considered in the limit of long time intervals, this approach can be conveniently formu-
lated using the large deviation framework [10–14], which is particularly instrumental
to evaluate the statistics of time-integrated observables [13–22]. One may guess from
physical intuition that biasing the dynamics by imposing a non-zero average current
should be similar to imposing a physical driving force that generates a current.

This correspondence can be put on a firm ground by using methods based on
an abstract transformation of the deformed Markov operator to define a probability-
conserving effective dynamics [3–5, 23–27]. An illustration of this procedure in the
simple case of a particle in a one-dimensional periodic potential with a Langevin dynam-
ics has been given in reference [28] (see also our previous contribution [6]). Such driven
one-dimensional problems are of interest since they can be studied experimentally (for
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instance to study modified fluctuation–dissipation relations [29]) and provide examples
of Brownian ratchets (see [30] for a review). In this work, we are interested in the charac-
teristic behavior of the particle for trajectories conditioned to present an atypical value
of the time-averaged velocity v on a long time window. By a change of ensemble at tra-
jectory level, such ‘microcanonical’ (or conditioned) ensemble is shown to be equivalent
to a biased ensemble where trajectories are weighted by eλtv, where λ plays the role of
a Lagrange multiplier conjugated to v (see [5]). In this paper, we focus our analytical
study on the biased ensemble only. In the 1D problem we consider, biasing the dynam-
ics amounts to an effective Langevin dynamics with a uniform drive in a ‘renormalized’
periodic potential [6, 28]. Hence, perhaps at odds with a naive physical picture, biasing
the dynamics by the average current is not simply equivalent to including a uniform
driving force in the system, but the potential energy is also modified in a non-trivial
way.

Interestingly, this modification of the potential energy has important consequences
on the scaling properties of the depinning transition which separates, in the weak-
noise limit, the zero-current regime where the particle is trapped in a minimum of
the tilted potential, from the non-zero current regime where a propagative motion sets
in. In the absence of bias (λ = 0) the particle is trapped in a local minimum of the
potential unless the drive f is large enough to allow the particle to reach a steady
state with non-zero average current v̄. This standard ‘depinning transition’ leads for
the average current v̄ to a scaling v̄ ∼ (f − fc)

1/2 with the distance to the critical force
fc [31–34]. If, instead, one fixes f = 0 and varies the value of λ, one observes an anal-
ogous ‘dynamical phase transition’ (DPT): the bias λ toward atypical velocities has
to be large enough for the particle to reach a non-zero velocity state [28], but in that
case one finds an inverse logarithmic scaling of the current v̄ close to the DPT [6], in
terms of the Lagrange multiplier λ. One may then wonder how the two scalings can
be matched when considering the full parameter plane (λ, f) of the statistical bias λ
and the physical drive f, rather than the two parameter lines (λ, f = 0) and (λ = 0, f).
Remark that, in our system of interest, the transition lines in the (λ, f) plane sepa-
rate zero-current and propagative regimes; for convenience, the corresponding DPTs
will also be called depinning transitions, by extension of the λ = 0 case. Note that the
relation between the λ = 0 depinning transition and the DPT was also investigated in
reference [28].

In this paper, we investigate in the weak-noise limit the phase diagram of the
depinning transition of a one-dimensional biased Langevin process corresponding to
a particle in a potential, with a non-conservative driving force f and a biasing param-
eter λ conjugated to a generalized current v. The transition lines between zero-current
and non-zero-current phases in the phase diagram (λ, f) are determined. The scalings
of the scaled cumulant generating function (SCGF) φ(λ, f) and of the average current
v̄ close to one of the transition lines are obtained. We find in particular that the stan-
dard depinning exponent 1

2
of the depinning transition is only valid for the non-biased

dynamics (λ = 0), while any amount of bias (λ 6= 0) leads to a generic inverse logarithmic
scaling of the generalized current v̄ close to the critical line. We also report a scaling
exponent 1

3
for the current when considering the depinning transition in terms of λ,

right at the critical force fc. Crossover lines between the different scaling behaviors
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in the plane (λ, f) are briefly discussed. In addition, we study the thermal round-
ing effects in the zero-current phase. Denoting by ε the amplitude of the noise, we

obtain an Arrhenius scaling ≍ e−Φ̃(λ,f)/ε for the SCGF, as well as for the generalized cur-
rent v̄(λ, f), in the low-noise asymptotics ε→ 0. A justification for such an Arrhenius
scaling was given in reference [28] (within the Freidlin–Wentzell–Graham formalism
[35, 36]), and we provide in this paper a method for the explicit determination of the

Arrhenius function Φ̃(λ, f). We discuss the physical implication of the result in terms
of an effectively Poissonian distribution of the integrated current in the small-noise
limit.

The study of the SCGF in this problem has a long history, starting with the deter-
mination of the entropy current distribution in models of colloidal particles [37–39] and
studies of the current distribution [28, 40–42] but it is only recently that analytical stud-
ies of the DPTs at small noise were achieved [6, 26]. We refer the reader to section 3 for a
comparison of our results to previous ones. A difficulty is that the order of the transition
as a function of the Lagrange multiplier λ is not obvious (with a logarithmic singular-
ity [6]) whenever the potential in which the particle evolves presents metastable states.
Proesmans and Derrida [26] have determined analytically the finite-temperature expo-

nential corrections of the form e−Φ̃(λ,f)/ε for the SCGF in situations where the potential
presents no metastable state, using a WKB approach. In the present paper, following a
different approach, we consider the case of a potential with a metastable state, which,
as we detail, modifies the nature of the DPTs while also bringing a new host of technical
issues that we overcome in order to determine the SCGF associated with the particle
current.

2. Model and dynamics

2.1. Model: a driven particle in a one-dimensional potential with metastability

Consider a particle of position x(t) at time t, evolving on a ring of period 1, subjected
to a continuous force field F (x) and to a Gaussian white noise η(t). In the overdamped
limit, the Langevin equation describing the evolution of the position is:

ẋ(t) = F (x(t)) +
√
ε η(t) (1)

(the overdot denotes a time derivative). The noise η(t) has zero mean and correlation
〈η(t)η(t′)〉 = δ(t− t′). The spatial period of the force is equal to 1, i.e., F (x+ 1) = F (x),
and the temperature is ε/2.

In our previous study [6], we have studied the statistics of an observable of the type

A(tf) =

∫ tf

0

dt h(x(t)) +

∫ tf

0

dt g(x(t)) ẋ(t) (2)

with arbitrary functions g(x) and h(x), and where the stochastic integral involving
g(x) is understood in a Stratonovich sense (see e.g. [43]). This will be also the case of
all the stochastic integrals described in this paper. In the following, we will specialize
to current-type observables, for which h(x) = 0, so that the observable A(tf) reads as

https://doi.org/10.1088/1742-5468/abb235 5
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Figure 1. Schematic representation of the conservative contribution
F 0(x) = −V ′(x) to the one-dimensional force F (x, f) = F 0(x) + f that we
consider. The potential V (x) and its corresponding force F 0(x) are periodic
functions on [0, 1]. The constant drive f verifies f =

∫ 1

0 dx F (x, f).

A(tf) =
∫ tf
0
dt g(x(t)) ẋ(t). As discussed in [6], the force field F (x) can be decomposed

without loss of generality into a conservative part F 0(x) = −V ′(x) (where V (x) is a
periodic function of x of period 1) and a homogeneous drive f,

F (x, f) = F0(x) + f. (3)

By definition,
∫ 1

0
dx F0(x) = 0, so that f =

∫ 1

0
dx F (x, f). Since we are specifically inter-

ested in this work in the dependence of the dynamics on the non-conservative force f, we
have made the f-dependence explicit and wrote the force as F (x, f). We assume that the
conservative part F 0(x) of the force has a single local maximum Fmax = F 0(xM) > 0 and
a single local minimum Fmin = F 0(xm) < 0 (see figure 1). We also assume that F 0(x) is
monotonous on the intervals separating the maximum and the minimum (there are two
such intervals because of the periodic boundary conditions), so that there exist two sta-
tionary points where F 0(x) = 0. A typical example of such a force is F 0(x) = sin(2πx).
Note that we may further assume that xM < xm as in the purely sinusoidal case, which
can be achieved through a simple translation of the x variable. We also focus on the case
of a positive drive f > 0 (without loss of generality, since, as seen from equation (1), one
can change the sign of f through x 7→ 1− x).

In the following, we tackle the general form (3) of the force, considering in some
illustrations the simple sinusoidal force field

Fsin(x, f) = sin(2πx) + f (4)

for instance to compute explicitly quantities which depend on the details of the potential.
The amplitude of the sine contribution is set to 1 without loss of generality, through a
rescaling of time and temperature.

https://doi.org/10.1088/1742-5468/abb235 6

https://doi.org/10.1088/1742-5468/abb235


J
.
S
ta
t.
M
e
c
h
.
(2
0
2
0
)
0
9
3
2
0
8

Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

2.2. Distribution of an additive observable

The distribution of the observable A(tf) in the large-time limit is determined through
the SCGF ϕε(λ, f) defined as3

〈

e−
λ
εA(tf)

〉

≍
tf→∞

etf ϕε(λ,f) (5)

where the average is taken over trajectories of duration tf . The parameter λ is a statisti-
cal bias acting at the level of trajectories, by reweighting the probability of trajectories
associated with the Langevin equation (1). The standard Langevin dynamics is recov-
ered in the case λ = 0. Up to a rescaling of the parameter λ, one sets without loss of

generality
∫ 1

0 dx g(x) = 1, which will prove useful to lighten notations4. In the large tf
limit, the conditioned trajectory ensemble (where A(tf)/tf = a is fixed) and the canonical

trajectory ensemble (weighted by e−
λ
εA(tf)) become equivalent, for an appropriate value

of λ (see for instance [4, 5, 14, 44]). Also, the distribution of A verifies a large-deviation
principle P [A(tf) = a tf] ≍ etf Πε(a) as tf →∞. If Πε is a concave function of a, then it is
related to ϕε via a Legendre transform. In the present paper, we focus our study on
ϕε(λ).

In [6], we studied in particular how a biased conservative dynamics (i.e., λ 6= 0, but
f = 0) can be mapped to non-conservative, unbiased dynamics (i.e., λ = 0 and f 6= 0)
[28], a case which is intuitively easier to grasp. In the present work, we instead leave
aside this mapping, and rather consider the interplay of the statistical bias λ and the
physical driving f on the same dynamics. In other words, we investigate the (λ, f) phase
diagram of the model, and thus emphasize the dependence of relevant quantities on the
parameters λ and f.

For the original dynamics, at zero temperature and in the absence of bias (λ = 0),
the behavior of the average velocity

V̄ = lim
tf→∞

1

tf

∫ tf

0

dt ẋ(t) (6)

as a function of the driving force f is very simple: there is a critical value of the force
fc = −Fmin > 0 such that for f < fc, the particle is trapped in a stationary point xs

satisfying F (xs, f) = 0 in the noiseless situation, and can only escape the trap from
thermal activation; for f > fc, there are no stationary points, the particle is no longer
trapped and can thus move freely across the system. This phenomenology is well known
[31, 32] and is one of the simplest instances of the depinning transition (see e.g. [33, 34]
for reviews). The average velocity of the particle behaves as |f− fc|1/2 for f > fc and
is governed by the so-called mean-field depinning exponent β = 1

2
. See also reference

[28] for a discussion on the role of such depinning behavior for the DPT as a function
of λ.

3Throughout the paper, we use the symbol ≍ for the asymptotic logarithmic equivalence in the case of large deviation scalings, and
the symbol ≈ for the standard asymptotic equivalence (i.e., when the correct prefactors are included). Following standard practice in
physics papers, we use the symbol ∼ to denote equivalent (typically power-law) scalings when prefactors are not included explicitly.
4We easily see that A(tf) =

∫ tf
0
dt g(x(t)) ẋ(t) is split into a sum of two terms: one that is equal to

∫ 1

0
dx g(x) times the number of

turns (counted algebraically) that x(t) performs on [0, tf ]; and one that can be bounded by max[0,1]g. Thus, if
∫ 1

0 dx g(x) = 0, the
observable A(tf) is not extensive in time at large tf and the relevant large-deviation scaling to consider is different from (5).

https://doi.org/10.1088/1742-5468/abb235 7
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To characterize more generally this transition for the biased process, we are
specifically interested in the behavior of the average value

v̄(λ, f) = lim
tf→∞

1

tf
〈A(tf)〉λ with 〈 · 〉λ =

〈

e−
λ
εA(tf) ·

〉

〈

e−
λ
εA(tf)

〉 (7)

as a function of the two relevant parameters (λ, f), in the small noise asymptotics ε→ 0.
At a qualitative level, both parameters λ and f can be understood as bias parameters
that impose a nonzero value of v̄. However, we have shown in [6] that both parameters
have quite different effects at a quantitative level. Note that the notation v̄ is chosen here
because, for g(x) = 1, the observable v̄ is simply the average current, or average velocity
of the particle. In the following, we thus call v̄ the generalized average current. Also,
in the Legendre transformation between ϕε(λ, f) and Πε(a), the quantity v̄ is precisely
such that ϕε(λ, f) = Πε(v̄)− λ

ε
v̄ so that understanding the dependency of v̄ on λ allows

one to reconstitute the behavior of the distribution P [A(tf) = atf ] from the knowledge
of ϕε(λ, f).

We now turn to the determination of the critical lines separating the zero-current
and non-zero-current phases in the phase diagram (λ, f).

3. Critical lines separating fixed points and propagative trajectories

It the zero-temperature limit, a DPT separates zero-current and non-zero-current
phases; it was investigated numerically using an eigenvector decomposition in [38, 39],
with the observation of a ‘kink’ or a ‘wedge’ shape of the SCGF. The current distribu-
tion was investigated in a systematic way in [28] where, at low temperature, a ‘kink’
behavior was also obtained numerically using a Fourier–Bloch decomposition. In [6], for
the non-driven dynamics (f = 0) we derived an analytical characterization of the sin-
gularity, showing that it presents a continuous but logarithmic behavior as a function
of λ close to the transition point. In [26] the transition was studied analytically in the
regime where the tilted potential presents not metastable state. In this section and the
next one, we fully characterize the phase diagram in the (λ, f) plane and identify the
critical behavior close to singularities.

The determination of the critical lines that we now present relies on results derived in
[6, 26], that we briefly recall below. In the small-noise limit, the path-integral description
of trajectorial average in equation (5) is dominated by an ‘optimal trajectory’. It has
been shown that depending on (λ, f), the optimal trajectory can be either a fixed point or
a propagative trajectory, and the criterion allowing one to distinguish between these two
possibilities was also determined in [6]. In the limit ε→ 0, the SCGF ϕε(λ, f) behaves
as

ϕε(λ, f) ∼
ε→0

1

ε
φ(λ, f) (8)

https://doi.org/10.1088/1742-5468/abb235 8
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where φ(λ, f) does not depend on ε. Optimal trajectories are then propagative if and
only if the following criterion is satisfied [6]:

|λ− f | >
∫ 1

0

dx
√

2Vmax(f) + F (x, f)2 (9)

where Vmax(f) = maxx[−1
2
F (x, f)2]. The assumptions h(x) = 0 and

∫ 1

0
dx g(x) = 1 have

been used to simplify the criterion given in [6]. When equation (9) holds, the SCGF
φ(λ, f) is solution of the equation

∫ 1

0

dx
√

2φ(λ, f) + F (x, f)2 = |λ− f |. (10)

Otherwise, if equation (9) is not satisfied, the optimal trajectories are fixed points and
φ(λ, f) = Vmax(f). The domain of validity of equation (9) is limited by two lines λ−

c (f)
and λ+

c (f), respectively defined by

λ−
c (f) = f −

∫ 1

0

dx
√

2Vmax(f) + F (x, f)2, (11)

λ+
c (f) = f +

∫ 1

0

dx
√

2Vmax(f) + F (x, f)2. (12)

In figure 2 we show a representation of the corresponding phase diagram in the plane
(λ, f) for the sinusoidal force field F sin(x, f). As a consistency check, one sees that
the critical value fc = −Fmin > 0 of the force is such that λ−

c (fc) = 0. Indeed fc is the
minimum force for which F (x, f) > 0 for all x ∈ [0, 1], hence Vmax(fc) = 0 and

∫ 1

0

dx
√

2Vmax(fc) + F (x, fc)2 =

∫ 1

0

dx F (x, fc) = fc, (13)

leading to λ−
c (fc) = 0. By symmetry, the condition λ+

c (f) = 0 yields the negative crit-
ical force −Fmax that is not in the range of force we consider. In [6, 28], for the sine
force (4), the values λ±

c (0) = ± 2
π
have been determined. Here we wish to determine

the values of λ−
c (f) and λ+

c (f) for any f > 0 (the values for f < 0 are obtained by
a simple symmetry, as discussed in section 2.1). We thus need to evaluate the inte-
gral appearing in equation (9), which requires to distinguish the cases 0 6 f 6 fc and
f > fc.

3.1. Critical lines for 0 6 f 6 fc

When 0 6 f 6 fc, there exist crossing points such that F (x, f) = 0 and one thus has
Vmax = 0. The integral appearing in equations (11) and (12) then reads

∫ 1

0

dx
√

2Vmax(f) + F (x, f)2 =

∫ 1

0

dx |F (x, f)| =
∫ 1

0

dx |F0(x) + f |, (14)
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Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

Figure 2. Phase diagram in the plane (λ, f) for the sinusoidal force field F sin(x, f)
of equation (4). The two types of optimal trajectories are a fixed point (red),
associated with a zero current, or a propagative trajectory (blue), associated with
a non-zero current. The critical lines λ±

c (f) separate these propagative and zero-
current phases. The order of the transitions along these lines is non trivial and
discussed in section 4.

which leads to

λ±
c (f) = f ±

∫ 1

0

dx |F (x, f)|. (15)

In the specific case where F sin(x, f) = sin(2πx) + f, we get the explicit result

λ±
c (f) = f ± 2

π

(√

1− f 2 + f arcsin f
)

. (16)

We can check here explicitly that fc = −Fmin = 1 is the solution of λ−
c (fc) = 0. In addi-

tion, one can use the explicit form (16) of λ−
c (f) to evaluate its asymptotic behavior for

f→ 0 and f→ 1−,

λ−
c (f) = −2

π
+ f − 1

π
f 2 + o(f 2), f → 0, (17)

λ−
c (1− δf) = −4

√
2

3π
(δf)3/2 + o(δf 3/2), δf → 0+. (18)

The behavior of λ+
c (f) can be obtained from the relation λ+

c (f) = 2f − λ−
c (f) (which

expresses that two critical values λ±
c are related by the Gallavotti–Cohen symmetry

discussed in appendix A).
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Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

3.2. Critical lines for f>fc

When f > fc, Vmax(f) is nonzero and depends on the details of the force field F (x, f).
To go beyond the general expressions (11) and (12), one needs to specify explicitly
the force field. In the case F (x, f) = F sin(x, f) = sin(2πx) + f, for which fc = 1, we get
Vmax(f) = −1

2
(f − 1)2. One thus has

∫ 1

0

dx
√

2Vmax + F (x)2 =
1

2π

∫ 2π

0

dθ
√

(2f − 1) + sin2 θ + 2f sin θ (19)

which, after some algebra, yields

λ−
c (f) =

2

π

[

f arctan
√

f − 1−
√

f − 1
]

, (20)

λ+
c (f) = 2f − 2

π

[

f arctan
√

f − 1−
√

f − 1
]

. (21)

From these expressions, the asymptotic forms of λ±
c (f) for f→∞ and for f→ 1+ are

easily determined. One finds in particular for λ−
c (f)

λ−
c (f) = f − 4

π
f 1/2 + o(f 1/2), f →∞, (22)

λ−
c (1 + δf) =

4

3π
(δf)3/2 + o(δf 3/2), δf → 0+. (23)

Equations (18) and (23) show that the behavior of the critical line λ−
c (f) is not symmetric

in the two limits f→ 1+ or f→ 1−: the power-law behavior ∝ |δf |3/2 is the same but
the prefactors are different. Note last that the behavior of λ+

c (f) is easily obtained from
the Gallavotti–Cohen symmetry λ+

c (f) = 2f − λ−
c (f) (see appendix A).

4. Scaling of φ and v̄ close to the critical line λ−
c (f )

For a generic force F (x, f), we now specialize, for simplicity, to the vicinity of the lower
critical line λ−

c (f). Results for the other critical line λ+
c (f) can be obtained in a similar

way using the Gallavotti–Cohen symmetry (see appendix A). To determine the SCGF
φ(λ, f), we need to solve the equation

∫ 1

0

dx
√

2φ(λ, f) + F (x, f)2 = −λ+ f (24)

for λ < λ−
c (f). The current v̄ is then obtained as [6]

v̄(λ, f) = −∂φ

∂λ
(λ, f). (25)

We set λ = λ−
c (f)− δλ with δλ > 0 and look for the asymptotic behavior of φ for δλ→ 0.

Using equation (11), one rewrites equation (24) as

https://doi.org/10.1088/1742-5468/abb235 11
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Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

∫ 1

0

dx
[√

2φ(λ, f) + F (x, f)2 −
√

2Vmax(f) + F (x, f)2
]

= δλ (26)

which is reexpressed using the relation
√
a−

√
b = (a− b)/(

√
a+

√
b) as

2 (φ(λ, f)− Vmax(f))

∫ 1

0

dx
√

2φ(λ, f) + F (x, f)2 +
√

2Vmax(f) + F (x, f)2
= δλ. (27)

To proceed further, it is convenient to deal separately with the cases 0 6 f < fc and
f > fc, as done above for the determination of the critical lines.

4.1. Transition as a function of λ for 06f<fc

For 0 6 f < fc, one has Vmax(f) = 0, and equation (27) simplifies to

2φ

∫ 1

0

dx
√

2φ+ F (x, f)2 + |F (x, f)|
= δλ, (28)

where we have dropped the explicit (λ, f)-dependence of φ to lighten notations. For
small δλ, φ is also small, so that one needs to evaluate the asymptotic behavior for
small φ of the integral appearing in equation (28).

We recall that, as shown on figure 1, we have assumed that the conservative part
F 0(x) of the force has a single local maximum and a single local minimum, and that it is
monotonous in the two intervals between the maximum and the minimum. By continuity
of the force field, this implies that the force field F (x, f) = F 0(x) + f exhibits two zero-
crossing points, i.e., points x such that F (x, f) = 0 in the case 0 6 f < fc considered
here (and no zero-crossing points for f > fc). Let us denote as x1 and x2 the distinct
values of x satisfying F (xi, f) = 0 (i = 1, 2). We assume that ∂xF (xi, f) 6= 0 (i = 1, 2), so
that F (x, f) behaves linearly in the vicinity of each xi. Defining the intermediate point
x∗
1 =

1
2
(x1 + x2), one can split the interval [0, 1] into two subintervals [0, x∗

1] and [x∗
1, 1],

each subinterval containing a single zero-crossing point xi. For later convenience, we
define the notations x∗

0 = 0 and x∗
2 = 1, so that we can generically write the subintervals

as [x∗
i−1, x

∗
i ], for i = 1, 2.

The asymptotic evaluation of the integral in equation (28) goes as follows. On each
subinterval [x∗

i−1, x
∗
i ], the integral

Ji =

∫ x∗i

x∗i−1

dx
√

2φ+ F (x, f)2 + |F (x, f)|
(29)

is logarithmically diverging if φ = 0, due to a divergence of the integrand around x = xi.
A small, but nonzero φ thus effectively acts as a cut-off to regularize the diverging
integral. For small φ, the integral is dominated by the vicinity of the crossing point
xi where F (xi, f) = 0, and the leading behavior of the integral can be obtained by
expanding F (x, f) to first order around x = xi, yielding

Ji ≈
∫ x∗i

x∗i−1

dx
√

2φ+ F ′ 2
i (x− xi)2 + |F ′

i (x− xi)|
(30)
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Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

where we have introduced the shorthand notation F ′
i = ∂xF (xi, f). With the change of

variable x = xi +
√
φ y, we obtain

∫ x∗i

x∗i−1

dx
√

2φ+ F ′ 2
i (x− xi)2 + |F ′

i (x− xi)|
=

∫ (x∗i−xi)/
√
φ

(x∗i−1−xi)/
√
φ

dy
√

2 + F ′ 2
i y2 + |F ′

iy|
. (31)

The last integral over the variable y diverges logarithmically, when φ→ 0, at both the
lower and upper bounds of the integral. We are thus led to the following asymptotic
estimation, to leading order in φ when φ→ 0,

∫ (x∗i−xi)/
√
φ

(x∗i−1−xi)/
√
φ

dy
√

2 + F ′ 2
i y2 + |F ′

iy|
≈ 1

2|F ′
i |
| ln φ|. (32)

Gathering terms, equation (28) reads, in this asymptotic regime, as

φ |ln φ|
(

1

|F ′
1|
+

1

|F ′
2|

)

≈ δλ. (33)

Inverting the relation to get the leading order expression of φ in terms of δλ, one gets

φ
(
λ−
c (f)− δλ, f

)
≈ φ̃(f) δλ

| ln δλ| , φ̃(f) =
|F ′

1F
′
2|

|F ′
1|+ |F ′

2|
, (34)

where we recall that F ′
i = ∂xF (xi, f) depends on f. From equation (25), the average

generalized current v̄ then reads as

v̄
(
λ−
c (f)− δλ, f

)
≈ φ̃(f)

| ln δλ| . (35)

The depinning transition (which is a DPT) as a function of λ for 0 6 f < fc thus behaves
with a logarithmic divergence, at odds with standard DPTs, which are first- or second-
order [16, 45–48]. This shows that the logarithmic, almost discontinuous DPT as a
function of λ found in [6] for f = 0 is actually present in the whole range of force
0 6 f < fc.

In the specific case of a sinusoidal force field F sin(x, f) = sin(2πx) + f, one has |F ′
1| =

|F ′
2| = π

√

1− f 2, resulting in

φ
(
λ−
c (f)− δλ, f

)
≈ π

2

√

1− f 2
δλ

| ln δλ| , (36)

v̄
(
λ−
c (f)− δλ, f

)
≈ π

2

√

1− f 2

| ln δλ| . (37)

Note that one generically expects, for f = fc − δf (with δf > 0 and small) the scaling

φ̃(f) ∼ (δf)1/2, as found on the example of the sine force field (4).
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4.2. Transition as a function of λ for f>fc

We now turn to the case f > fc, for which F (x, f) > 0 for all x. The force field F (x, f)
has a single minimum Fm(f) at a point xm and Vmax(f) = −1

2
Fm(f)

2 < 0. Writing δφ =
φ(λ, f)− Vmax(f), equation (27) turns into

2δφ

∫ 1

0

dx
√

2δφ+ F (x, f)2 − Fm(f)2 +
√

F (x, f)2 − Fm(f)2
= δλ, (38)

where we recall that δλ > 0 is defined by λ = λ−
c (f)− δλ. For δφ→ 0, the inte-

gral in equation (38) is dominated by the divergence of the integrand close to x =
xm. Expanding F (x, f) in the vicinity of xm, we get to leading order F (x, f)2 −
F 2
m = Fm F ′′

0 (x− xm)
2, with the shorthand notation F ′′

0 = ∂2
xF0(xm, f), and where we

have dropped the explicit f-dependence of Fm on f to lighten notations. Note that
F ′′
0 > 0 because it corresponds to a minimum of the force field. In the small δφ limit,

equation (38) can thus be rewritten as

2δφ

∫ 1

0

dx
√

2δφ+ FmF
′′
0 (x− xm)2 +

√

FmF
′′
0 |x− xm|

= δλ. (39)

Using the change of variable x = xm +
√
δφ y, we get in the limit δφ→ 0,

∫ (1−xm)/
√
δφ

−xm/
√
δφ

dy
√

2 + FmF
′′
0 y

2 +
√

FmF
′′
0 |y|

≈ 1

2
√

FmF
′′
0

|ln δφ|. (40)

It follows that

φ
(
λ−
c (f)− δλ, f

)
≈ φ̃(f) δλ

|ln δλ| , φ̃(f) =
√

FmF ′′
0 , (41)

where we recall that both Fm and F ′′
0 depend on f. From equation (25), the average

generalized current v̄ then reads, for δλ→ 0+, as

v̄
(
λ−
c (f)− δλ, f

)
≈ φ̃(f)

|ln δλ| . (42)

In the specific case of a sinusoidal force field F sin(x, f) = sin(2πx) + f, one has
Fm = f− 1 and F ′′

0 = 4π2, so that φ̄(f) = π
√
f − 1, leading for δλ→ 0+ to

φ
(
λ−
c (f)− δλ, f

)
≈ 2π

√

f − 1
δλ

|ln δλ| , (43)

v̄
(
λ−
c (f)− δλ, f

)
≈ 2π

√
f − 1

|ln δλ| . (44)

We thus recover a logarithmic depinning behavior (or DPT) very similar to that of the
case 0 6 f < fc, but with different prefactors. Note that the range of force f > fc was
also studied in reference [26] but the critical behavior of the phase transition was not
determined.
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Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

4.3. Transition as a function of λ at the critical force f=fc

We now investigate the criticality of the SCGF for f = fc. As a first indication, one sees
that the leading terms found for the SCGF φ and for the generalized average current v̄
vanish when f→ fc, see equations (36) and (37) for f < fc and equations (43) and (44)
for f > fc. This suggests that a different scaling behavior may take place at the critical
force fc. We thus consider the case f = fc and λ = λ−

c (fc)− δλ = −δλ with δλ > 0 (we
recall that λ−

c (fc) = 0). Thus, according to equation (27), we obtain

2φ

∫ 1

0

dx
√

2φ+ (F0(x) + fc)2 + |F0(x) + fc|
= δλ (45)

where we have used Vmax(fc) = 0. For f = fc, the force field F (x, fc) now has a single zero-
crossing point at x = xm, which is also the minimum of F 0(x). We can then follow the
same initial steps as in section 4.1. Expanding F 0(x) around x = xm, we get to leading

order F0(x) + fc =
F ′′
0
2
(x− xm)

2, with the shorthand notation F ′′
0 = F ′′

0 (xm) (note that

F ′′
0 > 0). To determine φ = φ(−δλ, fc), we thus have to solve the equation

4φ

∫ 1

0

dx
√

8φ+ F ′′ 2
0 (x− xm)4 + F ′′

0 (x− xm)2
≈ δλ. (46)

Performing the change of variable x = xm + (φ1/4/
√

F ′′
0 )y and taking the limit φ→ 0 in

the bounds of the integral, we eventually get

8C
√

F ′′
0

φ3/4 ≈ δλ, with C =

∫ ∞

0

dy
√

y4 + 8 + y2
=

Γ
(
1
4

)2

6× 23/4
√
π
. (47)

It follows that

φ ≈ F
′′ 2/3
0

(8C)4/3
δλ4/3, and v̄ ≈ 4

3

F
′′ 2/3
0

(8C)4/3
δλ1/3. (48)

In the specific case of a sinusoidal force field F sin(x, f) = sin2πx+ f, both the SCGF
and the average generalized velocity take the form:

φ ≈
( π

4C

)4/3

δλ4/3, and v̄ ≈ 4

3

( π

4C

)4/3

δλ1/3. (49)

We thus get a non-standard exponent 1
3
for the depinning transition as a function of λ

right at the critical force fc.

4.4. Depinning transition as a function of the force f for fixed λ

We have analyzed above the DPT in the (λ, f)-plane, close to the critical line λ−
c (f),

by varying the parameter λ at a fixed driving force f. This was motivated in part by
technical considerations, because the asymptotic evaluation of φ is more easily carried
out when varying λ at fixed f. In addition, evaluating the generalized average current v̄
requires to differentiate φ with respect to λ at fixed f, and thus to know explicitly the
λ-dependence of the SCGF φ.
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While looking at the transition as a function of λ is standard in the context of DPT,
it may be more natural to consider the transition as a function of the physical drive
f (at fixed λ) when thinking in terms of a depinning transition. We thus discuss in
this section how the above results can be recast in terms of a depinning transition as a
function of the drive f. Yet, before coming to this point, we start by showing how the
standard depinning transition can be reformulated in the present framework.

4.4.1. Standard depinning transition around f = fc for λ = 0. We first show how the
standard depinning transition, corresponding to the unbiased dynamics λ = 0, can be
obtained from the analysis of equation (24) in the vicinity of the critical force fc.
Although we are interested in the behavior at λ = 0, the current is obtained by eval-
uating ∂λφ, hence we need to determine φ(λ, f) in the vicinity of λ = 0, and not only
φ(0, f). We thus consider an arbitrarily small value of λ. Using equation (10) under the
above assumptions, the equation determining φ = φ(λ, f) is given by

∫ 1

0

dx
√

2φ+ F (x, f)2 = f − λ. (50)

For λ = 0, one has φ(0, f) = 0 for all f > fc, as can be seen from equation (50) since
∫ 1

0 dx
√

F (x, f)2 = f if F (x, f) > 0 for all x (which is true when f > fc). Subtract-

ing the latter equation to equation (50) and using again the relation
√
a−

√
b =

(a− b)/(
√
a+

√
b) we get

2φ

∫ 1

0

dx
√

2φ+ (F0(x) + fc + δf)2 + |F0(x) + fc + δf |
= −λ, (51)

where we have focused on the case f = fc + δf . Note that equation (51) differs from
equation (27), because we now vary f at fixed λ instead of varying λ at fixed f. Setting
φ = 0 in the denominator of the integrand in equation (51) does not induce any diver-
gence of the integral, so we can safely make this replacement to determine the leading
order behavior of φ in terms of λ and δf . We then get

φ

∫ 1

0

dx

F0(x) + fc + δf
= −λ. (52)

Note that we have dropped the absolute value because the integrand is positive. For small
δf , the last integral is dominated by the vicinity of x = xm where F 0(x) is minimum,
because F 0(xm) + fc = 0. Expanding the integrand to leading order, one finds

φ

∫ 1

0

dx
1
2
F ′′
0 (x− xm)2 + δf

≈ −λ, (53)

with F ′′
0 = F ′′

0 (xm). The integral in equation (53) diverges when δf → 0, and its asymp-

totic behavior can be extracted using the change of variable x = xm +
√

2δf/F ′′
0 y,

leading to
√

2

F ′′
0

φ√
δf

∫ ∞

−∞

dy

y2 + 1
≈ −λ. (54)
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We thus obtain the following asymptotic behavior of the SCGF φ and of the generalized
current v̄ for λ→ 0 and δf → 0 (in this order),

φ ≈ −π

√

F ′′
0

2
λ
√

δf (55)

and, using equation (25),

v̄ ≈ π

√

F ′′
0

2

√

δf. (56)

So we recover with this method the standard scaling exponent 1
2
of the 1D depinning

transition, usually obtained from the study of the deterministic dynamics close to the
saddle node [28, 31–34].

4.4.2. Crossovers between scaling behaviors around (λ = 0, f = fc). We have seen
above that different scaling behaviors appear in the vicinity of the critical point
(λ = 0, f = fc). Up to now, we have varied the parameters along specific lines in the
(λ, f)-plane. It is of interest to look at the crossovers between the different types of
scaling in the full (λ, f)-plane.

A simple and heuristic way to study these crossovers is to compare the orders of
magnitude of the different scalings obtained. For instance, for f = fc + δf > fc and λ =
−δλ < 0, one can compare (omitting prefactors) the behavior (δλ)1/3 obtained for v̄ at
f = fc to the term (δf)1/2 obtained at λ = 0. Balancing the two terms yields a crossover
line δλ ∼ (δf)3/2, or equivalently δf ∼ (δλ)2/3. One thus expects that for δf ≪ (δλ)2/3

(with both δf and δλ small), v̄ ∼ (δλ)1/3, while in the opposite regime δf ≫ (δλ)2/3,
v̄ ∼ (δf)1/2.

A similar reasoning can be performed for f = fc − δf < fc and
λ = λ−

c (f)− δλ (δλ > 0). For small enough δλ, the results of section 4.1 apply,
and v̄ ∼ (δf)1/2| ln δλ|−1, while for δf = 0, v̄ ∼ (δλ)1/3. Equating the two scalings, one
finds for the crossover line the scaling behavior

δf ∼ (δλ)2/3(ln δλ)2. (57)

Hence for δf ≪ (δλ)2/3(ln δλ)2, one expects v̄ ∼ (δλ)1/3, while in the opposite case
v̄ ∼ (δf)1/2| ln δλ|.

4.4.3. Depinning transition as a function of the force f for arbitrary λ. We have recov-
ered above in section 4.4.1 that for λ = 0, the depinning transition as a function of the
force f is characterized by the standard exponent 1

2
, in the sense that v̄ ∼ (f − fc)

1/2.
For λ 6= 0, we now try to recast the results obtained above on the depinning transition
as a function of λ in terms of the transition as a function of δf . This can be done as
follows. We know from sections 4.1 and 4.2 that v̄(λ−

c (f)− δλ, f) ≈ φ̃(f) |ln δλ|−1 for a
small δλ > 0.

Now considering instead a variation of f, one can evaluate v̄(λ−
c (f), f + δf) as

v̄(λ−
c (f), f + δf) = v̄(λ−

c (f + δf)− δλ, f + δf) (58)
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provided that

δλ =
dλ−

c

df
δf . (59)

As long as dλ−
c /df 6= 0, which is true for all f 6= fc (f > 0), we thus have that

v̄(λ−
c (f), f + δf) ≈ φ̃(f + δf)

|ln δλ| ≈ φ̃(f)

|ln δf | , (60)

neglecting the factor dλ−
c /df in the logarithm for δf → 0.

5. Finite-temperature effects on the dynamical phase transition

5.1. Description of the thermal rounding

The results we have obtained so far are describing the leading order in the small-
noise asymptotics ε→ 0. In particular, the SCGF ϕε(λ, f) behaves as 1

ε
φ(λ, f), with

φ(λ, f) 6= 0 in the non-zero current regime (λ > λ+
c (f) or λ < λ−

c (f)), while the zero-
current regime λ−

c (f) 6 λ 6 λ+
c (f) is characterized by φ(λ, f) = 0. This implies that the

large deviation function Πε(a, f) behaves as
1
ε
π(a, f) as ε→ 0, with π(a, f) presenting a

cusp at the generalized average current v̄. This singular behavior means that even the
expected Gaussian fluctuations around v̄ are not described by the dominant order in ε
we have computed.

To understand how a small but finite ε can round or amend the observed singularities,
one thus needs to determine how ϕε(λ, f) scales with ε in the zero-current regime beyond
the minimum order 1

ε
φ(λ, f) = 0. In this case we will assume g(x) = 1, which implies

that the generalized current v̄ is the standard particle current or average velocity (see
equation (7) and below). A natural approach consists then in considering the biased
Fokker–Planck operator

Wλ· = −∂x ((F (x)− λ)·) + λ

ε

(
λ

2
− F (x)

)

+
1

2
ε∂2

x·, (61)

whose largest eigenvalue is ϕε(λ, f). The first two terms are responsible for its dominant
behavior 1

ε
φ(λ, f), while the last term, which accounts for diffusion, describes correc-

tions around it (as generically in the WKB or Freidlin–Wentzell–Graham approaches
[35, 36]; see [6, 28] for the problem at hand). A customary route to follow consists in
implementing a perturbation expansion, considering 1

2
ε∂2

x· as a perturbation term in
(61). The eigenvalue ϕε(λ, f) is associated with left and right eigenvectors of Wλ, that
we denote L(x) and R(x) and expand as

L(x) = exp

[

−UL(x)

ε
+ UL0(x) + εUL1(x) +O(ε2)

]

, (62)

R(x) = exp

[

−UR(x)

ε
+ UR0(x) + εUR1(x) +O(ε2)

]

. (63)
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In turn, this corresponds to an expansion of the SCGF as

ϕε(λ, f) =
φ(λ, f)

ε
+ φ0(λ, f) + εφ1(λ, f) +O(ε2). (64)

However, in the zero-current regime, such a perturbative approach fails: it would
yield ϕε(λ, f) = 0 at all orders in powers of ε, while in fact the SCGF behaves as

ϕε(λ, f)≍
ε→0

e−
1
ε Φ̃(λ,f) for λ−

c (f) < λ < λ+
c (f), (65)

as we will show. This behavior is non-analytic as a function of ε and cannot be described
by an expansion of the form (64). Physically, it corresponds to the fact that, in the zero-
current regime, the dynamics is governed by metastable states: the time scale defining
the current is coming from an escape mechanism whose rate takes an Arrhenius form
with an exponential behavior leading to equation (65). Nyawo and Touchette in refer-
ence [28] justified such behavior of the SCGF (within the Freidlin–Wentzell–Graham

approach [35, 36]), and studied it numerically. The Arrhenius function Φ̃(λ, f) was deter-
mined analytically by Proesmans and Derrida in [26] in the special situation where the
dynamics presents no metastable state, using a WKB approach and asymptotic match-
ing. We focus in this paper on the more complex case where the dynamics presents a
metastable state, which renders the analysis more intricate while also inducing a different
behavior of the Arrhenius function Φ̃(λ, f).

There are many ways to derive an Arrhenius scaling in general: in a path-integral
approach, one would have to enumerate and sum over the infinite number of possible tra-
jectories going from a metastable state to another (see for instance section 2.2 of chapter
7 in [49]). In our case, a path-integral formulation is available [6] but the instantons are
not obvious to determine. From an operator viewpoint, if the dynamics is reversible
(i.e., if the operator (61) can be made Hermitian), one finds a Boltzmann-like ground
state but this is not the case here. If the operator (61) was probability-preserving,
we could find its ground state, even in the absence of reversibility (see for instance
[2, 50]) but when λ 6= 0 the operator does not preserve probability. We thus have to
resort to a different approach, that we now describe, and that also allows us to deter-
mine some aspects of the behavior of the SCGF that go beyond the exponential behavior
of equation (65).

5.2. Strategy to obtain the Arrhenius scaling in the zero-current phase

We will base our analysis on the observation that the biased evolution operator can be
made probability-preserving after an appropriate transformation consisting in a shift and
a change of basis [3, 23–25]. Defining a diagonal operator whose elements are the compo-
nents of left eigenvector of (61), one performs a similarity transformation that describes
an ‘effective dynamics’ (or ‘auxiliary dynamics’) which is asymptotically equivalent at
large times to the biased dynamics and to the conditioned dynamics [3–5] after proper
normalization. As is well-known [6, 28] and recalled in more details below, the effective
dynamics takes place in a tilted potential U eff

λ decomposed as

U eff
λ (x) = Vλ(x)− fλ x (66)
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Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

where V λ is periodic [i.e., V λ(x) = V λ(x+ 1)] and fλ is a uniform force. The determi-
nation of U eff

λ is not an easy task, and cannot be done at all orders in ε in general (see
reference [28] for a perturbative study using a Fourier–Bloch decomposition).

The derivation of the required order is detailed in section 5.4. If U eff
λ (x) is known,

then, although the dynamics is non-reversible (if fλ 6= 0), the steady state can be written
explicitly [2]. Recalling that we focus on the case g(x) = 1, it is then known [50, 51]
that for the Langevin dynamics of a particle in an arbitrary tilted potential U eff

λ (x) =
Vλ(x)− fλ x (with V λ(x) a periodic potential), the average velocity 〈ẋ〉eff is obtained
from

1

〈ẋ〉eff
=

2

ε

∫ ∞

0

dz e−
2
ε fλz G(z) (67)

with

G(z) =

∫ 1

0

dx e
2
ε [Vλ(x+z)−Vλ(x)]. (68)

Such expression is valid when fλ > 0 (and can be adapted to the case fλ < 0). We refer
to appendix F for a self-contained derivation and for other expressions valid for any fλ.
Using the fact that ∂λϕε(λ, f) = −1

ε
〈ẋ〉eff together with the saddle-point asymptotics

G(z) ≍
ε→0

e
2
ε [Vλ(X(z)+z)−Vλ(X(z))] (69)

with

X(z) = argmax
06x61

[Vλ(x+ z) − Vλ(x)] , (70)

one finds that the SCGF takes the following exponential form:

∂λϕε(λ, f)≍
ε→0

e−
1
εΦ(λ,f) (71)

Φ(λ, f) = −2min
z>0

[−Vλ(X(z) + z) + Vλ(X(z)) + fλ z] . (72)

Note that the two optimization principles (70) and (72) are not done on the same
intervals. In these expressions, the asymptotic equivalents denoted by ≍

ε→0
are logarith-

mic: for instance equation (71) means that log |∂λϕε(λ, f)| ≈ −1
ε
Φ(λ, f) as ε→ 0. Going

beyond (i.e. obtaining the prefactor of the exponential) would require to integrate the
fluctuations around the saddle-point, which is not immediate, since the function V λ

present singularities. It would also require to determine the finite-ε corrections to the
potential V λ. As announced in equation (65), the SCGF also presents an Arrhenius

scaling of the form e−
1
ε Φ̃(λ,f), but, as we discuss later in section 5.6, the two Arrhe-

nius functions Φ and Φ̃ are not the same. This is due to a constant contribution in
the SCGF ϕε(λ, f), that vanishes when differentiating w.r.t. λ. We will first determine
Φ(λ, f) from the optimization principles (70) and (72), and then infer the value of

Φ̃(λ, f).
We are thus able to determine the SCGF ϕε(λ, f) if we know the effective tilted

potential U eff
λ (x) = Vλ(x)− fλ x. We thus need to evaluate the effective tilted potential
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U eff
λ (x), which requires the determination of the left eigenvector L(x) of the operator

Wλ defined in equation (61). In the following, we first recall in section 5.3 the relation
between U eff

λ and the left eigenvector L(x). We then compute in section 5.4 the left
eigenvector L(x) at minimal order in ε. We present in section 5.5 the calculation of
the Arrhenius function Φ(λ, f) from (72), leading to the determination of the SCGF
ϕε(λ, f) in the scaling form of equation (65), before commenting further on its physical
interpretation in section 5.6. We finally discuss in section 5.7 the non-trivial interchange
of the limits λ→ 0 and ε→ 0 in the equilibrium case f = 0.

Note that, as shown in appendix A, the SCGF verifies a Gallavotti–Cohen-type
symmetry [20, 52–54] of the form ϕε(λ, f) = ϕε(2f− λ, f). This means that the SCGF
is symmetric around the point λ = f; we thus restrict our study to the case λ < f (where
the average current is positive) without loss of generality.

5.3. Relation between the effective dynamics and the dominant eigenvectors

We recall here the generic result providing the relation between the potential U eff
λ of the

effective dynamics and the dominant eigenvectors of the tilted operator. One defines
〈L| as the left eigenvector of Wλ corresponding to the maximal eigenvalue ϕε(λ, f). As

in references [3, 24, 25], one constructs a diagonal operator L̂ whose elements are the
components of 〈L|. One directly checks that

〈−|Weff
λ = 0 with W

eff
λ = L̂WλL̂

−1 − ϕε(λ, f)1. (73)

This means that W
eff
λ is probability-preserving. As generically derived in [3–5] and

detailed in [6] for our example at hand, if one writes L(x) = e−
1
εUL(x), one obtains by

direct computation that Weff
λ is a Fokker–Planck evolution operator:

W
eff
λ · = −∂x

[(
F (x, f)− λg(x)− U ′

L(x)
)
·
]
+

1

2
ε∂2

x· , (74)

It is of course probability-preserving and corresponds to the evolution of a particle
subjected to a force F eff

λ (x) = F (x, f)− λg(x)− U ′
L(x). The function UL(x) is periodic

(as discussed in [6]) and depends on ε in general (although one expects that it behaves
as ε0 at dominant order for ε→ 0). In this framework, we can thus write the effective
force F eff

λ (x) as deriving from an effective tilted potential U eff
λ (x)

F eff
λ (x) = −∂xU

eff
λ (x) (75)

U eff
λ (x) = Vλ(x)− fλ x with Vλ(x) = V (x) + UL(x) and fλ = f − λ. (76)

5.4. Left eigenvector at dominant order in ε→ 0

To compute the required order in ε of the effective periodic potential V λ entering the
expression (72) of Φ(λ, f), we see from equations (70)–(72) that only the leading order,
in ε0, of V λ matters for the optimization principles in (70) and (72). Consequently,
from (76), we only have to determine the dominant behavior of UL(x). We derive here
the leading-order behavior of the left eigenvector. For completeness, we also provide in
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appendix C the corresponding expression of the right eigenvector, although it will not
be used in what follows.

The left eigenvalue equation associated with the Fokker–Planck operator (61) reads:

1

2
εL′′(x) + (F (x, f)− λ)L′(x) +

λ

ε

(
λ

2
− F (x, f)

)

L(x) = ϕεL(x). (77)

As we already mentioned, we focus here on the zero-current phase λ−
c (f) 6 λ 6 λ+

c (f),
where φ(λ, f) = 0, i.e., the contribution to order ε−1 to the SCGF ϕε vanishes. It would be
natural to assume the left eigenvector L(x) to take for ε→ 0 the asymptotic form L(x) ∝
e−UL(x)/ε where UL(x) is sufficiently regular, i.e., has a continuous derivative. However,
the left eigenspace associated with the eigenvalue ϕε may be of dimension larger than
one, and we thus rather write the left eigenvector L(x) as a linear superposition of
different solutions of the form e−UL(x)/ε. An important point is that only the linear
combination needs to fulfill the spatial periodicity condition, whereas the individual
solutions do not need to satisfy this constraint.

Introducing the ansatz L(x) = e−UL(x)/ε in equation (77), we find at leading order ε−1

the equation

1

2

(
U ′

L(x)
)2 − (F (x, f)− λ)U ′

L(x) +
λ2

2
− λF (x, f) = 0, (78)

leading to the solution

U ′
L(x) = F (x, f)− λ− σi(x) |F (x, f)|, (79)

where σi(x) = ±1 is a sign that may a priori depend on x. Yet, assuming continuity of
the function U ′

L(x) imposes that the function σi(x) can only change sign at points x such
that F (x, f) = 0. Equation (78) thus exhibits four continuous solution functions U ′

L,i(x)

(an unexpected result given that equation (78) is a second-order ordinary equation U ′
L),

given by

U ′
L,1(x) = F (x, f)− λ− |F (x, f)| (80)

U ′
L,2(x) = F (x, f)− λ+ |F (x, f)| (81)

U ′
L,3(x) = −λ (82)

U ′
L,4(x) = 2F (x, f)− λ. (83)

The presence of four solutions instead of two comes from the fact that independent pairs
of solutions of equation (78) can be connected with sufficient regularity. By integration
we obtain, recalling that F (x) = −V ′(x) + f,

UL,1(x) = −V (x) + (f − λ)x−
∫ x

0

dy |F (y, f)|+ k1 (84)

UL,2(x) = −V (x) + (f − λ)x+

∫ x

0

dy |F (y, f)|+ k1 + k2 (85)

UL,3(x) = −λx+ k1 + k3 (86)
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UL,4(x) = −2V (x) + (2f − λ)x+ k1 + k4, (87)

where the ki’s are integration constants, and where the potential V (x) satisfies
V (0) = V (1) = 0. Note that for convenience, we have split the integration constants in
the functions UL,2(x), UL,3(x) and UL,4(x) into two separate constants, to set apart the
overall constant k1 that is eventually determined by normalization, and should be held
fixed but arbitrary when determining the functional form of the left eigenvector L(x).
Given these multiple solutions for UL(x), the left eigenvector L(x) should in principle
be written as a linear combination of all possible solutions:

L(x) = e−UL,1(x)/ε +

∫

dk2 e−UL,2(x)/ε +

∫

dk3 e−UL,3(x)/ε +

∫

dk4 e−UL,4(x)/ε, (88)

which includes an integration over the undetermined constants k2, k3 and k4. However,
in the limit ε→ 0, the integrals over ki are dominated by their lower bounds kmin

i , that
remain to be specified. Hence, L(x) takes for ε→ 0 the form L(x) ≍ e−UL(x)/ε with UL(x)
given by

UL(x) = min {UL,1(x),UL,2(x),UL,3(x),UL,4(x)} , (89)

where the functions UL,i(x) take the forms given in equations (84)–(87), with the con-
stants k2, k3 and k4 taking their minimal value kmin

i compatible with the constraint
of periodicity of the function UL(x), namely UL(0) = UL(1). Note that we would have
obtained the same result as given in equation (89) if we had chosen to fix another
integration constant instead of k1.

The solution of the optimization problem (89) is presented in appendix B. The result
reads as follows.

• If λ−
c (f) < λ < 0 (see figure 3, left):

UL(x) = k1 +

{

λ−
c (f)− λ− λx if 0 < x < x∗

L

−2V (x) + (2f − λ)x− λ+
c (f) if x∗

L < x < 1,
(90)

where x∗
L is determined by the continuity of UL(x) at x = x∗

L, yielding the condition

V (x∗
L) =

λ

2
+ f (x∗

L − 1). (91)

• If 0 < λ < f (see figure 3, right):

UL(x) = k1 +

{

−2V (x) + (2f − λ)x+ λ−
c (f)− λ if 0 6 x 6 x†

L

−λx+ λ−
c (f) if x†

L 6 x 6 1,
(92)

where x†
L is determined by imposing UL(x) to be continuous at x = x†

L, i.e.

V (x†
L) = fx†

L − λ

2
. (93)

As a consistency check, we remark that in both cases, when λ→ 0, the func-
tion UL(x) becomes constant (in equations (90) and (92), one has x∗

L → 1 and
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Figure 3. (Left) The four functions UL,1, . . ., UL,4 defined in equations (84)–(87)
for the optimal values of k2, k3 and k4, in the case λ−

c (f) < λ < 0. The final result
UL(x) of the optimization principle (89) is plotted in dashed line. The force is
F sin(x, f) = sin(2πx) + f with f = 0.3 and λ = −0.17. (Right) Same, for the case
0 < λ 6 f. The force is the same but now λ = 0.15.

x†
L → 0 respectively). This result is expected since for λ = 0 the dynamics described

by the tilted evolution operator is probability-preserving and its left eigenvector is
constant.

Finally, note that the function UL(x) as given by equations (90) and (92) also satisfies
equation (78), but does not necessarily have a continuous derivative. One may thus
wonder if we should have released the constraint that the function UL(x) should have
a continuous derivative when looking for solutions of equation (78). However, looking
from the outset for solutions U ′

L(x) of equation (78) that would not be continuous
yields an infinite set of solutions parametrized by the location of possible discontinuities,
out of which it would be very difficult to find the relevant solution. It is thus more
convenient to proceed as we have done, by restricting ourselves to functions UL,i(x)
having continuous derivatives, and writing L(x) as a linear combination of functions as
done in equation (88), which yields a well-defined procedure to determine the correct
function UL(x) in the low noise limit.

The computation of the function UL(x) for the regime f < λ 6 λ+
c (f), as well

as a particularization to the sinusoidal force F sin(x, f) case can be found in
appendix C.

5.5. Determination of the thermal effects in the zero-current region

Once the left eigenvector is determined, we are now in a position to obtain the Arrhenius
scaling in the zero-current regime. Following the approach described in section 5.2, to
obtain the Arrhenius function Φ(λ, f) we need to solve the two optimization problems
(70) and (72), where fλ is given by equation (76). Again, we restrict our study to the
regime λ−

c (f) < λ < f as a consequence of the Gallavotti–Cohen symmetry of the SCGF
(see appendix A).

Let us focus first on the case λ−
c (f) < λ < 0 (the case 0 < λ < f, which follows similar

lines, is treated in appendix E). We make use of the result (90) for UL(x) at leading
order in ε, to obtain the effective periodic potential V λ(x) from its definition given in
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Figure 4. Schematic representation of the force, F (x, f) (left) and the derivative
of the effective potential, V ′

λ(x) (right).

equation (76) as:

Vλ(x) = k1 +

{

V (x)− λ(1 + x) + λ−
c (f) if 0 6 x 6 x∗

L

−V (x) + (2f − λ)x− λ+
c (f) if x∗

L 6 x 6 1.
(94)

The first derivative V ′
λ(x) of the effective potential V λ(x) reads (see figure 4 for a

schematic illustration for a generic potential)

V ′
λ(x) =

{

−F (x, f) + f − λ if 0 6 x 6 x∗
L

F (x, f) + f − λ if x∗
L 6 x 6 1.

(95)

A key property of V ′
λ(x), to be used below, is that (see figure 4)

V ′
λ(x) > f − λ for xc < x < x∗

L, (96)

V ′
λ(x) < f − λ for 0 6 x < xc or x

∗
L < x < 1. (97)

Noting that Vλ(x+ z) − Vλ(x) =
∫ x+z

x
dy V ′

λ(y), the optimization problem (70) reads as

X(z) = argmax
06x61

∫ x+z

x

dy V ′
λ(y), (98)

i.e., one has to maximize the algebraic area between x and x+ z under the curve V ′
λ(x).

On the other hand, the problem (72) can be also rewritten as

Φ(λ, f) = −2min
z>0

ζ(z), (99)

where

ζ(z) ≡ (f − λ)z −
∫ X(z)+z

X(z)

dy V ′
λ(y). (100)

We note that since f− λ > 0 and due to the periodicity ofX(z) and V λ(x), the minimum
of ζ(z) is reached for z ∈ (0, 1).
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Figure 5. Sketch of the graphical argument leading to the key properties of X(z).
On each graph, the shaded area indicates the integral of V ′

λ(x) over the interval
[X(z),X(z) + z]. Top left: case z = z∗, whereX(z) = xc. Top right: case 0 < z < z∗,
where xc < X(z) < x∗

L with X(z) + z 6 x∗
L. Bottom: case z∗ < z < 1, illustrated

here with 0 6 X(z) < xc, both for X(z) + z = x∗
L and for X(z) + z > x∗

L.

In the following, we describe a graphical argument which helps us to find the solutions
of the optimization problems (98) and (99). It turns out that to determine the minimum
of ζ(z), the full determination of X(z) is not required, but one only needs to know some
properties of X(z) that can be understood graphically:

• If z = z∗ ≡ x∗
L − xc, then X(z∗) = xc (see top left panel of figure 5);

• If 0 < z < z∗, then xc < X(z) < x∗
L with X(z) 6 x∗

L − z (see top right panel of
figure 5);

• If z∗ < z < 1, then either 0 6 X(z) < xc (see bottom panels of figure 5) or
x∗
L < X(z) < 1.

These properties ofX(z) mainly rely on the inequalities (96) and (97). Let us consider
first the case z = z∗ ≡ x∗

L − xc. Choosing a value X(z∗) 6= xc instead of the optimal value

xc, one would replace in the integral
∫ X(z∗)+z∗

X(z∗) V ′
λ(y) dy a subinterval where V ′

λ(y) > f− λ

by another subinterval where V ′
λ(y) < f− λ, leading to a smaller value of the integral.

Similar reasonings lead to the conclusion that X(z) lies in the interval xc < X(z) < x∗
L

for 0 < z < z∗ and outside this interval for z∗ < z < 1. Note that in the latter case, it
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seems that in most (if not all) situations, one has 0 6 X(z) < xc (at least we could not
find examples where x∗

L < X(z) < 1).
Using these properties of X(z), we show in appendix D that ζ(z) > ζ(z∗) for all

z 6= z∗. This allows us thus conclude that ζ(z) has its global minimum at z = z∗. We
can now proceed to compute the Arrhenius function Φ(λ, f). According to equation (99),
we get:

Φ(λ, f) = f (x∗
L − xc)− V (x∗

L) + V (xc). (101)

Taking into account equation (91) for x∗
L, the Arrhenius function can be rewritten as

Φ(λ, f) = λ− 2f(1− xc)− 2V (xc). (102)

Then we note that using the definition (15) of λ−
c (f), we have

λ−
c (f) = f −

∫ xc

0

dy F (y, f) +

∫ 1

xc

dy F (y, f) = 2f(1− xc) + 2V (xc). (103)

Hence, we obtain the final result

Φ(λ, f) = λ− λ−
c (f) (104)

for λ−
c (f) < λ < 0. This expression of the Arrhenius function Φ(λ, f) is also found to

be valid for 0 < λ < f (the computation is detailed in appendix E). In addition, using
the Gallavotti–Cohen symmetry Φ(λ, f) = Φ(2f− λ, f) (see appendix A), one eventually
obtains the expression of the Arrhenius function Φ(λ, f) on the full zero-current range
λ−
c (f) < λ < λ+

c (f),

Φ(λ, f) = f − λ−
c (f)− |λ− f |. (105)

This is our final result for the function Φ describing the Arrhenius behavior ≍ e−
1
εΦ(λ,f)

of ∂λϕε(λ, f) as ε→ 0. By continuity of the maximal eigenvalue of the tilted operator
(which is continuous in f), we expect that it is also true for f = λ. The derivation of
this expression was done for f > 0. We show in appendix A that, thanks to the mirror
symmetry, it is also valid for f < 0. Again by continuity of the maximal eigenvalue of the
tilted operator, we expect that it is also true for f = 0. It turns out that the Arrhenius
function Φ(λ, f) exhibits a cusp in λ = f, a property that we further discuss in the

following section. Before that, we derive the Arrhenius function Φ̃(λ, f) describing the
Arrhenius behavior of the SCGF itself. Our previous result indicate that a primitive in λ
of ∂λϕε(λ, f) takes the form C(λ, ε) e−

1
εΦ(λ,f) where the function C(λ, ε) is exponentially

dominated by e−
1
εΦ(λ,f) as ε→ 0 [i.e. log |C(λ, ε| ≪ 1

ε
]. Hence:

ϕε(λ, f) =

∫ λ

0

dλ̄ ∂λ̄ϕε(λ̄, f)≈
ε→0

C(λ, ε) e−
1
εΦ(λ,f) − C(0, ε) e−

1
εΦ(0,f), (106)

since the SCGF is equal to 0 in λ = 0. We thus have Φ̃(λ, f) = min {Φ(λ, f), Φ(0, f)}
and we find

Φ̃(λ, f) =

{

f − λ−
c (f)− |λ− f | if |λ− f | > |f |

f − λ−
c (f)− |f | if |λ− f | 6 |f |.

(107)
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Figure 6. (Left) Numerical evaluation of Φε(λ, f) = −ε log |∂λϕε(λ, f)| describing
the behavior ∂λϕε(λ, f) ≍ e−

1
εΦ(λ,f), as predicted analytically in the ε→ 0 limit

(equation (105), plain line), and as evaluated numerically on a lattice version of the
model with 64 sites and for small but finite values of ε indicated in the legend. The
force is the sine model of equation (4) with f = 1

2
, and λ varies in [λ−

c ,λ
+
c ]. At finite

values of ε, one observes boundary layers for λ close to f and close to λ±
c , indicating

that the limits ε→ 0 and λ→ {f ,λ±
c } do not commute. (Right) Numerical evalu-

ation of Φ̃ε(λ, f) = −ε log |ε−1ϕε(λ, f)| describing the behavior ϕε(λ, f) ≍ e−
1
ε Φ̃(λ,f)

as predicted analytically in the ε→ 0 limit (equation (107), plain line). Boundary
layers are present in λ = λ±

c (indicating the boundary of the pinned regime) and for
λ ∈ {0, 2f}, corresponding to the switch between one term dominating the other in
equation (106).

A comparison of the results of equations (105) and (107) to numerical evaluations of
the Arrhenius functions, performed by diagonalization of the tilted operator of a lattice
version of the system at small but finite ε, is presented on figure 6, showing a good
agreement on the example of the sine force of equation (4).

5.6. Interpretation of the form of the Arrhenius function Φ(λ,f) and of its cusp singularity

To discuss the physical consequences and interpretation of the form (105) of the Arrhe-

nius function in the ε→ 0 asymptotics, we recall that the derivative ∂λϕε ≍ e−
1
εΦ of

the SCGF represents (up to prefactors) the average velocity in the biased ensemble,
v̄(λ) = 1

ε
〈ẋ〉eff = −ε ∂λϕε(λ, f), but also that when performing the Legendre–Fenchel

transform

ϕε(λ, f) = max
a

{Πε(a)− λa} , (108)

the maximum is reached in a = v̄(λ). Thus, the cusp in the expression (105) of the
Arrhenius function Φ(λ, f) implies that at this order in ε, there is a DPT in λ = f.
Physically, this point corresponds to the cancellation of the tilt fλ = f− λ of the effective
potential [see equation (76)]. At fixed f and increasing λ, the transition thus occurs
precisely at the point where trajectories switch from escaping toward the left direction
to escaping toward the right direction. A finer analysis of such switch, which would
take into account higher-order corrections in ε, would detail how the transition from
left-moving to right-moving classes of trajectories takes place. A possible method to do
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so would be to generalize the WKB and asymptotic matching approach of Proesmans
and Derrida [26] to the case where the dynamics presents metastable states.

However, at the order in ε we have considered, the result (105) we obtained for
the Arrhenius function has several interesting consequences. We first remark that the
non-analyticity of the Arrhenius function Φ(λ, f) in equation (105) implies that the dis-
tribution of 1

tf
A(tf) at large tf develops different regimes, obtained by inverse Legendre

transform of (108). The regime around λ = 0 corresponds to the most typical large devi-
ations [those around the most probable value of 1

tf
A(tf)], while the regime corresponding

to λ > f describes different fluctuations.
We now discuss these regimes, depending on whether f = 0 or not. If f 6= 0, the

expression (105) implies that all scaled cumulants of the current 1
tf
〈A(tf)

n〉c are equal,

at exponential order in ε:5

lim
tf→∞

1

tf
〈A(tf)

n〉c = (−ε)n
∂n

∂λn

∣
∣
∣
∣
λ=0

ϕε(λ, f) ≍
ε→0

eλ
−
c (f)/ε. (109)

The equality of all cumulants would show that the distribution of particle current a ≡
A(tf)/tf is Poissonian, provided a is not too far from the average value v̄ .6 Here we can
only prove that cumulants are equal at exponential order in ε, as described in (109).
This suggests that the statistics should at least be close to a Poissonian one in the
low-noise limit. It is also possible to show that the prefactors of the exponential in
equation (109) for the first two cumulants are equal (see appendix F), which supports
the possibility that the Poissonian statistics is also valid beyond the exponential order.
A correspondence to the current statistics in asymmetric random walks, obtained and
discussed in references [20, 39], could be interestingly probed.

Physically, the Poissonian regime pictures the fact that, at dominant order, the
distribution of the time-integrated current is governed by independent escape events that
all happen at the same rate. The occurrence of a Poisson distribution for a continuous
variable such as the current can be understood as follows: the motion of the particle
occurs along a succession of metastable states, making it almost as discrete. The large-
time asymptotics implies that obtaining a non-zero value of the time-averaged current
is possible only if a large number of discrete jumps in successive metastable states of

the tilted potential occur. In particular, the average current v̄ behaves as v̄ ≍ eλ
−
c (f)/ε

for ε→ 0. Interestingly, this behavior has a simple physical interpretation. Defining the
tilted potential U(x) = V (x)− fx, such that U ′(x) = −F (x, f), the extrema of the tilted
potential U(x) are located in x = 0, xc and 1; xc corresponds to a local minimum of the
tilted potential, whereas x = 0 and 1 correspond to local maxima. It follows that the
energy barrier ∆U to be overcome by a particle moving to right (i.e., along the direction
of the force f) is ∆U = U(1)− U(xc) = −f(1− xc)− V (xc) (we recall that V (1) = 0).
From equation (103), we thus have that λ−

c (f) = −2∆U . Further recalling that the
temperature T is given by ε = 2T , we obtain the simple Arrhenius law v̄ ≍ e−∆U/T for

5Note that in this expression of the cumulants, one should differentiate n− 1 times w.r.t. λ the expression e−
1
ε Φ(λ,f ) of ∂λϕε(λ, f)

rather than differentiate n times the expression e−
1
ε Φ̃(λ,f ) of ϕε(λ, f), because the constant term in equation (106) makes that Φ̃(λ, f)

is constant for λ ∈ [0, 2f], as seen in equation (107).
6The threshold value of a corresponds to λ = f in the Legendre transform, where a cusp is observed.
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T → 0, hence providing a clear and simple physical interpretation of our results for
λ = 0.

Coming back to the DPT at λ = f, the latter tells that, beyond a certain value of
the time-integrated current (where the particle is forced to go in the opposite direction
to the one naturally imposed by f), the distribution changes drastically; and, because of
the non-analyticity, this happens in a way that cannot be seen by a mere expansion of
the SCGF in powers of λ around λ = 0 (again, at the order in ε we are working). Note
that an analogous phenomenon happens for the fluctuations of current of particles in the
WASEP on a ring of L sites [16, 45]: in the large L limit (which is a small-noise limit),
the SCGF is quadratic around the origin as function of λ, meaning that the fluctuations
of the current seem Gaussian (their distribution is Gaussian for a given range of values).
A DPT also occurs for strong enough atypical values of the current, which is manifested
as a non-analyticity in the SCGF: the current distribution becomes non-Gaussian for
atypical enough values of the current. For the cumulants, this is manifested at finite
L by a dominant order in L which is Gaussian and sub-dominant ones which are non-
Gaussian [55]. For our system of interest, one has an analogous phenomenology: current
fluctuations are Poissonian on a range close enough to the typical fluctuations, and
become non-Poissonian above, in a singular manner. We expect that this DPT is also
manifested in the cumulants of the current at finite temperature: they are Poissonian at
dominant order in ε→ 0, but present non-Poissonian contributions at higher order. We
illustrate this point for the first and second cumulants in appendix F, by showing that
they are different at any finite ε, but they become equivalent in the ε→ 0 limit, where
both cumulants go to zero.

If f = 0, the consequences of the DPT, now located in λ = 0 are even more dras-
tic. The procedure we have followed yields an SCGF which does not even describe
expected Gaussian fluctuations for small current fluctuations: indeed, for f = 0 one has

λ±
c (f) = ±λ0

c with λ0
c =

∫ 1

0
dx |V ′(x)|, and with this notation our result (105) for the

Arrhenius function reads as Φ(λ, f) = λ0
c − |λ|. Its derivative in λ = 0 is singular, imply-

ing that the Taylor expansion of ∂λφε(λ, f) in λ = 0 is not well defined (while for instance
we expect a finite diffusion coefficient, see references [56, 57] and appendix F). We dis-
cuss the scaling of such Gaussian fluctuations, in section 5.7 below, specializing to the
case of the sine force, and analyzing the non-commutation of the limits λ→ 0 and ε→ 0.
The obtained result (105) can only give us information about current fluctuations which
are larger than the Gaussian ones. We thus expect the phenomenology to be as follows
for small but finite ε: (i) small enough fluctuations of the current are Gaussian (on a
range of λ that is not captured by our analysis of Φ(λ, f)) and correspond to the fact
that the particle can escape toward left or right with comparable probability. (ii) Larger
fluctuations of current (corresponding to 0 < |λ| < λ0

c) occur again in a Poissonian way,
but with a rate that depends on the sign of the current fluctuations we are consider-
ing; in that regime, the average current (given by −ε∂λϕε) is exponentially small with
the temperature. (iii) Even larger fluctuations of current (corresponding to |λ| > λ0

c),
where now the amplitude of the current is not small with ε, are not Poissonian and are
described by the SCGF in the propagative regime.
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5.7. Discussion on the order of limits λ→ 0 and ε→ 0 in the f= 0 case

For f = 0, the DPT in λ = 0 makes that the cumulant of the average current cannot
be determined from ϕε or ∂λϕε as ε→ 0. We discuss in this subsection at which scale
around λ = 0 a finite value of ε rounds the transition, and allows one to recover the
expected Gaussian fluctuations of the current. We focus here on the case of the sine
force, for which λ±

c (0) = ± 2
π
≡ ±λ0

c . Starting from the expression (67) of 〈ẋ〉eff, what the
computation leading to (105) has shown is actually that

ε∂λϕε(λ, f = 0) = −〈ẋ〉eff =
ε→0

sign(λ) εB e−
1
ε (λ

0
c−|λ|) + o

(

ε e−
1
ε (λ

0
c−|λ|)

)

. (110)

The prefactor B depends a priori on λ and ε, and to actually compute it, one should
integrate the fluctuations around the saddle-point evaluation of equations (67) and (68),
but this is not an obvious task since the effective periodic potential V λ(x) presents
cusps. We have incorporated in (110) a prefactor sign(λ) because for f = 0, positive
(resp. negative) values of λ favor negative (resp. positive) values of the current.

For the sine force (4), numerical evidence support the fact that B is independent of
λ and ε, as ε→ 0 (see figure 7). The rest of this subsection is based on this hypoth-
esis and thus remain more heuristic than the other sections of the paper. Integrating
equation (110) with the constraint ϕε(0, 0) = 0, one gets

ϕε(λ, 0) =
ε→0

(

e
|λ|
ε − 1

)

B e−
λ0c
ε + o

(

e−
1
ε (λ

0
c−|λ|)

)

. (111)

This improved form now goes to 0 as λ→ 0, as in the generic expression (106) and
for ε→ 0, as shown on figure 7 (right), with a numerical prefactor B compatible
with a value 1, that we now heuristically retain. However, the expression (111) of
the SCGF is still non-analytical in the vicinity of λ = 0. In particular, this expression
does not describe the Gaussian fluctuations, that occur on a smaller scale that we now
discuss.

The diffusion coefficient D = limtf→∞
1
2tf
〈A(tf)

2〉c was derived in references [56, 57]

(by use of a representation in terms of the moments of the first passage time [58]). In
appendix F, we provide for completeness a different derivation, based on a more general
approach, and that uses the joint position and current distribution formalism (in the
spirit of Derrida’s approach for discrete random walks [59]). The result reads

D =
ε

2

1
∫ 1

0
dx e−

2
εV (x)

∫ 1

0
dx e

2
εV (x)

so that (112)

D ≈
ε→0

1

2π

√

|V ′′
minV

′′
max| e−

2
ε (Vmax−Vmin), (113)

with V max and V min the maximum and minimum values taken by the potential on its
spatial period (and V ′′

min,max the value of the second derivative at the position of the
extrema). From the definition (5) of the SCGF we find that, at fixed ε and for small λ,
the Gaussian fluctuations of velocity are described by

ϕε(λ, 0) =
1

2

λ2

ε2
D +O

(
(λ/ε)3

)
. (114)
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Figure 7. (Left) Ratio between the logarithms of numerical evaluation of
∂λϕε(λ, f = 0) and the analytical estimate of equation (110). One observes bound-
ary layers for λ close to 0 and close to ±λ0

c , at finite values of ε, indicating that the
limits ε→ 0 and λ→ {0,±λ0

c} do not commute. The numerical estimate is done by
diagonalization on a discrete system of 64 sites at f = 0 and values of ε indicated
in the caption. (Right) Same but now for ϕε(λ, f = 0) and the improved analytical
estimate equation (111). It shows that part of the boundary layer for λ close to 0
has been absorbed (while it is not close to ±λ0

c). It is compatible with a numerical
prefactor B equal to 1 in (110).

This expansion is valid for small λ/ε because we used the parameter λ
ε
in 〈e− λ

εA〉 for the
SCGF.

To analyze the importance of the order of limits, it is more convenient to introduce a
rescaled counter Λ = λ

ε
. Using the values λ0

c =
2
π
, Vmax − Vmin =

1
π
and |V ′′

minV
′′
max| = (2π)2

for our potential of interest V (x) = 1
2π
[cos(2πx)− 1] corresponding to the sine force (4),

we see that

ϕε(εΛ, 0) =







(
e|Λ| − 1

)
e−

λ0c
ε + o

(

e−
λ0c
ε

)

if ε→ 0 is taken at fixedλ = εΛ
[
1

2
Λ2 +O(Λ3)

]

e−
λ0c
ε if Λ→ 0 is taken before ε→ 0,

(115)

from equations (111) and (113)–(114) respectively. These two asymptotic behaviors
describe different regimes: the first one is a regime of ‘large’ fluctuations where
Λ = λ/ε ≫ 1, while the second one is valid for values of Λ which remain finite with
ε. If one formally expands e|Λ| − 1 for Λ→ 0 (although the expression is not supposed
to be valid in this limit), the order Λ2 of the expansion matches that of the Λ→ 0
expansion (done before taking the ε→ 0 limit) shown in equation (115). However in
the first case of order of limits, an extra contribution ∝ |Λ| is present, showing that the
order of the two limits cannot be exchanged. The matching of the Λ2 term between
the two asymptotics seems to indicate that the crossover regime between the two
regimes in (115) is smooth. To summarize, the Gaussian fluctuations happen on a scaling
λ = εΛ with finite Λ, i.e. in a boundary layer around λ = 0 of width ε that vanishes as
ε→ 0.
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6. Conclusion and outlook

In this work, we have studied the biased Langevin process associated with a general-
ized time-integrated current, for a particle in a one-dimensional potential with periodic
boundary conditions, driven by a uniform non-conservative force. Both the physical
driving force f and the statistical bias parameter λ allow for the definition of the
biased process generating a particle current, but their quantitative effect is different.
These two control parameters naturally span a two-dimensional phase diagram within
which depinning transitions (i.e., transitions between zero-current and non-zero-current
phases) occur.

Focusing on the low-noise limit, we have shown that in this phase diagram, the
standard depinning exponent 1

2
is the exception rather than the rule: it only character-

izes the depinning transition as a function of the force f, in the absence of statistical
bias (λ = 0). At the very same critical point in the phase diagram, we have found that
the depinning transition considered as a function of λ (with f fixed) instead yields
an exponent 1

3
. And even more strikingly, the depinning transition around any other

point of the critical lines is characterized by an inverse logarithmic decay of the gen-
eralized current, either as a function of the bias λ or of the non-conservative force
f.

We have also studied the thermal rounding effects in the zero-current phase, and
characterized the resulting Arrhenius scaling in the low noise limit for both the SCGF
and the generalized current. We have found in particular a very simple expression for
the effective energy barrier of the biased dynamics, which behaves linearly with λ, and
boils down for λ = 0 to the energy barrier to escape the metastable state of the tilted
potential.

As for future work, it may be of interest to push the low-ε expansion to the next order
to capture non-Poissonian corrections to the statistics of current. A natural picture of
the results we have obtained at finite temperature is that the current can be written as
a sum of two terms: (i) a number of turns (which is integer and thus a good candidate
to present a Poisson statistics) plus (ii), an extra contribution that is non-integer and
that results from thermal fluctuations beyond the Arrhenius scaling. In this picture, the
second contribution would make the integrated current truly non-Poissonian; it could
be interesting to put this image on firm grounds, for instance by studying a possible
mapping to the current SCGF in asymmetric random walks [20, 39]. Changing ensemble
from the process biased by λ to the process conditioned by a fixed value of the current
could prove instructive, in particular for the nature of the DPT in the microcanonical
ensemble. Also, the mean velocity and diffusion coefficient were recently computed in
an active one-dimensional run-and-tumble model [60]; an extension of our results to this
problem could shed light on the nature of rare events in active matter. Last, it might
be worth exploring other generalizations of the model, by including for instance inertial
effects in the Langevin dynamics.
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Appendix A. Gallavotti–Cohen symmetry and mirror symmetry

A.1. Gallavotti–Cohen symmetry

Starting from the expression (61) of the biased evolution operator Wλ, one decomposes

the force as F (x) = −V ′(x) + f with f =
∫ 1

0 dx F (x) and V (x) a periodic function on

[0, 1], and one defines a diagonal operator P̂GC of elements (P̂GC)xx = e−
2
εV (x). Then, one

checks by direct computation that

P̂−1
GC Wλ P̂GC · = ((F (x)− λ′)) ∂x ·+

λ′

ε

(
λ′

2
− F (x)

)

+
1

2
ε∂2

x · = W
†
λ′ · withλ′ = 2f − λ,

(116)

where † indicates the adjoint operator. The lhs of (116) is a similarity transformation

which leaves the spectrum invariant (since e−
2
εV (x) is a periodic function of x the vector

space is also unchanged). Since an operator and its adjoint have the same spectrum
(hence the same maximal eigenvalue), one finds that

ϕε(λ, f) = ϕε(2f − λ, f). (117)

This is an instance of Gallavotti–Cohen-type symmetry for the SCGF of the current
[20, 52–54], shown here using a method closely related to that of Kurchan [54].

A.2. Mirror symmetry to change the sign of f

Performing the mirror symmetry X 7→ 1−X on x in the Langevin equation (1), one
sees that the mirror variable x1(t) = 1− x(t) of x(t) evolves in a potential V 1(x1) ≡
V (1− x1) and a drive −f. Besides, because e−

λ
ε

∫ t
0dt ẋ = e+

λ
ε

∫ t
0dt ẋ1, we have that, for the

SCGF,

ϕε(λ,V , f) = ϕε(−λ,V1,−f), (118)

where we made explicit the dependency in the periodic potential and the drive as an
argument of ϕε. This identity allows one to relate the f > 0 and the f < 0 domains.
It is easy to see that the quantity Vmax is invariant by (V , f) 7→ (V 1,−f) so that, from
equation (11), λ−

c (V1,−f) = 2f + λ−
c (V , f). To show that the expression (105) of the
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Arrhenius function Φ(λ, f) is valid for any sign of f, we finally write, for f < 0:

Φ(λ,V , f)
(118)
= Φ(−λ,V1,−f)

(105)
= − f − λ−

c (V1,−f)− |λ− f |
= f − λ−

c (V , f)− |λ− f |. (119)

Appendix B. Determination of the left eigenvector scaling function UL

In this appendix, we determine the explicit form of the function UL(x) solution of
the extremalization principle (89). To determine kmin

i [defined after (89)], we proceed as
follows. First of all, we shift the x variable, without loss of generality, so that F (x, f) > 0
for 0 < x < xc(f) and F (x, f) < 0 for xc(f) < x < 1. Here xc(f) is the point x < xm

at which F (x, f) cancels and becomes negative for x > xc(f). We then evaluate, for
each function UL,i(x), the difference UL,i(1)− UL,i(0). Since we are in the zero-current
regime, λ satisfies λ−

c (f) 6 λ 6 λ+
c (f). We recall that we consider 0 6 f < fc and we

restrict here our computations to the regime λ−
c (f) 6 λ < f (the complementary regime

f 6 λ < λ+
c (f) is addressed in appendix C). We now distinguish between two cases:

• λ−
c (f) < λ < 0 (see figure 3 of the main text, left): recalling the expressions (15) of

λ±
c (f), one finds

UL,1(1)− UL,1(0) = −λ+ λ−
c (f) < 0 (120)

UL,2(1)− UL,2(0) = −λ+ λ+
c (f) > 0 (121)

UL,3(1)− UL,3(0) = −λ > 0 (122)

UL,4(1)− UL,4(0) = −λ+ 2f > 0. (123)

As a result, one has UL,1(0) > UL,1(1), whereas UL,i(0) < UL,i(1) for i ∈ {2, 3, 4}. As
we now show, this implies that UL(1) = UL,1(1). For all j ∈ {2, 3, 4}, we have

UL(0) = min {UL,1(0),UL,2(0),UL,3(0),UL,4(0)} 6 UL,j(0) < UL,j(1). (124)

Using the periodicity condition UL(0) = UL(1), it follows that UL(1) < UL,j(1) for
all j ∈ {2, 3, 4}. Hence necessarily UL(1) = UL,1(1). Then, the periodicity of UL(x) in
(89) and the fact that UL,j(x) increases between 0 and 1 for j ∈ {2, 3, 4} impose that
the optimal values of the kj’s are determined by UL,j(0) = UL,1(1), for j ∈ {2, 3, 4}
(see figure 3, left). Using UL,1(1) = k1 − λ+ λ−

c (f) and the expressions (85)–(87) one
finds that the optimal values of the constants are

kmin
2 = kmin

3 = kmin
4 = −λ+ λ−

c (f) ≡ kmin. (125)

The equality of these constants implies that UL,3(x) 6 UL,2(x) and UL,3(x) 6 UL,4(x)
on [0, 1] so that the optimization principle (89) only takes place between UL,1(x) and
UL,3(x). The first inequality UL,3(x) 6 UL,2(x) is easily shown as follows:

UL,2(x)− UL,3(x) = −V (x) + fx+

∫ x

0

dy |F (y, f)| =
∫ x

0

dy [F (y, f) + |F (y, f)|] > 0.

(126)
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The second inequality UL,3(x) 6 UL,4(x) can be obtained by using two different
expressions of UL,4(x)− UL,3(x):

UL,4(x)− UL,3(x) =

∫ x

0

dy F (y, f) = f −
∫ 1

x

dy F (y, f), (127)

also using
∫ 1

0
dy F (y, f) = f . When x < xc(f),

∫ x

0
dy F (y, f) > 0 because the inte-

grand is positive. For x > xc(f),
∫ 1

x dy F (y, f) 6 0 because the integrand is negative;

it follows that f −
∫ 1

x
dy F (y, f) > 0 (we recall that f > 0).

Hence, denoting by x∗
L the intersection point between the two functions UL,1(x)

and UL,3(x), we finally obtain:

UL(x) = k1 +

{

λ−
c (f)− λ− λx if 0 < x < x∗

L

−2V (x) + (2f − λ)x− λ+
c (f) if x∗

L < x < 1,
(128)

where x∗
L is the solution of the equation

V (x∗
L) =

λ

2
+ f (x∗

L − 1), (129)

derived by imposing continuity of UL(x) at x = x∗
L. Note that to obtain

equation (128), we used that for x > x∗
L one has x > xc(f), so that F (x, f) < 0 for

x∗
L < x < 1 and, from (84)

UL,1(x) = k1 − V (x) + (f − λ)x−
∫ 1

0

dy |F (y, f)| −
∫ 1

x

dy [−V ′(x) + f ]

= k1 − 2V (x) + (2f − λ)x− λ+
c (f). (130)

• 0 < λ < f (see figure 3 of the main text, right): in this case, UL,1 and UL,3 decrease
their value between x = 0 and x = 1 while UL,2 and UL,4 increase it (as seen from
equations (120)–(123)). Hence equations (120), (121) and (123) remain valid, while
equation (122) is replaced by UL,3(1)− UL,3(0) = −λ < 0. Using the same type of
argument as for the previous case, we find that the overall increasing functions UL,2

and UL,4 should match at x = 0, while the overall decreasing functions UL,1 and
UL,3 should match at x = 1. The condition UL,1(1) = UL,3(1) leads to k3 = λ−

c (f),
whereas the condition UL,2(0) = UL,4(0) simply yields k2 = k4. From the periodicity
condition of UL, one also has UL,3(1) = UL,4(0), which gives k2 = k4 = λ−

c (f)− λ.
One thus obtains:

UL(x) = k1 +

{

−2V (x) + (2f − λ)x+ λ−
c (f)− λ if 0 6 x 6 x†

L

−λx+ λ−
c (f) if x†

L 6 x 6 1,
(131)

where x†
L is determined by imposing UL(x) to be continuous at x = x†

L, i.e.

V (x†
L) = fx†

L − λ

2
. (132)
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For completeness, a similar derivation of the left eigenvector for f < λ < λ+
c (f) and

of the right eigenvector is given in appendix C.

Appendix C. Left and right eigenvectors at leading order in ε in the zero-current
phase

In this appendix we complete the derivation of the left eigenvector presented in
section 5.4 of the main text and in appendix B for f < λ < λ+

c (f), and we show the
functional form of the right eigenvector at dominant order. Finally, we complete our
study by particularizing both solutions to the sinusoidal case F sin(x, f).

C.1. Left eigenvector for f < λ < λ+
c (f )

As we have shown in section 5.4 of the main text, the left eigenvector can be written as

L(x) = e−UL,1(x)/ε +

∫

dk2 e−UL,2(x)/ε +

∫

dk3 e−UL,3(x)/ε +

∫

dk4 e−UL,4(x)/ε, (133)

where the functions UL,i are given by equations (84)–(87) and we have included an
integration over the undetermined constants ki. In the limit ε→ 0, we assume that L(x)
takes the asymptotic form L(x) ≍ e−UL(x)/ε with UL(x) given by

UL(x) = min {UL,1(x),UL,2(x),UL,3(x),UL,4(x)} , (134)

where one has to minimize also over the constants k2, k3 and k4, compatible with the
periodicity constraint UL(0) = UL(1). We are now in position to determine the form
of the left eigenvector. To do so, we will follow the procedure shown in appendix B.
We first shift the x variable, without loss of generality, in such a way that F (x, f) > 0
for 0 < x < xc(f) and F (x, f) < 0 for xc(f) < x < 1. Thus, xc(f) is the point at which
F (xc(f), f) = 0. Since we are interested in the case f < λ < λ+

c (f), we now consider two
different cases:

• 2f < λ < λ+
c (f): first, to fix the value of the constants ki’s, we study the difference

UL,i(1)− UL,i(0). Recalling the expressions (15) of λ±
c (f), one finds

UL,1(1)− UL,1(0) = −λ+ λ−
c (f) < 0 (135)

UL,2(1)− UL,2(0) = −λ+ λ+
c (f) > 0 (136)

UL,3(1)− UL,3(0) = −λ < 0 (137)

UL,4(1)− UL,4(0) = −λ+ 2f < 0. (138)

Consequently, one has UL,2(0) < UL,2(1), whereas UL,i(0) > UL,i(1) for i ∈ {1, 3, 4},
which implies that UL(0) = UL,2(0). Indeed, if we had considered UL(0) = UL,j(0)
for some j ∈ {1, 3, 4}, we would have obtained:

UL(1) = min {UL,1(1),UL,2(1),UL,3(1),UL,4(1)} 6 UL,j(1) < UL,j(0), (139)
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and the function UL(x) would not be a continuous periodic function. Once we have
shown that UL(0) = UL,2(0), we can determine the optimal values of kj ’s by imposing
periodicity of the left eigenvector:

UL,1(1) = UL,2(0) → k̄min
2 = λ−

c (f)− λ (140)

UL,3(1) = UL,2(0) → k̄min
3 = λ−

c (f) (141)

UL,4(1) = UL,2(0) → k̄min
4 = −λ+

c (f). (142)

The values of these constants, together with the form of the solutions (84)–(87)
imply that UL,3(x) 6 UL,1(x) and UL,4(x) 6 UL,1(x), ∀x ∈ [0, 1], so

UL(x) = min {UL,2(x),UL,3(x),UL,4(x)} . (143)

The first inequality can be proved as:

UL,1(x)− UL,3(x) = −V (x) + fx−
∫ x

0

dy|F (y, f)| − λ−
c (f)

= −
∫ 1

x

dy (F (y, f)− |F (y, f)|) > 0, (144)

while the second one is proven as:

UL,1(x)− UL,4(x) = V (x)− fx−
∫ x

0

dy|F (y, f)|+ λ+
c (f)

=

∫ 1

x

dy (F (y, f) + |F (y, f)|) > 0. (145)

As we have shown, UL,2(x) is minimum at x = 0. One can also see that

UL,4(x) < UL,2(x) for x ∈ [x4,2, 1], with x4,2 > xc (146)

UL,3(x) < UL,2(x) for x ∈ [x3,2, 1], with x3,2 < xc (147)

UL,3(x) < UL,4(x) for x ∈ [x3,4, 1], with x3,4 < xc (148)

where x3,2 and x3,4 are the solution of the equations

2 (fx3,2 − V (x3,2))− λ = 0 (149)

2 (fx3,4 − V (x3,4))− 2f = 0. (150)

According to equations (146)–(148), we observe that x3,2 < x4,2. In addition,
equations (149) and (150) show that x3,2 > x3,4. Therefore, the minimization only
takes place between UL,2(x) and UL,3(x), and we obtain:

UL(x) = k1 +

{

−2V (x) + (2f − λ)x+ λ−
c (f)− λ if 0 < x < x†

L

−λx+ λ−
c (f) if x†

L < x < 1

(151)
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with x†
L = x3,2. Note that UL(x) exhibits in this λ-regime the same functional form

as the one found in the regime 0 < λ < f (see equation (92) in the main text and
equation (131) in appendix B).

• f < λ < 2f: in contrast to what happens in the previous case, in this regime both UL,1

and UL,3 are decreasing functions between x = 0 and x = 1 while UL,2 and UL,4 are
increasing functions in such an interval, as we can see from equations (135)–(138).
The problem of deriving UL is then identical to the one already studied in appendix
B for 0 < λ < f, so its form is also given by equation (151).

C.2. Right eigenvector for λ−
c (f ) < λ < λ+

c (f )

Once the left eigenvector is known, we can derive the form of the right eigenvector at
dominant order in ε by using the similarity transformation P̂−1

GC Wλ P̂GC · = W
†
λ′·, found

in appendix A, where P̂GC is the diagonal operator of elements (P̂GC)xx = e−
2
εV (x), Wλ

is the Fokker–Planck operator and λ′ = 2f− λ (see equation (116)). We observe that:

Wλ P̂GC L(λ
′, x) = P̂GC

(

W
†
λ′ L(λ

′, x)
)

= ϕε(λ
′) P̂GC L(λ

′, x), (152)

where for convenience we have made explicit the dependence of the left eigenvector
L(λ, x) on λ. Hence, taking into account the Gallavotti–Cohen symmetry (117), the
right eigenvector is of the form:

R(λ, x) = P̂GC L(2f − λ, x). (153)

At leading order, this relation implies:

UR(λ, x) = 2V (x) + UL(2f − λ, x), (154)

where again for convenience we have made explicit the dependence on λ. We can then
determine the functional form of UR by distinguishing two cases:

• λ−
c (f) < λ < 2f :

UR(x) = k1 +

{

λx+ λ− λ+
c (f) if 0 < x < x∗

R

2V (x)− (2f − λ)x+ λ−
c (f) if x∗

R < x < 1,
(155)

with x∗
R the intersection point between the two branches.

• 2f < λ < λ+
c (f):

UR(x) = k1 +

{

2V (x)− (2f − λ)x+ λ− λ+
c (f) if 0 < x < x†

R

λx− λ+
c (f) if x†

R < x < 1,
(156)

with x†
R again the intersection point between the two branches.

Interestingly, in the non-driven case f = 0 one can easily find that:

x∗
R = 1− x∗

L, x†
R = 1− x†

L. (157)
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C.3. Explicit expression for the left and right eigenvectors for the sinusoidal case

In order to illustrate the different results obtained for the left and right eigenvectors at
dominant order, we now particularize to the case of a sinusoidal force of the form:

Fs(x, f) = sin 2πxf + f , (158)

where xf = x− arcsinf/(2π). Note that we have shifted the x variable in order to sat-
isfy that F s(x, f) > 0 for x ∈ [0, xc] and F s(x, f) < 0 for x ∈ [xc, 1], with xc = arcsin
f/π + 1/2. In this case, UL(x) takes the following form.

• λ−
c (f) < λ < 0:

UL(x) = k1 +







−λ(1 + x) + λ−
c (f) if 0 < x < x∗

L

−cos 2πxf −
√

1− f 2

π
+ (2f − λ)x− λ+

c (f) if x∗
L < x < 1

(159)

where x∗
L > xc is the solution of the equation:

−cos
(
2πx∗

L − arcsin f
)
−

√

1− f 2

π
+ 2fx∗

L + λ− 2f = 0, (160)

and with λ−
c (f) given by equation (16).

• 0 < λ < λ+
c (f)

UL(x) = k1 +







−cos 2πxf −
√

1− f 2

π
+ (2f − λ)x− λ+ λ−

c (f) if 0 < x < x†
L

−λx+ λ−
c (f) if x†

L < x < 1

(161)

where x†
L < xc is the solution of the equation:

−
cos

(

2πx†
L − arcsin f

)

−
√

1− f 2

π
+ 2fx†

L − λ = 0. (162)

On the other hand, the leading contribution to the right eigenvector is:

• λ−
c (f) < λ < 2f :

UR(x) = k1 +







λx+ λ− λ+
c (f) if 0 < x < x∗

R

cos 2πxf −
√

1− f 2

π
− (2f − λ)x+ λ−

c (f) if x∗
R < x < 1

(163)

where x∗
R < xc is the solution of the equation:

cos
(
2πx∗

R − arcsin f
)
−

√

1− f 2

π
+ 2f(1− x∗

R)− λ = 0. (164)
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Figure 8. (Left) The different solutions UL,i(x) with i = 1, . . . , 4 entering into play
in the minimization problem for dominant order of the left, for k1 = 0, f = 0 and
λ = 1

2
for the sine force of equation (4). The purple envelope encodes the final form of

both UL(x). (Right) Comparison between the analytical solution of UL(x) (purple
line) and UR(x) (blue line), see equations (161) and (165), and numerical results
for a discretized system with 128 sites and noise amplitude ε = 2−7 (triangles) and
ε = 2−8 (circles).

• 2f < λ < λ+
c (f)

UR(x) = k1 +







cos 2πxf −
√

1− f 2

π
− (2f − λ)x+ λ− λ+

c (f) if 0 < x < x†
R

λx− λ+
c (f) if x†

R < x < 1

(165)

where x†
R > xc is the solution of the equation:

cos
(

2πx†
R − arcsin f

)

−
√

1− f 2

π
− 2fx†

R + λ = 0. (166)

In figure 8 (left) we show the analytical results of the dominant order of the left eigen-
vector for the non-driven case f = 0. In addition, numerical results obtained by direct
diagonalization of a discretized version of the biased operator (and small values of ε)
are also shown in figure 8 (right), where we observe they are in good agreement with
the asymptotic prediction.

Appendix D. Proof that ζ(z) > ζ(z∗) for z 6= z∗

In this appendix, we provide the technical proof used in section 5.5 of the main text that
ζ(z) > ζ(z∗) for z 6= z∗. We first recall that, giving the form of the effective potential
V λ(x) (see equation (94)), we can deduce that:

V ′
λ(x) > f − λ for xc < x < x∗

L, (167)

V ′
λ(x) < f − λ for 0 6 x < xc or x

∗
L < x < 1. (168)
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We then distinguish two situations:

• 0 < z < z∗: in this case, we can write, defining the domain I1 ≡ [xc,X(z)] ∪ [X(z) +
z, x∗

L],

ζ(z∗)− ζ(z) = (f − λ)(z∗ − z) −
∫ x∗L

xc

dy V ′
λ(y) +

∫ X(z)+z

X(z)

dy V ′
λ(y)

= −
∫

I1

dy
[
V ′
λ(y)− (f − λ)

]
< 0, (169)

using the inequality (167). It follows that ζ(z) > ζ(z∗) for 0 < z < z∗.

• z∗ < z < 1: in this interval of z, we need to study separately the two possibilities
0 6 X(z) < xc and x∗

L < X(z) < 1. We consider first the case 0 6 X(z) < xc. If we
assume that X(z) + z 6 1, we have, defining I2 ≡ [X(z), xc] ∪ [x∗

L,X(z) + z]

ζ(z) − ζ(z∗) = (f − λ)(z − z∗)−
∫ X(z)+z

X(z)

dy V ′
λ(y) +

∫ x∗L

xc

dy V ′
λ(y)

= −
∫

I2

dy
[
V ′
λ(y)− (f − λ)

]
> 0, (170)

using the inequality (168), whence ζ(z) > ζ(z∗).
On the other hand, if X(z) + z > 1, taking into account the periodicity of V λ(x)

we can write

Vλ(X(z) + z) − Vλ(X(z)) = Vλ(X(z) + z − 1)− Vλ(X(z))

=

∫ X(z)+z−1

0

dy V ′
λ(y) +

∫ 1

X(z)

dy V ′
λ(y), (171)

where we note that V λ(0) = V λ(1) = 0. Thus,

ζ(z) − ζ(z∗) = (f − λ)(z − z∗)−
∫ X(z)+z−1

0

dy V ′
λ(y)−

∫ 1

X(z)

dy V ′
λ(y) +

∫ x∗L

xc

dy V ′
λ(y)

= −
∫

I3

dy
[
V ′
λ(y)− (f − λ)

]
> 0, (172)

where we have defined the domain I3 ≡ [0,X(z) + z − 1] ∪ [X(z), xc] ∪ [x∗
L, 1], and

used the inequality (168). So we also find in this case that ζ(z) > ζ(z∗).
Finally, we mention for completeness the case x∗

L < X(z) < 1, although we could
not find an example where this situation occurs. In this case we would have that
1 + x∗

L 6 X(z) + z < X(z) + 1 (see figure 4). Using again the periodicity of V ′
λ(x),

we get after reorganizing the terms

ζ(z) − ζ(z∗) = −
∫

I4

dy
[
V ′
λ(y)− (f − λ)

]
> 0 (173)
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from equation (168), with I4 ≡ [0, xc] ∪ [x∗
L,X(z) + z − 1] ∪ [X(z), 1], leading again

to the result ζ(z) > ζ(z∗).

Thus, we have shown that for all z 6= z∗, ζ(z) > ζ(z∗).

Appendix E. Determination of the Arrhenius scaling in the regime 0 < λ < f

In this appendix we derive the form of the Arrhenius function Φ(λ, f) associated with
the ε→ 0 Arrhenius scaling ∂λϕε(λ, f) ≍ e−Φ(λ,f)/ε for the derivative of the SCGF when
0 < λ < f. This complements the case λ−

c (f) < λ < 0 treated in section 5.5 of the main
text. To do so, we recall the formalism already described in section 5.2, where we show
that the Arrhenius function can be determined by solving the two optimization problems

X(z) = argmax
06x61

[∫ x+z

x

dy V ′
λ(y)

]

(174)

Φ(λ, f) = −2min
06z<1

[ζ(z)], (175)

with ζ(z) defined as

ζ(z) ≡ (f − λ)z −
∫ X(z)+z

X(z)

dy V ′
λ(y). (176)

The effective potential V λ(x) = V (x) + UL(x) is periodic, and in this expression UL(x)
is the leading contribution of the left eigenvector in the limit ε→ 0. Using the expression
(92) of UL(x), we get

Vλ(x) = k1 +

{

−V (x) + (2f − λ)x+ λ−
c (f)− λ if 0 6 x 6 x†

L

V (x)− λx+ λ−
c (f) if x†

L 6 x 6 1,
(177)

where x†
L is determined by imposing V λ(x) to be continuous at x = x†

L, i.e.

V (x†
L) = fx†

L − λ

2
. (178)

It follows that the derivative V ′
λ(x) of the effective potential is given by

V ′
λ(x) =

{

F (x, f) + f − λ if 0 6 x 6 x†
L

−F (x, f) + f − λ if x†
L 6 x 6 1.

(179)

The shape of V ′
λ(x) is illustrated on figure 9 for a sine force field. As seen on figure 9,

V ′
λ(x) satisfies the following inequalities:

V ′
λ(x) < f − λ for x†

L < x < xc, (180)

V ′
λ(x) > f − λ for 0 6 x < x†

L or xc < x < 1. (181)

These inequalities play a key role in what follows.
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Figure 9. Top left: schematic representation of the derivative of the effective poten-
tial, V ′

λ(x) for 0 < λ < f. The three other panels display a sketch of the graphi-
cal argument leading to the key properties of X(z). On each graph, the shaded
area indicates the integral of V ′

λ(x) over the interval [X(z),X(z) + z]. Top right:
case z = z†, where X(z) = xc. Bottom left: case 0 < z < z†, where xc < X(z) < 1.
Bottom right: case z† < z < 1, illustrated here with x†

L 6 X(z) < xc.

Since f− λ > 0 and due to the periodicity of X(z) and V λ(x), the minimum in
equation (175) is reached for z ∈ [0, 1). Following a similar approach to the one presented
in section 5.5 of the main text, we partly use a graphical argument to find a solution
of the optimization problems (174) and (175). To optimize the function ζ(z), we need
to know some properties of the function X(z) that provides the maximum of the area
under the curve V ′

λ(x) between x and x+ z, for 0 6 z < 1. Graphically, one can deduce
from figure 9 the following properties of X(z):

• For z = z† ≡ x†
L + 1− xc, one finds X(z†) = xc.

• For 0 < z < z†, one has either 0 < X(z) < x†
L or xc < X(z) < 1.

• For z† < z < 1, X(z) satisfies x†
L 6 X(z) < xc.

In the following, we then show that ζ(z) > ζ(z†) for all z 6= z†. We distinguish two
situations (see figure 9):

• 0 < z < z†: in this case, one has to study separately the regimes 0 < X(z) < x†
L and

xc < X(z) < 1. For 0 < X(z) < x†
L, we graphically observe that X(z) + z 6 x†

L (see
figure 9). Hence, by using the periodicity of V λ(x) we get
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ζ(z†)− ζ(z) = (f − λ)(z† − z)−
∫ 1

xc

dy V ′
λ(y)−

∫ x†L

0

dy V ′
λ(y) +

∫ X(z)+z

X(z)

dy V ′
λ(y)

= −
∫

I5

dy
[
V ′
λ(y)− (f − λ)

]
< 0, (182)

where we have defined the domain I5 ≡ [0,X(z)] ∪ [X(z) + z, x†
L] ∪ [xc, 1], and used

the inequality (181).

On the other hand, when xc < X(z) < 1, one can deduce that X(z) + z 6 1 + x†
L.

Then, assuming that X(z) + z > 1 and using again the periodicity of V λ(x), we have

ζ(z†)− ζ(z) = (f − λ)(z† − z)−
∫ x†L+1

xc

dy V ′
λ(y) +

∫ X(z)+z

X(z)

dy V ′
λ(y)

= −
∫

I6

dy
[
V ′
λ(y)− (f − λ)

]
< 0, (183)

with I6 ≡ [X(z) + z − 1, x†
L] ∪ [xc,X(z)], and thanks to the inequality (181). Finally,

if we now assume X(z) + z < 1 we can write

ζ(z†)− ζ(z) = (f − λ)(z† − z)−
∫ x†L+1

xc

dy V ′
λ(y) +

∫ X(z)+z

X(z)

dy V ′
λ(y)

= −
∫

I7

dy
[
V ′
λ(y)− (f − λ)

]
< 0, (184)

having defined the domain I7 ≡ [0, x†
L] ∪ [xc,X(z)] ∪ [X(z) + z, 1], and using again

equation (181). We have thus shown that ζ(z) > ζ(z†) for all z in the interval (0, z†);

• z† < z < 1: given the form of V λ(x), we can see that the condition x†
L + 1 6 X(z) +

z < X(z) + 1 is satisfied in this regime (see figure 9). Then, we obtain

ζ(z) − ζ(z†) = (f − λ)(z − z†)−
∫ X(z)+z

X(z)

dy V ′
λ(y) +

∫ x†L+1

xc

dy V ′
λ(y)

= −
∫

I8

dy
[
V ′
λ(y)− (f − λ)

]
> 0, (185)

where I8 ≡ [x†
L,X(z) + z − 1] ∪ [X(z), xc], and using the inequality (180). Hence

ζ(z) > ζ(z†) for z† < z < 1.

Now that we have established that the global minimum of ζ(z) is located at z†, we
determine the Arrhenius function Φ(λ, f). From equation (175) we obtain

Φ(λ, f) = f(x†
L + 1− xc)− λ− V (x†

L) + V (xc). (186)

Using equations (178) and (103), we eventually find

Φ(λ, f) = λ− λ−
c (f) (187)

for 0 < λ < f, as announced in section 5.5 of the main text.
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Appendix F. Derivation of the diffusion coefficient

If the average velocity v̄ of the driven particle in 1D has been known for a long time [31],
it is only relatively recently [56, 57] that the diffusion coefficient D has been computed
for f 6= 0, using exact representations in terms of the moments of a first passage time (see
e.g. [58]). To compute D, we rather adapt the Langevin dynamics method of Derrida
[59], who studied a similar question for a particle hopping on a discrete ring of finite
size. We translate his approach into the language of joint probability densities, which
allows us to make the link with the LDF framework. This approach is also more general
(for instance, it allowed recently for a study of a similar problem in the context of active
particles [60]).

F.1. Settings

We recall that we consider an additive observable A(tf) of the form (2) with h(x(t)) = 0
and g(x(t)) = 1; i.e. A(tf) represents the position counted algebraically

A(tf) =

∫ tf

0

dt ẋ(t) (188)

on a time window of duration tf . The average velocity v and the diffusion coefficient D
are

v̄ = lim
tf→∞

1

tf
〈A(tf)〉, D = lim

tf→∞

1

2tf
〈A(tf)

2〉c. (189)

The time evolution of the joint probability
◦
P (x,A, tf) and of its Laplace transform

P̂ λ(x, tf) =
∫
dA e−

λ
εA

◦
P (x,A, tf) are governed by the operators

◦
W· = −∂x ((F (x)− ε∂A)·) + ∂A

(ε

2
∂A · −F (x)·

)

+
1

2
ε∂2

x· (190)

Wλ· = −∂x ((F (x)− λ)·) + λ

ε

(
λ

2
− F (x)

)

·+1

2
ε∂2

x·, (191)

in the sense that ∂tf
◦
P =

◦
W

◦
P and ∂tfP̂ λ = WλP̂ λ. The two operators are related by the

correspondence ∂A ↔ λ
ε
. This can be easily proved by multiplying the evolution equation

for
◦
P (x,A, tf) by a factor e−

λ
εA, integrating over A (we recall that the domain of A is

the whole real line), and performing an integration by parts. We now introduce

P (x, tf) =

∫

dA
◦
P (x,A, tf) = P̂ λ=0(x, tf) (192)

Q(x, tf) =

∫

dA A
◦
P (x,A, tf) = − ε∂λP̂ λ(x, tf)

∣
∣
∣
λ=0

, (193)

which are periodic functions of x. To determine their evolution equation, one notes that
P (x, tf) is the usual probability density that verifies the Fokker–Planck equation, while
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∂tfQ =WQ− ε∂λWλ| P
λ=0

, implying

∂tP = −∂x

(

FP − ε

2
∂xP

)

(194)

∂tfQ = −∂x

(

FQ− ε

2
∂xQ

)

− ε∂xP + FP , (195)

where for simplicity we do not indicate the arguments of the functions. The introduction
of the two functions P (x, tf) and Q(x, tf), that satisfy the coupled equations (194) and
(195), allows one to determine the mean velocity and the diffusion coefficient by solving

these equations instead of determining the full dependency in A or in λ of
◦
P (x,A, tf) or

of P̂ λ(x, tf).

F.2. Relation between the functions P and Q and the diffusion coefficient D

From (193), the average value of A(tf) reads 〈A(tf)〉 =
∫
dxdA A

◦
P (x,A, tf) =∫

dx Q(x, tf) and from (195) it verifies

∂tf〈A(tf)〉 =
∫

dx F (x) P (x, tf), (196)

where and thereafter
∫
dx denotes

∫ 1

0
dx, and we used the periodicity in x of the functions

F and Q. Similarly, using the periodicity in x we see from (190) that the second moment
of A(tf) verifies

∂tf〈A(tf)
2〉 =

∫

dxdA A2 ∂A

(
ε

2
∂A

◦
P (x,A, tf)− F (x)

◦
P (x,A, tf)

)

=

∫

dxdA

(

ε
◦
P (x,A, tf) + 2F (x)A

◦
P (x,A, tf)

)

= ε+ 2

∫

dx F (x)Q(x, tf). (197)

At large time, one expects that [59]

P (x, tf) →
tf→∞

P0(x), Q(x, tf) =
tf→∞

Q0(x) + tfQ1(x) + o(tf
0), (198)

where corrections to these asymptotic behaviors are exponentially decreasing in time.
For P (x, tf) this follows from the Fokker–Planck evolution, and P 0(x) is the steady state
distribution, normalized to

∫
dxP 0 = 1. For Q(x, tf) we now show that the large-time

behavior (198) is compatible with the evolution equation (195). Inserting (198) into
equations (194)–(195), we indeed obtain:

0 = −∂x

(

FP0 −
ε

2
∂xP0

)

(199)

0 = −∂x

(

FQ1 −
ε

2
∂xQ1

)

(200)
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Q1 = −∂x

(

FQ0 −
ε

2
∂xQ0

)

− ε∂xP0 + FP0. (201)

Since P 0(x) and Q1(x) verify the same linear equation with the same periodic boundary
condition, they are proportional. The normalization of Q1 is fixed by integrating (201)
on [0, 1], which imposes

∫
dxQ1(x) =

∫
dxF (x)P 0(x), hence finally:

Q1(x) = P0(x)

∫

dx′ F (x′) P0(x
′). (202)

We now determine from these large-time asymptotics the behavior of the first and
second moment of A(tf). From the identity 〈A(tf)〉 =

∫
dxQ(x, tf) and equation (198)

we have that at large time

〈A(tf)〉 =
tf→∞

∫

dx Q0(x) + tf

∫

dx Q1(x) + o(tf
0)

(202)
=

∫

dx Q0(x) + tf

∫

dx F (x) P0(x) + o(tf
0), (203)

and thus for the average velocity [see also equation (196) which yields the same result]:

v̄ = lim
tf→∞

1

tf
〈A(tf)〉 = lim

tf→∞
∂tf〈A(tf)〉 =

∫

dx F (x) P0(x). (204)

Similarly, from equations (197) and (198):

∂tf〈A(tf)
2〉 =

tf→∞
ε+ 2

∫

dx F (x) Q0(x) + 2tf

∫

dx F (x) Q1(x) + o(tf
0). (205)

Inserting in this equation the form (202) of Q1(x), one observes that for the diffusion
coefficient D, the term proportional to tf in the expression of the second moment is
canceled by the one coming from the first moment:

D = lim
tf→∞

1

2tf

[
〈A(tf)

2〉 − 〈A(tf)〉2
]
= lim

tf→∞

1

2
∂tf

[
〈A(tf)

2〉 − 〈A(tf)〉2
]

= lim
tf→∞

[
1

2
∂tf〈A(tf)

2〉 − 〈A(tf)〉 ∂tf〈A(tf)〉
]

(206)

D
(203)
=

ε

2
+

∫

dx F (x) Q0(x)−
(∫

dx Q0(x)

)(∫

dx F (x) P0(x)

)

. (207)

We remark that to obtain this expression it was essential to determine the subleading
contribution ∝ tf

0 of 〈A(tf)〉 in (203). We see from the expression (207) that the diffusion
coefficient is fully determined by the knowledge of the functions P 0 and Q0, solutions of
the equations (199) and (201), which we now solve at equilibrium (f = 0, section F.3)
and out of equilibrium (f 6= 0, sections F.5 and F.6).

F.3. Diffusion coefficient for an equilibrium (reversible) dynamics

If the force F (x) derives from a periodic potential V (x) as F (x) = −V ′(x), the steady
state is the Boltzmann distribution at temperature ε/2 that verifies FP0 =

ε
2
∂xP0 and

https://doi.org/10.1088/1742-5468/abb235 48

https://doi.org/10.1088/1742-5468/abb235


J
.
S
ta
t.
M
e
c
h
.
(2
0
2
0
)
0
9
3
2
0
8

Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

reads:

P0(x) =
1

Z
e−

2
εV (x), Z =

∫

dx e−
2
εV (x). (208)

From (202), one has Q1(x) = 0 (as expected, at equilibrium, the average velocity v̄ is
zero, see equation (204)). To determine the diffusion coefficient from (207), there remains
to solve the equation (201), which can be rewritten

0 = −∂x

(

FQ0 −
ε

2
∂xQ0 +

ε

2
P0

)

. (209)

Thus there is a constant C1 such that

FQ0 = C1 +
ε

2
∂xQ0 −

ε

2
P0. (210)

Inserting this result into (207), one finds by periodicity:

D = C1 (211)

(the term ε in equation (207) is indeed canceled). To determine the constant C1 without

directly solving for Q0(x), one sets Q0(x) = R0(x)e
− 2

εV (x) with R0(x) a periodic function
on [0, 1]. From (210) one finds:

∂xR0 =
1

Z
− 2

ε
C1 e

2
εV (x) (212)

and the expression of C1 is finally determined by integrating (212) on [0, 1]:

C1 =
ε

2

1

Z

1
∫
dx e

2
εV (x)

. (213)

The final expression of the equilibrium diffusion coefficient is determined from (211) and
from the expression of the partition function Z:

D =
ε

2

1
(∫

dx e
2
εV (x)

)(∫
dx e−

2
εV (x)

) . (214)

This result, first obtained in [61], can also be found using the fluctuation–dissipation
relation (applying for instance the results of section 11.3.1 in Risken’s book [2]), valid
at equilibrium when the force derives from a potential.

F.4. Average velocity v̄ in the case of a generic force

One writes the periodic force as deriving from a non-periodic tilted potential U(x) such
that
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F (x) = −U ′(x), U(1)− U(0) = −
∫

dx F (x) = −f , (215)

where f is the tilt of the potential. We also decompose U(x) = V (x)− fx where V (x) is
a periodic function of x on [0, 1]. Then the steady state P 0(x) can be written as follows,
using periodicity [2, 26]:

P0(x) =
1

Zf
e−

2
εU(x)

(∫ x

0

dy e
2
εU(y) + e

2
ε f

∫ 1

x

dy e
2
εU(y)

)

, (216)

where Zf is the normalization constant ensuring
∫
dxP 0(x) = 1. From (204), the average

current v̄ is [2, 26]:

v̄ =

∫

dx F (x) P0(x)

=
ε

2

1

Zf

∫

dx

[

∂x

(

e−
2
εU(x)

)(∫ x

0

dy e
2
εU(y) + e

2
ε f

∫ 1

x

dy e
2
εU(y)

)]

(217)

v̄ =
ε

2

1

Zf

[

e
2
ε f − 1

]

(218)

where we integrated by parts and used the definition (215) of the tilt.
Such expressions of the steady state (216) and of the average velocity (218) are

interesting because they only involve integrals on [0, 1], but their use is limited because
the expression of the normalization constant Zf is rather cumbersome. In the spirit of
[50, 51], it is also interesting to use a different representation of the steady state P 0 and
of the average velocity v̄, valid for f > 0,7 that provides a clearer physical picture and
proves useful to determine the diffusion coefficient D. We write

P0(x) =
1

Z
e−

2
εU(x)P̃ 0(x) (219)

P̃ 0(x) =

∫ +∞

0

dy e
2
εU(y+x) =

∫ +∞

x

dy e
2
εU(y), (220)

where the integrals converge since we have assumed f > 0, and Z is determined by impos-
ing the normalization

∫
dxP 0(x) = 1. We first notice that this probability is periodic,

as required, since

P0(x+ 1)

P0(x)
=

e−
2
ε [V (x)−(x+1)f ]

e−
2
ε [V (x)−xf ]

∫ +∞
0

dy e
2
ε [V (y+x)−(y+x+1)f ]

∫ +∞
0

dy e
2
ε [V (y+x)−(y+x)f ]

= e
2
ε f e−

2
ε f = 1. (221)

Thanks to this periodicity, the corresponding average velocity, given by equation (204),
reads

7The case f < 0 is obtained by mirror symmetry x 7→ 1− x, see appendix A.
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v̄ = −
∫

dx U ′(x)P0(x) =
ε

2

1

Z

∫

dx ∂x

(

e−
2
εU(x)

)

P̃ 0(x)

=
ε

2

{

[P0(x)]
1
0 − 1

Z
e−

2
εU(x)P̃ ′

0(x)

}

=
ε

2

1

Z
, (222)

where we used that, from equation (220), P̃ ′
0(x) = −e

2
εU(x). Last, to check that the

expression (219) and (220) of the steady state is indeed the periodic solution of the
Fokker–Planck equation (199), one computes

−ε

2
∂xP0(x) = U ′(x)P0(x)−

ε

2

1

Z
e−

2
εU(x)P̃ ′

0(x)
(222)
= U ′(x) P0(x) + v̄, (223)

which shows that − ε
2
∂xP0(x) + F (x) P0(x) is a constant (equal to the average cur-

rent), and by differentiation w.r.t. x that indeed P 0(x) is the periodic solution of
equation (199).

The interest of the representation (219) and (220) of the steady state (a periodic
method of variation of constants) is that the constant Z and thus the average velocity
(222) take the simple form

Z =

∫ +∞

0

dy

∫ 1

0

dx e
2
ε [U(y+x)−U(x)] (224)

v̄ =
ε

2

1
∫ +∞
0

dy
∫ 1

0
dx e

2
ε [U(y+x)−U(x)]

, (225)

that we used in the main text (equations (67) and (68)) in order to determine the SCGF
of the current in the low-temperature limit. Decomposing the first integral of (225) as a
union of the intervals [n,n+ 1] for n ∈ N and summing over n, one recovers the previous
expression (218) of the velocity, as easily checked.

F.5. Diffusion coefficient D in the case of a generic force

We now wish to determine the expression of D from equation (207). As we remarked,
the steady-state ‘constant of motion’ implied by equation (199) is precisely the average
current:

F (x) P0(x)−
ε

2
∂xP0(x) = v̄. (226)

(This can also be verified from equations (216) and (218).) The expression of Q1(x)
inferred from (202) is thus:

Q1(x) = v̄ P0(x). (227)

https://doi.org/10.1088/1742-5468/abb235 51

https://doi.org/10.1088/1742-5468/abb235


J
.
S
ta
t.
M
e
c
h
.
(2
0
2
0
)
0
9
3
2
0
8

Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

It thus remains to determine properties of the function Q0, by solving equation (201),
which we rewrite as

v̄ P0 = −∂x

(

FQ0 −
ε

2
∂xQ0 +

ε

2
P0

)

−ε

2
∂xP0 + FP0

︸ ︷︷ ︸

(226)
= v̄

. (228)

This implies that there exists a constant C2 such that

FQ0 −
ε

2
∂xQ0 = C2 −

ε

2
P0 + v̄ (x− Π0), with Π0(x) =

∫ x

0

dx′ P0(x
′). (229)

Integrating this identity on [0, 1] and using the periodicity of Q0 one obtains:

∫

dx F (x)Q0(x) = C2 −
ε

2
+ v̄

〈

x− 1

2

〉

0

, with 〈. . .〉0 ≡
∫

dx . . . P0(x).

(230)

We used the equality
∫
dxΠ0(x) = 〈1− x〉0, obtained by integration by part. Inserting

(217) and (230) in the expression (207) of the diffusion coefficient, one obtains:

D = C2 + v̄

〈

x− 1

2

〉

0

− v̄

∫

dx Q0(x). (231)

In contrast to the equilibrium case, one now needs to solve for Q0(x) in order to
evaluate the last missing integral,

∫
dxQ0(x). To do so, we define a periodic function

R(x) which is the rhs of the equation (229)

R(x) = C2 −
ε

2
P0(x) + v̄ (x−Π0(x)), (232)

so that Q0(x) verifies the equation

FQ0 −
ε

2
∂xQ0 = R. (233)

We now show that similarly to the expression (219) and (220) of P 0, the periodic solution
of (233) reads

Q0(x) =
2

ε
e−

2
εU(x)Q̃0(x) (234)

Q̃0(x) =

∫ +∞

0

dy e
2
εU(y+x)R(y + x) =

∫ +∞

x

dy e
2
εU(y)R(y). (235)

The integrals converge since R is periodic and bounded and we assumed f > 0. A com-
putation analogous to equation (221) shows that the expression (234) and (235) of Q0(x)

is a continuous periodic function. Besides, since Q̃′
0(x) = −e

2
εU(x)R(x), one has

−ε

2
∂xQ0(x) = U ′(x) P0(x)− e−

2
εU(x)Q̃′

0(x) = −F (x) P0(x) +R(x), (236)
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which shows that indeed the expression (234) and (235) of Q0 is the periodic solution
to equation (233). Also, from the expression (225) of v̄, we remark that the constant
C2 in the expression (231) of D is canceled by the contribution ∝ C2 coming from R(t)
in v̄

∫
dx Q0(x). Hence, C2 can safely be set to 0. Collecting the previous results, the

expression of the diffusion coefficient (valid for f > 0) is:

D = v̄

〈

x− 1

2

〉

0

− 1

Z

∫ 1

0

dx

∫ +∞

x

dy e
2
ε [U(y)−U(x)]

{

v̄ (y − Π0(y))−
ε

2
P0(y)

}

. (237)

F.6. Simplification of the expression of the diffusion coefficient D

The obtained expression (237) is rather cumbersome. To simplify it we introduce the
function

Υ(x) =

∫ +∞

x

dw e
2
εU(w), (238)

which, as previously, is well defined for f > 0. It satisfies Υ′(x) = −e
2
εU(x) and P0(x) =

1
Z
e−

2
εU(x)Υ(x).We decompose D = D0 +D1 +D2 with

D0 = v̄

〈

x− 1

2

〉

0

(239)

D1 = − v̄

Z

∫ 1

0

dx

∫ +∞

x

dy e
2
ε [U(y)−U(x)] (y −Π0(y)) (240)

D2 =
ε

2

1

Z

∫ 1

0

dx

∫ +∞

x

dy e
2
ε [U(y)−U(x)] P0(y). (241)

We have that

D2 =
v̄

Z

∫ 1

0

dx

∫ +∞

x

dy e−
2
εU(x) Υ(y) (242)

and, integrating by parts:

D1 =
v̄

Z

∫ 1

0

dx e−
2
εU(x)

∫ +∞

x

dy Υ′(y)

∫ y

0

dz (1− P0(z))

=
v̄

Z

∫ 1

0

dx e−
2
εU(x)

{[

Υ(y)

∫ y

0

dz (1− P0(z))

]y=+∞

y=x

−
∫ +∞

x

dy Υ(y) (1− P0(y))

}

= − v̄

Z

∫ 1

0

dx

{

e−
2
εU(x)Υ(x)

∫ x

0

dz (1− P0(z))

+ e−
2
εU(x)

∫ +∞

x

dy Υ(y) (1− P0(y))

}

, (243)
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so that, by compensation with the expression (242) of D2:

D1+D2 = − v̄

Z

∫ 1

0

dx

{

e−
2
εU(x)Υ(x)

∫ x

0

dz (1−P0(z))− e−
2
εU(x)

∫ +∞

x

dy Υ(y)P0(y)

}

.

(244)

Then, using e−
2
εU(x)Υ(x) = ZP0(x), the first integral in (244) reads

− v̄

Z

∫ 1

0

dx e−
2
εU(x)Υ(x)

∫ x

0

dz (1− P0(z)) = −v̄ 〈x〉0 + v̄

∫ 1

0

dx Π′
0(x)Π0(x)

︸ ︷︷ ︸

= 1
2 [Π0(x)2]

1
0=

1
2

= −v̄

〈

x− 1

2

〉

0

, (245)

which compensates exactly with D0 (see equation (239)). Finally, from equation (244)
and from the expression (238) of the function Υ, the resulting expression of the diffusion
coefficient, valid for f > 0, is:

D =
v̄

Z

∫ 1

0

dx e−
2
εU(x)

∫ +∞

x

dy Υ(y) P0(y)

= v̄

∫ 1

0

dx

∫ +∞

x

dy e−
2
ε [U(x)−U(y)] P0(y)

2. (246)

This result is valid for any ε > 0. Although these expressions are simpler than
equation (237), we could not find a more direct derivation of them within our approach.
They are equivalent to the ones obtained in [56, 57].

F.7. Low-temperature asymptotics for v̄ and D in the pinned regime

We have seen in section 5.6 that as ε→ 0 in the pinned regime 0 < f < fc, all scaled

cumulants of A(tf) scale logarithmically in the same way, as ≍ eλ
−
c (f)/ε, corresponding

to a Poissonian regime of fluctuations in some range of current fluctuations. We also
discussed that finite-temperature corrections to the behavior of the cumulants encode
the DPT observed in the Arrhenius function Φ(λ, f). The exact expressions (225) of v̄
and (246) of D, valid for all ε > 0, are different, showing that at finite ε the current
fluctuations are not Poissonian. In order to illustrate these aspects of the distribution
of A(tf), we now analyze the small-ε behavior of v̄ and D.

For 0 < f < fc, using a ε→ 0 saddle-point evaluation of the integrals in the expres-
sion (225) of v̄ in order to estimate its exponential and sub-exponential behavior, one
finds:

v̄ ≈
ε→0

1

2π

√

|U ′′
maxU

′′
min| e−

2
ε (Umax−Umin), for 0 < f < fc. (247)

Here Umin is the minimum value of the tilted potential U(x) for x ∈ [0, 1] and Umax

the value of the local maximum of U(x) that is located immediately to its right (and
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similarly for the second derivatives). One should beware that the ε→ 0 limit does not
commute with the f→ 0 limit (for f = 0, one has v̄ = 0), nor with the f ↑ fc limit. This
is because at f > 0, the ε→ 0 asymptotics means that the barrier Umax − Umin is (i)
strictly smaller than the barrier to the left direction (but the barriers to the left and
the right are equal for f = 0); and (ii) much larger than ε (but the barrier is equal to 0
at f = fc).

For the diffusion coefficient, one uses the expression (246) valid for f > 0 and the
form (219) and (220) of the steady state P 0 to write that

D =
v̄

Z2

∫ 1

0

dx

∫ +∞

x

dy e−
2
ε [U(x)−U(y)]

{

e−
2
εU(y)

∫ +∞

y

dz e
2
εU(z)

}2

(222)
=

(
2

ε

)2

v̄3
∫ 1

0

dx

∫ +∞

x

dy

∫ +∞

y

dz

∫ +∞

y

dz′ e−
2
ε [U(x)+U(y)−U(z)−U(z′)]. (248)

≍
ε→0

v̄3 exp

{
2

ε
max [U(z) + U(z′)− U(x)− U(y)]

}

(249)

where the maximum is evaluated for x ∈ [0, 1] and y, z, z′ ∈ R with the constraint
x 6 y 6 z, z′. It is reached for x = y = xmin and z = z′ = xmax and takes the value
2(Umax − Umin). To conclude, using equation (247), the logarithmic equivalents of v̄
and D are the same:

v̄ ≍
ε→0

e−
2
ε (Umax−Umin), for 0 < f < fc (250)

D ≍
ε→0

e−
2
ε (Umax−Umin), for 0 < f < fc, (251)

which illustrates the Poisson structure in the distribution of A(t) at small noise, that
we determined in the main text. The prefactors, obtained by a saddle-point analysis of
equations (225) and (248), are also the same:

v̄ ≈
ε→0

1

2π

√

|U ′′
maxU

′′
min| e−

2
ε (Umax−Umin), for 0 < f < fc (252)

D ≈
ε→0

1

2π

√

|U ′′
maxU

′′
min| e−

2
ε (Umax−Umin), for 0 < f < fc, (253)

illustrating that to observe a departure from the purely Poissonian behavior, higher-
order corrections in powers of ε are needed.
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[25] Popkov V, Schütz G M and Simon D 2010 ASEP on a ring conditioned on enhanced flux J. Stat. Mech. P10007
[26] Proesmans K and Derrida B 2019 Large-deviation theory for a Brownian particle on a ring: a WKB approach

J. Stat. Mech. 023201
[27] Derrida B and Sadhu T 2019 Large deviations conditioned on large deviations I: Markov chain and Langevin

equation J. Stat. Phys. 176 773
[28] Nyawo P T and Touchette H 2016 Large deviations of the current for driven periodic diffusions Phys. Rev. E 94

032101
[29] Gomez-Solano J R, Petrosyan A, Ciliberto S, Chetrite R and Gawȩdzki K 2009 Experimental verification of a
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