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Abstract.  We introduce and study a class of particle hopping models 
consisting of a single box coupled to a pair of reservoirs. Despite being zero-
dimensional, in the limit of large particle number and long observation time, 
the current and activity large deviation functions of the models can exhibit 
symmetry-breaking dynamical phase transitions. We characterize exactly the 
critical properties of these transitions, showing them to be direct analogues of 
previously studied phase transitions in extended systems. The simplicity of the 
model allows us to study features of dynamical phase transitions which are not 
readily accessible for extended systems. In particular, we quantify finite-size and 
finite-time scaling exponents using both numerical and theoretical arguments. 
Importantly, we identify an analogue of critical slowing near symmetry breaking 
transitions and suggest how this can be used in the numerical studies of large 
deviations. All of our results are also expected to hold for extended systems.
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1.  Introduction

In recent years, there has been much interest in large deviation functions (LDFs, see 
[1] for a review) encoding the probability of atypical fluctuations in time-averaged 
observables of many-body quantum [2–10] and classical stochastic systems [11–36]. Of 
special interest have been LDFs of the time-averaged current and activity, the latter 
quantifying the mean frequency of dynamical events during a given observation period. 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Since both quantities are determined by the full history rather than the instantaneous 
state, even in thermal equilibrium, their LDFs can exhibit unexpected behaviors. In 
particular, even if the steady-state probability distribution of instantaneous quanti-
ties, such as the density profile of particles in the system, contains no singularities, 
the LDF of time-averaged quantities can be singular, giving rise to a dynamical phase 
transition (DPT). This happens since the dominant history leading to a given atypical 
time-averaged quantity can change in an abrupt way as the value of the time-averaged 
quantity is varied. Like equilibrium phase transitions, DPTs can occur as first, second, 
or even higher-order singularities of LDFs. To date, DPTs have been found in a host of 
systems encompassing driven diusive systems [37–53], kinetically constrained models 
[54–58], interface growth [59–62], and active particles [63, 64].

Most of the DPTs have been obtained in many-body extended systems5 whose sizes 
are taken to be infinite. It is natural to ask how much of the observed phenomenol-
ogy is related to the fact that these systems are extended. In this paper, we address 
this question by introducing a class of models consisting of a one-site (or single-box) 
system connected to a pair of reservoirs and studying their current and activity large 
deviations. Instead of taking a limit where the system size goes to infinity, we utilize a 
recently introduced formalism [70] where N, the maximum number of particles in the 
box, is arbitrarily large. Applying the saddle-point method, it is shown that even such 
models can exhibit DPTs induced by the breaking of the particle-hole symmetry, which 
was theoretically predicted [49, 50] and numerically observed [71] in extended systems, 
with exactly the same critical exponents.

Importantly, the reduced dimensionality of a single-box model allows us to eas-
ily predict and confirm the eects of finite time, T, and finite size, N, on the critical 
phenomena near a symmetry-breaking DPT for arbitrary hopping rates. In previous 
studies of extended systems, finite-size scaling theories have been proposed for first 
and second-order DPTs of an exclusion process [42, 53, 72] as well as for kinetically 
constrained models [56–58, 73]. Much less is known about finite-time eects6, with only 
a few results concerning diusive [74] and super-diusive [75] relaxations of density 
fluctuations far away from any DPTs. For symmetry-breaking DPTs in extended sys-
tems with open boundaries, [50] used heuristic arguments to predict finite-time and 
finite-size scaling exponents. These, however, have not been verified. In this paper, 
based on studies of finite-T saddle-point trajectories and an exact diagonalization of 
the transition matrix at finite N, we identify both the finite-T and finite-N scaling 
exponents and propose a scaling form encompassing both. In particular, we are able 
to characterize in detail the dierent finite-T scaling regimes. We find a regime where 
the initial condition strongly influence the LDF and, as one might expect, a late regime 
where the initial conditions do not play any role. The results show that, near a symme-
try-breaking DPT, a phenomenon analogous to critical slowing appears. Namely, the 
relaxation of the system from a given initial condition becomes anomalously slow as the 
DPT is approached. This might be used to locate such DPTs in numerics [76–84] and 
possibly experiments by data collapse.

5 See [55, 65–69] for exceptions.
6 As we will see, the LDF in the infinite-time limit is given by the maximum eigenvalue of a well-defined operator, 
while the finite-time behavior of the LDF involves more eigenvalues.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The paper is organized as follows. In section 2, we introduce the single-box models 
and present a path-integral representation of their statistics. In section 3, we discuss 
how the theory of symmetry-breaking DPTs and the associated critical behaviors can 
be derived using a saddle-point method in the joint limit T → ∞ and N → ∞. In sec-
tion 4, based on both numerical diagonalization and theoretical arguments, we study 
finite-size and finite-time eects, allowing us to characterize the critical features of the 
DPT. Finally, we conclude in section 5.

2. Single-box models with particle-hole symmetry

In this section, we describe the general setup considered in our study. First, we intro-
duce a general class of single-box models. Focusing on a subclass of such systems which 
obey a particle-hole symmetry, we formulate their coarse-grained descriptions for large 
N. This allows us to study their DPTs using saddle-point asymptotics.

2.1. General single-box models

We consider a single box, whose state is characterized by the number of particles n 
inside. The box can hold at most N particles (0 � n � N ) and is coupled to a pair of 
particle reservoirs. The left (right) reservoir is described as a box with a fixed number 
of particles n̄a (n̄b). The particles are exchanged with the left reservoir according to

n
WR(n̄a,n)−−−−−−−⇀↽−−−−−−−
WL(n̄a,n+1)

n+ 1,� (1)

where WR(n1,n2) (WL(n1,n2)) denotes the rate of hopping from the left (right) box to 
the right (left), see figure 1. Similarly, the exchange with the right reservoir is described 
by

n
WL(n,n̄b)−−−−−−−⇀↽−−−−−−−

WR(n+1,n̄b)
n+ 1.� (2)

We are interested in the statistics of current and activity during a time interval 
t ∈ [0,T ]. Defining the number MR(T ) (ML(T )) of rightward (leftward) hops across any 
of the two bonds connecting the reservoirs to the system, we have the time-averaged 
current per bond

JT ≡ 1

2T
[MR(T )−ML(T )]� (3)

and the time-averaged activity per bond

KT ≡ 1

2T
[MR(T ) +ML(T )] .� (4)

The joint scaled cumulant generating function (CGF) Ψ(λ,µ) for JT and KT is defined 
as

Ψ(λ,µ) ≡ lim
T→∞

1

T
ln
〈
eT (λJT+µKT )

〉
,� (5)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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where 〈·〉 denotes the average over histories. Using standard methods, described in 
appendix A, one can show that

eTΨ(λ,µ) =
〈
eT (λJT+µKT )

〉
=

∫
D[n, n̂] e−

∫ T
0 dt [n̂ṅ−Hλ,µ(n,n̂)],� (6)

with an eective Hamiltonian

Hλ,µ(n, n̂) ≡ WR(n̄a,n)
[
en̂+(µ+λ)/2 − 1

]
+WL(n̄a,n)

[
e−n̂+(µ−λ)/2 − 1

]

+WL(n, n̄b)
[
en̂+(µ−λ)/2 − 1

]
+WR(n, n̄b)

[
e−n̂+(µ+λ)/2 − 1

]
.

� (7)
Here n̂ is a momentum (integrated along the imaginary axis) conjugate to n, and the 
Lagrange multiplier λ (µ) is a counting variable conjugate to JT (KT).

We are mainly interested in models presenting second-order singularities in the 
scaled CGF. As we show below, these naturally occur for a class of models whose 
dynamics obey a particle-hole symmetry. For simplicity, we first consider the case 

where the two reservoirs have equal densities n̄a = n̄b =
N
2
, which captures all the 

essential physics of the DPT. The generalization to the boundary-driven case n̄a �= n̄b 
is discussed in appendix B.

2.2. Particle-hole symmetric models

The particle-hole symmetry is implemented by choosing a dynamics which is invariant 
under the combined operation of the particle-hole exchange and the exchange of the 
reservoir locations. This is achieved by imposing

WR(n1,n2) = WR(N − n2,N − n1), WL(n1,n2) = WL(N − n2,N − n1).
� (8)

Figure 1.  Illustration of a generic single-box model. The hopping rates are 
determined by n, the number of particles in the box, and n̄a (n̄b), the number of 
particles imposed by the left (right) reservoir. In the example shown here, the box 
holds n  =  8 particles, while it can store at most N  =  16 particles.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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As stated above, we focus on the case where the reservoir densities are N/2. We also 
assume that each hopping across a bond obeys local detailed balance, so that the rate of 
a rightward hop and that of a leftward one dier only due to a global field (bulk drive):

WR(n1,n2)

WL(n2,n1)
= ν.� (9)

Here ν > 0 controls the strength of the field. To simplify the notation, we write the rate 
of a rightward hop from the left reservoir into the box as

WR

(
N

2
,n

)
= αV (n).� (10)

Then, using equations (8)–(10), the four hopping rates in equations (1) and (2) can be 
written as

WR

(
N

2
,n

)
= αV (n), WL

(
N

2
,n

)
=

α

ν
V (N − n),

WL

(
n,

N

2

)
=

α

ν
V (n), WR

(
n,

N

2

)
= αV (N − n).

�
(11)

We note that, to impose the bound 0 � n � N , the hopping rates are further con-
strained by

V (N) = 0.� (12)
With these choices, the Hamiltonian in equation (7) takes the form

Hλ,µ(n, n̂) = α

[
ν + 1

ν

(
en̂+µ/2 cosh

λ

2
− 1

)
+

ν − 1

ν
en̂+µ/2 sinh

λ

2

]
V (n)

+ α

[
ν + 1

ν

(
e−n̂+µ/2 cosh

λ

2
− 1

)
+

ν − 1

ν
e−n̂+µ/2 sinh

λ

2

]
V (N − n),

� (13)
which can be rewritten as

Hλ,µ(n, n̂) = γ
[(
zen̂ − 1

)
V (n) +

(
ze−n̂ − 1

)
V (N − n)

]
.� (14)

Here we used definitions γ ≡ (ν + 1)/ν and

z(λ,µ) ≡
eµ/2 cosh

(
λ
2
+ tanh−1 ν−1

ν+1

)

cosh
(
tanh−1 ν−1

ν+1

) .� (15)

We note that the unbiased state λ = µ = 0 corresponds to z  =  1. From equations (6), 
(14), and (15), one observes that the scaled CGF Ψ depends on λ and µ only through 
z. We also note that z satisfies

z(λ,µ) = z

(
−λ− 4 tanh−1 ν − 1

ν + 1
,µ

)
,� (16)

which reflects the Gallavotti–Cohen symmetry [85, 86].
So far we have described the microscopic dynamics in the sense that the discrete 

nature of the particles is maintained. We next formulate a coarse-grained description 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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of the dynamics for large N, which makes the models easier to study by changing to 
continuous state variables and facilitating saddle-point techniques.

2.3. Coarse-grained description for large N

To take the large-N limit, it is useful to define the rescaled fields (ρ, ρ̂) and introduce 
the rescaled time t and observables

n → Nρ, n̂ → ρ̂, V (n) → Nkv(ρ),

t → N1−kt, JT → NkJT , KT → NkKT ,
� (17)

where k is a positive number determined by the structure of the hopping rates (see 
below for examples). We note that the constraint (12) can now be written as

v(1) = 0,� (18)
which ensures 0 � ρ � 1. Using these in equations (6) and (14), we obtain a rescaled 
path-integral representation for the scaled CGF ψ(z(λ,µ)) = N−kΨ(λ,µ), namely

eNTψ(z) =
〈
eNT (λJT+µKT )

〉
=

∫
D[ρ, ρ̂] e−NSz [ρ,ρ̂]

� (19)

with the action

Sz[ρ, ρ̂] ≡
∫ T

0

dt [ρ̂ρ̇−Hz(ρ, ρ̂)] ,� (20)

where the Hamiltonian is given by

Hz(ρ, ρ̂) ≡ γ
[(
zeρ̂ − 1

)
v(ρ) +

(
ze−ρ̂ − 1

)
v(1− ρ)

]
.

� (21)
The particle-hole symmetry of the system is reflected in the symmetry of the action

Sz[ρ, ρ̂] = Sz[1− ρ,−ρ̂].� (22)
For N � 1, from equations (19)–(21), we find that ψ can be obtained by a saddle-point 
asymptotics

ψ(z) = − inf
ρ,ρ̂

lim
T→∞

1

T
Sz[ρ, ρ̂],� (23)

where the minimum action is achieved by real-valued ρ and ρ̂ obeying the Hamiltonian 
dynamics

ρ̇ =
∂Hz

∂ρ̂
= γz

[
v(ρ) eρ̂ − v(1− ρ) e−ρ̂

]
,� (24)

˙̂ρ = −∂Hz

∂ρ
= −γ

[
v′(ρ) (z eρ̂ − 1)− v′(1− ρ) (z e−ρ̂ − 1)

]
.� (25)

Although ψ(z) is defined only in the T → ∞ limit, the above saddle-point trajectories 
still describe the histories dominantly contributing to the finite-time scaled CGF

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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ψT (z) = − inf
ρ,ρ̂

1

T
Sz[ρ, ρ̂]� (26)

whenever N is large.

3. Symmetry-breaking dynamical phase transitions

We now calculate the scaled CGF ψ of the single-box model and show that, with a 
proper choice of rates, the model displays the same DPTs exhibited by extended sys-
tems. In particular, we are interested in the DPTs between a particle-hole symmetric 
phase and one where the symmetry is broken.

3.1. Particle-hole symmetric phase

It is easy to see that, for any λ and µ,

ρ = 1/2, ρ̂ = 0� (27)
yields a time-independent, particle-hole symmetric solution for equations (24) and (25). 
If this symmetric saddle-point profile truly minimizes the action, equation (23) implies

ψ(z) = ψsym(z) ≡ − lim
T→∞

1

T
Sz[ρ(t) = 1/2, ρ̂(t) = 0] = 2γv̄(z − 1).� (28)

Note that from here on we use the shorthand notations

v̄ = v(1/2), v̄′ = v′(1/2), v̄′′ = v′′(1/2), v̄(n) = v(n)(1/2) for n � 3.� (29)

In appendix C, we discuss the condition for the symmetric solution in equation (27) to 
be the dominant profile in the unbiased state z  =  1. We find that v(ρ) being a mono-
tonically decreasing function of ρ is a sucient condition. We also note that the mean 
current and activity are obtained from the above relations as

〈J〉 = ∂λψ(λ,µ)|λ=µ=0 = γv̄
ν − 1

ν + 1
, 〈K〉 = ∂µψ(λ,µ)|λ=µ=0 = γv̄.� (30)

A second-order DPT occurs when this symmetric solution becomes unstable with 
respect to small fluctuations as the value of z is changed. To this end, in the next sec-
tion we study the Gaussian fluctuations of the action.

3.2. Stability analysis

The fluctuations of the action around the symmetric saddle-point solution (27),

Sz[1/2 + ϕ(t), iϕ̂(t)] = Sz[1/2, 0] + δ2Sz[ϕ, ϕ̂] +O
(
ϕ3, ϕ̂ϕ2, ϕ̂2ϕ, ϕ̂3

)
,� (31)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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are described by the Gaussian action

δ2Sz[ϕ, ϕ̂] =

∫
dt

[
iϕ̂ ∂tϕ+ γzv̄ϕ̂2 − 2iγzv̄′ϕ̂ϕ+ γ(1− z)v̄′′ϕ2

]

= γ

∫
dω

2π

[
ϕω ϕ̂ω

] [2(1− z)v̄′′ −ω+4izv̄′

2
ω−4izv̄′

2
2zv̄

]

︸ ︷︷ ︸
M

[
ϕ−ω

ϕ̂−ω

]
,� (32)

where ϕω and ϕ̂ω are Fourier transforms of ϕ and ϕ̂ defined as

ϕω ≡
∫

dt ϕ(t) e−iωt, ϕ̂ω ≡
∫

dt ϕ̂(t) e−iωt.� (33)

The eigenvalues of M for the typical state z  =  1 are given by v̄ ±
√

v̄2 − 4(v̄′)2 − ω2

4
> 0, 

so that the symmetric solution is always stable in this case. As z moves away from 1, 
the profile becomes unstable if

detM = 4[(v̄′)2 − v̄v̄′′]z2 + 4v̄v̄′′z +
ω2

4
= 0,� (34)

whose roots are given by

z = z∗± =
2v̄v̄′′ ±

√
4v̄2(v̄′′)2 + ω2[v̄v̄′′ − (v̄′)2]

4 [v̄v̄′′ − (v̄′)2]
.� (35)

For a DPT to occur, at least one of the roots should be real and positive. If this is 
the case, there are two possible scenarios:

	 1.	� Case of v̄v̄′′ − (v̄′)2 > 0. This case requires v̄′′ > 0, and the only positive root is

z∗+ =
2v̄v̄′′ +

√
4v̄2(v̄′′)2 + ω2[v̄v̄′′ − (v̄′)2]

4 [v̄v̄′′ − (v̄′)2]
,� (36)

		 which is always greater than 1 and reaches the minimum at ω = 0. Thus a DPT 
occurs due to a time-independent mode at

z = zc =
v̄v̄′′

v̄v̄′′ − v̄′2
,� (37)

		 which is always greater than 1. Revisiting equation  (15), this implies that the 
symmetric (symmetry-broken) phase occupies the low-activity, low-current (high-
activity, high-current) regime. A phase diagram in the λµ-plane corresponding to 
this scenario is shown in figure 2(a). As will be shown later, a DPT between these 
two phases occurs as a second-order singularity of ψ shown in figure 2(b), with 
the optimal density ρ∗z minimizing the action exhibiting clear bifurcations shown 
in figure 2(c) and corresponding to the symmetry breaking.

	 2.	� Case of v̄v̄′′ − (v̄′)2 < 0. Here a positive root exists if and only if v̄′′ < 0. It is then 
given by

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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z∗− =
−2v̄v̄′′ +

√
4v̄2(v̄′′)2 − ω2[(v̄′)2 − v̄v̄′′]

4 [(v̄′)2 − v̄v̄′′]
,� (38)

		 which is always less than 1 and reaches its maximal value at ω = 0. Again, a 
DPT occurs due to a time-independent mode at z = zc given by equation (37), 
which satisfies 0  <  zc  <  1. Combining this with equation (15), we find that the 
symmetric (symmetry-broken) phase occupies the high-activity, high-current 
(low-activity, low-current) regime. A phase diagram in the λµ-plane for this 
scenario is illustrated in figure 2(d), with second-order singularities of ψ and the 
optimal density ρ∗z shown in figures 2(e) and (f).

We note that while scenario 1 has been observed before in extended systems [45, 
49, 50], we are not aware of any example of scenario 2, although it bears some simi-
larities to the DPTs of the WASEP with open boundaries [49, 50, 71] if one shifts λ 
and µ appropriately. In all scenarios, a symmetry-breaking DPT occurs due to a time-
independent mode.

We next derive a Landau theory from first principles to describe the nature of the 
DPT in detail.

Figure 2.  Examples of symmetry-breaking DPTs associated with current and 
activity large deviations of the SAP (defined in section 3.5). (a) A phase diagram 
for ε = 17 in the λµ-plane, with the symmetric (S) and the symmetry-broken 
(SB) phases indicated by dierent colors. (b) The scaled CGF ψ of the time-
averaged current for µ = 0 (the dash-dotted line in (a)), which exhibits second-
order singularities at λ = ±λc so that the actual ψ (black solid line) is larger than 
the one corresponding to the symmetric solution (red dashed line) for |λ| > λc. 
(c) The optimal density of the box shows a clear symmetry breaking at λ = ±λc. 
(d)–(f) Similar plots for ε = −1/2, with (e) and (f) taken along the dash-dotted line 
µ � −3.58 of (d).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3.3. Exact Landau theory for dynamical phase transitions

Having shown that the DPTs are induced by time-independent modes, equations (20) 
and (23) imply that the scaled CGF takes the form

ψ(z) = sup
ρ,ρ̂

Hz(ρ, ρ̂) = ψsym(z)− inf
m

Lz(m),

� (39)
where ρ and ρ̂ are time-independent solutions of Hamilton’s equations (24) and (25), 
and m = ρ− 1/2 is an order parameter quantifying the broken particle-hole symmetry. 
In the vicinity of a DPT, where εz = (z − zc)/zc is of order m2, one can straightfor-
wardly check that

ρ =
1

2
+m, ρ̂ = − v̄′

v̄
m� (40)

yields a time-independent solution of equations (24) and (25) up to order m2. Using this 
solution in equation (39) and expanding in m, we obtain

Lz(m) = −aεzm
2 + bm4

� (41)

with the coecients

a ≡ γv̄′′, b ≡ γv̄′zc

(
1

4

v̄′3

v̄3
+

1

3

v̄(3)

v̄
− 1

2

v̄′v̄′′

v̄2
− v̄′v̄(4)

v̄v̄′′

)
.� (42)

The solution satisfies equation (39) up to order m4. This expression provides an exact 
Landau theory for the symmetry-breaking DPT near z = zc under the condition that 
b  >  0 — by tracking the optimal value of the order parameter m = m∗

z minimizing Lz, 
one observes a bifurcation of m∗

z and an associated jump discontinuity of ψ′′(z) at z = zc 
(with the locations of symmetric and symmetry-broken phases determined by the sign 
of v̄′′, as discussed above), see figure 2. If b  <  0, one needs to expand equation (39) to 
higher order in m. Note that, depending on the sign of a, both scenario 1 and scenario 
2 described in section 3.2 are captured by the Landau theory.

The Landau theory obtained above has the same form as the one describing sym-
metry-breaking DPTs in extended systems [49, 50]. Thus the universal features of such 
DPTs are captured by our large-N single-box models, whose only degree of freedom 
plays the role of the largest-wavelength mode in extended systems. Below we explicitly 
construct a single-box model motivated by the Katz–Lebowitz–Spohn (KLS) model [87] 
which illustrates the phenomenology described so far.

Next, we examine the statistics of finite-frequency modes, which contains crucial 
information about the relaxation of the system near the transition. In particular, we 
find a behavior analogous to critical slowing down.

3.4. Critical slowing down

Let us define εz ≡ (z − zc)/zc. In the symmetric phase (for v̄′′εz < 0), from equations (19), 
(31), and (32), we find that the Gaussian fluctuations around ρ = 1/2 are characterized 
by the probability distribution

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Pz[ϕ] =

∫
Dϕ̂ e−Nδ2Sz [ϕ,ϕ̂] ∼ exp

[
−Nγ

8v̄z

∫
dω

2π
(ω2 + τ−2

z )ϕωϕ−ω

]
,� (43)

where

τz ≡

√
1

16v̄z|v̄′′εz|
∼ |εz|−1/2

� (44)

has dimension of time. In the frequency space, the variance of the above distribution 
is given by

〈ϕωϕω′〉z =
8πv̄z

Nγ

1

ω2 + τ−2
z

δ(ω + ω′),� (45)

where 〈·〉z denotes an average over the ensemble biased by z. After applying the Fourier 
transform, the temporal correlations are obtained as

〈ϕ(t)ϕ(t′)〉z =
2v̄zτz
Nγ

e−|t−t′|/τz .� (46)

Thus τz is clearly interpreted as a correlation time, and its divergent behavior τz ∼ |εz|−1/2 
near a DPT implies critical slowing down. While this derivation is valid only in the 
symmetric phase, it is natural to expect that the same scaling behavior will still hold 
in the symmetry-breaking phase.

3.5. Example of symmetry breaking: symmetric antiferromagnetic process

The KLS model is defined on a lattice where each site is occupied by at most one par-
ticle. The dynamics of the particles depend on nearest-neighbor interactions. Recently, 
it was shown that the KLS model, when connected to two reservoirs, exhibits a DPT 
when the interactions are suciently strongly antiferromagnetic [49]. In this case, the 
particles prefer a profile with only every second site occupied, which amounts to hav-
ing a density ρ = 1/2. Then the noise strength in the dynamics is found to have a local 
minimum at ρ = 1/2. To mimic this behavior, we study a single-box model with the 
hopping rates

WR(n1,n2) = n1(N − n2)
[
N2 +

ε

4
(n1 + n2 −N)2

]
,

WL(n1,n2) = n2(N − n1)
[
N2 +

ε

4
(n1 + n2 −N)2

]
,

�
(47)

with ε > 0. These rates fulfill the conditions for the particle-hole symmetry and the 
bounded range of occupancy given in equations (8) and (12). They also ensure that the 
hopping rate attains a local minimum when the two sites involved have an average 

occupancy n1+n2

2
= N

2
. For this reason, we refer to this model as the symmetric antifer-

romagnetic process (SAP).
For large N, we can use equations (9), (10) and (17) with k  =  4 to describe the model 

in terms of the rescaled parameters

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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v(ρ) ≡ (1− ρ)

[
1 + ε

(
ρ− 1

2

)2
]
, α =

1

2
, ν = 1.� (48)

By equations (15) and (37), we obtain

z = eµ/2 cosh
λ

2
, zc =

ε

ε− 2
.� (49)

The corresponding Landau theory is derived from equation (41) as

L(m) = −ε εz m
2 +

2 ε (1 + ε)

ε− 2
m4.� (50)

Thus, if ε > 2 so that the coecient of m4 is positive, the model exhibits symmetry-
breaking DPTs with the symmetry-broken phase occupying the high-current, high-
activity regime. An example was already shown for ε = 17 in figures 2(a)–(c). We again 
stress that this Landau theory is a direct analogue of the one describing the symmetry-
breaking DPT of the KLS model in extended systems.

Interestingly, if we generalize the model to negative values of ε (allowing the inter-
actions to be ferromagnetic), the Landau theory predicts symmetry-breaking DPTs 
for −1 < ε < 0 as well. In this case, as illustrated for ε = −1/2 in figures 2(d)–(f), the 
symmetry-broken phase corresponds to the low-current, low-activity regime. For the 
sake of brevity, through the rest of this paper, we shall focus on the proper SAP with 
ε > 2; however, all the results we discuss below are also easily applicable to the DPTs 
for −1 < ε < 0.

4. Eects of finite T or N

The simplicity of the single-box model provides a convenient avenue for addressing the 
eects of finite T or N on the symmetry-breaking DPTs, which are the main subject 
of this section. First, taking N → ∞ but leaving T finite, we calculate analytically the 
optimal trajectory from a given initial state and show how its final point scales with 
T as the system approaches a symmetry-breaking DPT. Second, we consider the case 
T → ∞ with N finite and identify the exponents governing the finite-N critical scalings 
near the DPT. These results allow us to build a comprehensive scaling theory near a 
symmetry-breaking DPT for finite T and N.

4.1. N → ∞, finite T

4.1.1.  Formulation of the problem.  Near a DPT we only need to consider trajectories 
which are close to the symmetric solution (27). With these considerations in mind, it is 
convenient to perform a canonical change of variables

ρ = ϕ+
1

2
, ρ̂ = ϕ̂− v̄′

v̄
ϕ.� (51)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Since the transformation has a unit Jacobian, it does not introduce any additional term 
in the action. Thus, using equations (20) and (21), the leading-order correction to the 
action arising from nonzero ϕ and ϕ̂ is obtained as

∆Sz[ϕ, ϕ̂] ≡ Sz

[
1

2
+ ϕ,− v̄′

v̄
ϕ+ ϕ̂

]
− Sz

[
1

2
, 0

]

= − v̄′

v̄

ϕ(T )2 − ϕ(0)2

2
+ S̃z[ϕ, ϕ̂],

� (52)

where

S̃z[ϕ, ϕ̂] ≡
∫ T

0

dt [ϕ̂ϕ̇− h(ϕ, ϕ̂)]� (53)

with the eective Hamiltonian

h(ϕ, ϕ̂) ≡ Hz

(
1

2
+ ϕ,− v̄′

v̄
ϕ+ ϕ̂

)
−Hz

(
1

2
, 0

)
.� (54)

Our goal is to minimize ∆Sz[ϕ, ϕ̂] for given values of z and ϕ(0), the value of ϕ at time 
t  =  0. In other words, we first find the action of the optimal Hamiltonian trajectory 
from ϕ(0) to ϕ(T ) with the latter allowed to take any value; then, among all such tra-
jectories, we choose the value of ϕ(T ) which gives the minimal action.

4.1.2. Exact calculation of the optimal final point.  To carry out the calculation of 
ϕ(T ), we write the variations of ∆Sz for fixed ϕ(0) and ϕ(T ):

δ∆Sz[ϕ, ϕ̂]|ϕ(T ) =

∫ T

0

dt

{(
ϕ̇− ∂h

∂ϕ̂

)
δϕ̂−

(
˙̂ϕ+

∂h

∂ϕ

)
δϕ

}
.� (55)

This gives us as expected Hamilton’s equations

ϕ̇ =
∂h

∂ϕ̂
, ˙̂ϕ = −∂h

∂ϕ
.� (56)

Then, using equation (52) and allowing variations of ϕ(T ), we obtain

δ∆Sz[ϕ, ϕ̂] =

[
ϕ̂(T )− v̄′

v̄
ϕ(T )

]
δϕ(T ) + δ∆Sz[ϕ, ϕ̂]|ϕ(T ) .� (57)

This implies that, among all the solutions of equation (56), the one with the minimal 
action satisfies

ϕ̂(T ) =
v̄′

v̄
ϕ(T ).� (58)

To proceed, we note that the above relation gives a conserved ‘mechanical energy’ of 
the Hamiltonian dynamics as a function of ϕ(T ):

E(ϕ(T )) ≡ h

(
ϕ(T ),

v̄′

v̄
ϕ(T )

)
.� (59)
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With this the minimum of ∆Sz can be written as

inf
ϕ,ϕ̂

∆Sz[ϕ, ϕ̂] = inf
ϕ(T )

[
− v̄′

v̄

ϕ(T )2 − ϕ(0)2

2
+

∫ ϕ(T )

ϕ(0)

dϕ ϕ̂ − E(ϕ(T ))T

]
.� (60)

Dierentiating the rhs with respect to ϕ(T ) and using equation (58), we find that the 
minimal ∆Sz requires

∫ ϕ(T )

ϕ(0)

dϕ
∂ϕ̂

∂ϕ(T )
− E ′(ϕ(T ))T = 0.� (61)

In the following discussions, the optimal ϕ(T ) is obtained by solving this equation.

4.1.3. Numerical results for the SAP.  With equations  (24), (25) and (61), we are 
ready to calculate the optimal finite-T trajectories for given z and ϕ(0). We first con-
sider numerical solutions and identify dierent scaling regimes, each of which will be 
described by analytical arguments later. In figure 3, we illustrate such trajectories for 
the SAP with ε = 4 in the symmetry-broken phase, all of them starting from the ini-
tial state ϕ(0) = 0.08 while the values of z and T are varied. The optimal trajectories 
themselves are marked by solid curves, whereas their final-time value ϕ(T ) is shown 
as a dashed curves as T changes continuously. Notably, if T is suciently large, the 

trajectories initially appear to saturate at the value of the order parameter mz ∼ ε
1/2
z ; 

however, they eventually move past the plateau (with a characteristic time scale which, 

as shown below, reflects the critical slowing down τz ∼ ε
−1/2
z ) and end up much closer 

to the symmetric state ρ = 1/2. As is evident from the data collapse, ϕ(t) and ϕ(T ) 
exhibit dierent scaling behaviors near a DPT.

In figure 4, using the SAP with ε = 4, we show that ϕ(T ) exhibits three dierent 
scaling regimes depending on the duration of the observation period T:

Figure 3.  Infinite-N, finite-T relaxation trajectories of the SAP with ε = 4 near a 
DPT. Solid curves: saddle-point trajectories from the initial state ϕ(0) = 0.08 and 
varied values of T. Dashed curves: final state ϕ(T ) reached by the saddle-point 
trajectories. Both types of curves share the same color scheme.
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Finite-size and finite-time eects in large deviation functions near dynamical symmetry breaking transitions

16https://doi.org/10.1088/1742-5468/ab43d5

J. S
tat. M

ech. (2019) 103202

	•	 �Regime I. If the observation period is not long enough, the initial state ϕ(0) 
heavily influences the entire trajectory, including the final state ϕ(T ) obeying

ϕ(T ) ∼ ϕ(0)/T for T � ϕ(0)−1.� (62)

		 The above scaling behavior is shown in figure 4(a).

	•	 �Regime II. As the observation period becomes longer, the initial-state dependence 
starts to disappear after a time scale ϕ(0)−1, beyond which proximity to the 
critical point becomes manifest in the power-law decay

ϕ(T ) ∼ T−2 for ϕ(0)−1 � T � |εz|−1/2,� (63)

		 as also shown in the middle section  of figure  4(b). At this stage, there is no 
distinction between the symmetric (εz < 0) and symmetry-broken (εz > 0) phases.

	•	 �Regime III. When T is suciently larger than the correlation time scale 
τz ∼ |εz|−1/2, ϕ(T ) converges exponentially to zero in the symmetric phase (see 
figure 4(c)) and to nonzero values in the symmetry-broken phase (see figure 4(b)), 
as we show below:

ϕ(T ) ∼ |εz| e−2
√

γv̄zc|aεz |T for T � |εz|−1/2 and aεz < 0,

lim
T→∞

ϕ(T ) � aεz

2
√
bc

for T � |εz|−1/2 and aεz > 0.
�

(64)

Based on these scaling behaviors, one can infer the following scaling forms describing 
the crossovers between adjacent scaling regimes:

ϕ(T ) =

{
ϕ(0)2 F1(T ϕ(0)) between regimes I and II,

|εz| F2(T
2 aεz) between regimes II and III.� (65)

Figure 4.  Finite-T scaling behaviors of the final state ϕ(T ) reached by the 
SAP with ε = 4. (a) If T is small, ϕ(T ) is governed by the initial state ϕ(0). (b) 
For intermediate values of T, ϕ(T ) shows a power-law decay governed by |εz|, 
irrespective of the sign εz. (c) In the symmetric phase, ϕ(T ) exhibits an exponential 
decay if T is large enough.
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To be consistent with the scaling behaviors in each regime, the functions F1 and F2 
should satisfy

F1(x) ∼
{
1/x for |x| � 1,

1/x2 for |x| � 1,� (66)

F2(x) ∼





1/x for |z| � 1,

e−const.×
√

|x| for |x| � 1 and x < 0,

const. for x � 1 and x > 0.

� (67)

The existence of such F1 (F2) is manifest in the data collapse(s) shown in figure 4(a) 
(figures 4(b) and (c)).

Due to the simplicity of the single-box models, all the numerical results discussed 
above can be theoretically derived from first principles, as we now show.

4.1.4. Derivation of the scaling theory.  To analytically calculate ϕ(T ) satisfying equa-
tion (61), one needs to examine the form of the Hamiltonian h(ϕ, ϕ̂). In what follows, 
we approximate h(ϕ, ϕ̂) by using equation (21) in equation (54) and expanding the lat-
ter for small ϕ and ϕ̂ to obtain

h(ϕ, ϕ̂) = cϕ̂2 − Lz(ϕ) + o
(
ϕ̂2, εzϕ

2,ϕ4
)
,� (68)

where c ≡ γv̄zc and Lz are as defined in equations (41) and (42), respectively. As we show, 
the results below are unaected by the neglected higher-order terms. This approximate 
formula has a convenient interpretation as the Hamiltonian of a Newtonian particle of 

mass 1
2c

, velocity ϕ̂ and position ϕ in an unstable quartic potential −Lz(ϕ), represented 
schematically in figure 5.

Using equations (54) and (59), the energy conservation h(ϕ, ϕ̂) = E(ϕ(T )) implies

ϕ̂ = ϕ̂± ≡ ±

√
E(ϕ(T )) + Lz(ϕ)

γv̄zc
.� (69)

Near a symmetry-breaking DPT, it is natural to expect that the optimal trajectory 
stays close to the symmetric solution (27). Thus the initial velocity should be in the 
uphill direction. For generic situations near the DPT, we expect ϕ(0) to be well within 
the unstable branches of the potential (i.e. |ϕ(0)| � |εz|1/2), see figure 5. In this case, the 
sign of ϕ̂(0) should be opposite to that of ϕ(0). Since the system satisfies a particle-hole 
symmetry, without loss of generality, we can focus on the case where ϕ(0) > 0, so that 
ϕ̂(0) < 0 and ϕ̂ = ϕ̂−.

Using the above relation and equation (61), we obtain

2
√
γv̄zc T �

∫ ϕ(0)

ϕ(T )

dϕ
1√

E(ϕ(T )) + Lz(ϕ)
.� (70)

This can be further simplified to

2
√
γv̄zc T �

∫ ϕ(0)

ϕ(T )

dϕ
1√

c ϕ(T )2 − aεzϕ2 + b ϕ4� (71)
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by using equation (41) and noting that equations (59) and (68) give

E(ϕ(T )) � γv̄′2zc
v̄

ϕ(T )2 − Lz(ϕ(T )) �
γv̄′2zc
v̄

ϕ(T )2,� (72)

where the second approximation is due to the quartic potential Lz(ϕ(T )) = O(εzϕ(T )
2,ϕ(T )4) 

being negligible compared to the ‘kinetic’ component near the DPT where εz � 1. 
Depending on which term in the denominator dominates the integral in equation (71), 
we identify the following three scaling regimes in order of increasing T:

Regime I.—Suppose that the integral in equation (71) is dominated by contributions 
from c ϕ(T )2. Then, using a Taylor expansion, equation (71) can be approximated as

T =
ϕ(0)

2γv̄′zcϕ(T )
+O

(
εzϕ(0)

3

ϕ(T )3
,
ϕ(0)5

ϕ(T )3

)
� (73)

implying ϕ(T ) ∼ ϕ(0)/T . This scaling behavior is self-consistent if and only if the lat-
ter two terms on the rhs are much smaller than T, which requires T � |εz|−1/2 and 
T � 1/ϕ(0). Since we have already assumed ϕ(0) � |εz|1/2, the latter condition is auto-
matically implied by the former. Therefore

ϕ(T ) ∼ ϕ(0)

T
for T � 1

ϕ(0)
,� (74)

which is the same as equation (62).
Regime II.—Suppose that the integral in equation  (71) is dominated by contrib

utions from b ϕ4, which requires ϕ � max[
√

aεz
b
,
(
c
b

)
1/4

√
ϕ(T )]. Thus equation (71) can 

be approximated as

2
√
γv̄zc T � 1√

b

∫ ϕ(0)

max[
√

aεz
b

, ( c
b)

1/4√
ϕ(T )]

1

ϕ2
� 1

√
bmax[

√
aεz
b
,
(
c
b

)1/4 √
ϕ(T )]

− 1√
b ϕ(0)

.� (75)

For the moment, we assume that the dominating term on the rhs is given by the second 
argument of max[·], so that

Figure 5.  The unstable quartic potential governing the infinite-N, finite-T saddle-
point trajectories in (a) the symmetric and (b) the symmetry-broken phases.
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2
√
γv̄zc T � 1

(cb)1/4
√

ϕ(T )
,� (76)

which yields ϕ(T ) ∼ T−2. This is self-consistent if T � |εz|−1/2 (by comparison between √
aεz
b

 and 
(
c
b

)
1/4

√
ϕ(T )) in the max[·]) and if T � 1

ϕ(0)
 (so that 1√

b ϕ(0)
 can be neglected). 

Therefore we obtain a scaling regime

ϕ(T ) ∼ 1

T 2
for

1

ϕ(0)
� T � 1√

|εz|
,� (77)

which is identical to (63). It is straightforward to show that other choices of dominating 
terms in equation (75) do not lead to self-consistent results.

Regime III.—Finally, we consider the case where the contribution from εzϕ
2 is not 

negligible. Depending on the sign of aεz, it is natural to divide this regime into two 
dierent cases. For aεz < 0 (inside the symmetric phase), the integral in equation (71) 
can be dominated solely by εzϕ

2. Since εzϕ
2 � c ϕ(T )2 + b ϕ4 requires the range of the 

integral to satisfy 
√

c
|aεz |ϕ(T ) � ϕ �

√
|aεz |
b

, equation (71) can be approximated as

2
√
γv̄zc T �

∫ √
|aεz |

b

√
c

|aεz |
ϕ(T )

dϕ
1√

|aεz|ϕ
� 1√

|aεz|
ln

|aεz|√
bc ϕ(T )

,� (78)

implying ϕ(T ) ∼ |εz| e−2
√

γv̄zc|aεz |T . This scaling behavior is consistent with the range of 

the above integral if and only if T � |εz|−1/2. Therefore

ϕ(T ) ∼ |εz| e−2
√

γv̄zc|aεz |T for aεz < 0 and T � |εz|−1/2,� (79)

which reproduces the first part of equation (64). On the other hand, if aεz > 0, we have

inf
ϕ
Lz(ϕ) = −a2ε2z

4b
< 0.� (80)

For equation (71) to be consistent with positive and arbitrarily large T, the value of 
ϕ(T ) must be such that the denominator of the integrand in equation (71) remains posi-
tive but approaches arbitrarily close to zero in some part of the trajectory. Thus, ϕ(T ) 
eventually converges to a nonzero value

lim
T→∞

ϕ(T ) � aεz

2
√
bc

for aεz > 0,� (81)

which is in agreement with the second part of equation (64). As was already shown 
in figure 3, this limiting value of ϕ(T ) is not equal to a minimum of Lz located at 

mz =
√

aεz
2b

 but satisfies 0 < ϕ(T ) < mz < ϕ(0). Even then, the integral in equation (71) 
is dominated by the interval satisfying ϕ � mz, where the denominator of the integrand 
is very small. This implies that, as T becomes larger, the trajectory stays close to mz 
for a longer period of time, as clearly shown in figure 3.

These derivations fully justify the scaling behaviors stated in equations (62)–(64). 
Since the Landau-theory approach we have followed is rather general, we expect that 
similar behaviors will be observed not only in the DPTs of the single-box SAP, but in 
the broader range of the generic symmetry-breaking DPTs described in section 3.
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4.2. T → ∞, finite N

4.2.1. General formalism.  In this case, one cannot rely on the saddle-point method as 
fluctuations are not negligible. Instead, we consider the limit T → ∞ by studying the 
spectral properties of the stochastic process. To this aim, we consider a vector in the 
Hilbert space representing a biased distribution

|Gλ,µ(t)〉 ≡
N∑

n=0

〈
et(λJt+µKt)

〉
n(t)=n

|n〉,� (82)

where Jt and Kt are as defined in equations  (3) and (4), respectively, and 〈·〉n(t)=n 
denotes an average over all histories under the constraint that the box has n particles 
at time t. Then it is known (see, for example, [88]) that |Gλ,µ(t)〉 evolves according to

∂t |Gλ,µ(t)〉 = Wλ,µ |Gλ,µ(t)〉 ,� (83)
where the tilted generator Wλ,µ is an (N  +  1)-by-(N  +  1) matrix defined as

(Wλ,µ)0,n ≡
[
e(µ+λ)/2WR(1, n̄b) + e(µ−λ)/2WL(n̄a, 1)

]
δ1,n − [WR(n̄a, 0) +WL(0, n̄b)] δ0,n,

(Wλ,µ)N ,n ≡
[
e(µ+λ)/2WR(n̄a,N − 1) + e(µ−λ)/2WL(N − 1, n̄b)

]
δN−1,n

− [WR(N , n̄b) +WL(n̄a,N)] δN ,n,

(Wλ,µ)m,n ≡
[
e(µ+λ)/2WR(n, n̄b) + e(µ−λ)/2WL(n̄a,n)

]
δm+1,n

+
[
e(µ+λ)/2WR(n̄a,n) + e(µ−λ)/2WL(n, n̄b)

]
δm−1,n

− [WR(n, n̄b) +WL(n̄a,n) +WR(n̄a,n) +WL(n, n̄b)] δm,n,

�

(84)

with integer indices m ∈ [1,N − 1] and n ∈ [0,N ] and where δi,j denotes the Kronecker 
delta.

Let us denote by Λ0(λ,µ) and Λ1(λ,µ) the two eigenvalues of Wλ,µ with the larg-
est and the second largest real part, respectively. By the Perron–Frobenius theorem, 
Λ0(λ,µ) is always guaranteed to be real-valued. Thus, using equation (5), the scaled 
CGF before the rescaling by equation (17) satisfies

Ψ(λ,µ) = Λ0(λ,µ).� (85)
The Perron–Frobenius theorem also implies that the leading eigenvalue Λ0(λ,µ) is 
always unique, so that Ψ cannot have singularities at finite N. However, by examining 
how Ψ develops a second-order singularity in ψ as N → ∞, one can identify the scaling 
exponent governing finite-N eects in the λµ-plane. Moreover, the spectral gap

∆Λ(λ,µ) ≡ Re [Λ0(λ,µ)− Λ1(λ,µ)] ,� (86)
whose inverse characterizes the relaxation time scale, is also useful as it reflects the 
eects of finite N on the critical slowing down.

4.2.2. Exact numerical diagonalization of the SAP.  Using the SAP hopping rates (47) 
and the reservoir densities n̄a = n̄b = 1/2 in equation (84), the tilted generator of the 
SAP is obtained as
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(Wz)0,n ≡ N

[
N2 +

ε

4

(
n− N

2

)2
]
(zδ1,n −Nδ0,n) ,

(Wz)N ,n ≡ N

[
N2 +

ε

4

(
n− N

2

)2
]
(zδN−1,n −NδN ,n) ,

(Wz)m,n ≡ N

[
N2 +

ε

4

(
n− N

2

)2
]
{z [nδm+1,n + (N − n)δm−1,n]−Nδm,n}

� (87)
for the integer indices m ∈ [1,N − 1] and n ∈ [0,N ], where z = z(λ,µ) is defined as in 
equation (49). In figure 6, we show numerical results obtained from the exact diagonal-
ization of Wz with ε = 17, which provide concrete examples of finite-N eects. While all 
the results are restricted to the λ-axis (µ = 0), it is straightforward to generalize them 
to the entire λµ-plane, as equation (49) implies that ελ can always be replaced with εz.

In figure 6(a), we show the second-order derivative of the scaled CGF Ψ, which is 
calculated from the leading eigenvalue Λ0 by equation (85). In the N → ∞ limit, as 
discussed below in section 3.3, the second derivative of asymptotic scaled CGF ψ (thick 
black curve) has a jump discontinuity at ελ = 0 as the symmetry is broken (for com-
parison, the continuation of the contribution from the symmetric solution is shown by a 
dashed black curve). While Ψ at finite N (thin colored lines) is always smooth, N−4∂2

λΨ 
clearly approaches ∂2

λψ as N becomes larger. The inset shows that λx(N), defined as the 
value of λ where the finite-N and the asymptotic curves cross each other, converges to 
the DPT λ = λc according to a power-law decay N−2/3. We thus observe that the scale 
of ελ characterizing the onset of finite-N eects is given by ελ ∼ N−2/3.

In figure 6(b), we show how the spectral gap of Wz obtained at dierent values of 
N can be collapsed. As N increases, one observes a collapse to a linear behavior both in 
the main plot and the (log-linear) inset, which implies a scaling form (after replacing 
ελ with aεz)

∆Λ(εz,N) = N8/3G(aεzN2/3),� (88)

where the function G shows the asymptotic behaviors

G(x) ∼

{
e−c′x3/2+o(x3/2) for |x| � 1 and x > 0,

|x|1/2 for |x| � 1and x < 0
� (89)

with a positive constant c′. Applying the rescaling scheme (17) with k  =  4 (as discussed 
in section 3.5), we find the relaxation time scale at a DPT (εz = 0)

τzc ∼
N3

∆Λ(0,N)
∼ N1/3.� (90)

As expected the critical slowing down (i.e. divergence of τz as εz → 0) is constrained by 
the finite value of N.

While these observations are based on the numerical diagonalization of the SAP, we 
argue that they are relevant to a broad range of symmetry-breaking DPTs induced by 
the same mechanism, as supported by a heuristic argument described below.
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4.2.3. Argument for finite-N scaling.  To understand the finite-N scaling exponents 
identified above, we study how the finite-N corrections can become large enough to erase 
the second-order singularity of the scaled CGF ψ. Integrating the Gaussian fluctuations 
described by equation (43), the correction to ψ in the symmetric phase (corresponding 
to aεz < 0, as explained in section 3.2) is

δψ(z) =
1

NT
ln

∫
DϕPz[ϕ] = − 1

NT

∫
dω ln

[
ω2 + τ−2

z

]
.� (91)

As a corollary, the correction to ψ′′ is given by

δψ′′(z) =
32v̄v̄′′

NTzc

∫
dω

ω2 + 8v̄v̄′′zc − τ−2
z

(ω2 + τ−2
z )2

.� (92)

We note that the factor T in the denominator is always cancelled by the IR cuto of 
the integral. Moreover, due to critical slowing down (i.e. small τ−2

z  in the denominator), 
near a DPT the low-frequency range dominates the integral. Thus we can write

δψ′′(z) ∼ τ 3z
N

∼ |εz|−3/2

N
,� (93)

which implies that δψ′′ can remove the jump discontinuity of ψ′′ only if |εz| � N−2/3. 
Assuming the scaling behavior to be homogeneous within the regime, this gives a heu-
ristic explanation for why the finite-N scaled CGF Ψ converges to the asymptotic ψ 
according to a power-law decay N−2/3, as shown in the inset of figure 6(a). We note 
that this argument is fully analogous to that for the finite-size scaling theory for sym-
metry-breaking DPTs in extended systems [50], with N playing the role of the linear 
system size; hence the same exponent 2/3 governs the finite-size scaling in both types 
of systems.

We now turn to the scaling behavior of the spectral gap ∆Λ, whose inverse captures 
the dominant time scale. Close to a DPT on the side of the symmetric phase (aεz < 0), 
if the finite-N eects are negligible (|εz| � N−2/3), ∆Λ satisfies

∆Λ(εz,N) ∼ Nk−1|εz|1/2.� (94)

Here Nk−1 stems from the rescaling of time shown in equation (17), and |εz|1/2 reflects 
the critical slowing down τz ∼ |εz|−1/2. On the other hand, if we approach a DPT from 
the side of the symmetry-broken phase (aεz > 0) while keeping outside the finite-N 
scaling regime, the intermittent flipping between the two symmetry-broken solutions 
ϕ = ±mz yields the dominant time scale. Since the eective potential scales as Lz ∼ m4

z 
and the time scale of the dynamics is given by τz ∼ |εz|−1/2, the cost of action associated 
with a single flip satisfies

∆Sflip
z ∼ |mz|4τz ∼ |εz|3/2,� (95)

which in turn implies the mean flipping time

τflipz ∼ ec
′N∆Sflip

z ∼ ec
′N |εz |3/2� (96)
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with a positive constant c′. Thus the scaling of ∆Λ in this regime is given by

∆Λ(εz,N) ∼ Nk−1e−c′N |εz |3/2 .� (97)

The crossover between the above two scaling regimes is described by a scaling form

∆Λ(εz,N) = Nk−4/3G(aεzN2/3),� (98)

where the asymptotic behaviors of G are given by

G(x) ∼

{
|x|1/2e−cx3/2

for |x| � 1 and x > 0,

|x|1/2 for |x| � 1 and x < 0,
� (99)

which is consistent with equation (89) and figure 6(b).
Our argument thus suggests that the finite-N scaling behaviors observed numer

ically in the SAP in section  4.2.2 are also valid for a broad range of models with 
symmetry-breaking DPTs.

4.3. Extended scaling hypothesis for finite T and N

Combining all the scaling properties discussed in this section, we propose a joint scaling 
form covering the case where N and T are both finite. If O is an observable that scales 
as Ny  at criticality, and if 〈·〉ϕ(0),z denotes an average over all histories constrained by 
the given values of ϕ(0) and z, we propose an extended scaling hypothesis valid close 
to a DPT

Figure 6.  Finite-N scaling behaviors obtained from the exact diagonalization of 
the SAP with ε = 17. (a) The asymptotic (N → ∞) scaled CGF ψ (thick black line) 
has a jump discontinuity in the second-order derivative when the optimal profile 
switches from the symmetric solution (continued by the dashed black line) to the 
symmetry-broken solutions. The finite-N scaled CGF Ψ is always smooth (thin 
colored lines), but approaches ψ as N increases. Inset: the crossing λx between a 
finite-N curve and the asymptotic result approaches the DPT λc according to a 
power law λx − λc ∼ N−2/3. (b) The spectral gap ∆Λ is well collapsed by the finite-
N scaling hypothesis (98) with the scaling function satisfying equation (99). Inset: 
the ελ > 0 regime is shown in detail, revealing the exponential decrease of the gap. 
All plots use the same color scheme for dierent values of N.
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〈O〉ϕ(0),z = Ny F(ϕ(0)N1/3, aεzN
2/3,TN−1/3),� (100)

where T in the last argument is already rescaled by equation (17). It is straightforward 
to show that the scaling forms presented above are special instances of this scaling 
form.

	 1.	� For O = ϕ(T ), we use the scaling exponent y = −2
3, so that

〈ϕ(T )〉ϕ(0),z = N−2/3 F(ϕ(0)N1/3, aεzN
2/3,TN−1/3).� (101)

		  In the limit where N → ∞ while T is kept finite, let us define the reduced scaling 
forms

F1(x) ≡ lim
x′→0

x′2

x2
F
( x

x′ , 0, x
′
)
,

F2(x) ≡ lim
x′→0

lim
x′′→∞

x′2

x
F
(
x′′,

x

x′2 , x
′
)
.

�
(102)

		  It is straightforward to show that these scaling forms satisfy

ϕ(T ) =

{
ϕ(0)2 F1(T ϕ(0)) for T ∼ ϕ(0)−1,

|εz| F2(T
2 aεz) for T ∼ |εz|−1/2,� (103)

		 which reproduce the finite-T scaling hypothesis shown in equation (65).
	 2.	� We may choose O = Ttraj, which denotes a dominant time scale (in the micro-

scopic unit before the rescaling by equation (17)) governing the evolution of the 
conditioned trajectory ensemble. The observable is inversely proportional to the 

spectral gap ∆Λ, whose scaling exponent is y = k − 4
3; thus equation (100) implies

〈Ttraj〉ϕ(0),z = N−k+4/3 F(ϕ(0)N1/3, aεzN
2/3,TN−1/3).� (104)

		  In the limit where T → ∞ while N stays finite, we define a scaling form

G(x) ≡ lim
x′→∞

F(·, x, x′),� (105)

		 where the first argument of F  can take any value due to the initial state being 
irrelevant as T goes to infinity. Then we obtain

〈Ttraj〉(εz,N) = N−k+4/3G(aεzN2/3),� (106)

		 which is consistent with the finite-N scaling hypothesis for ∆Λ shown in equa-
tion (98).

The extended scaling hypothesis (100) will be useful for studying critical phenomena 
near a symmetry-breaking DPT observed by numerical or empirical sampling of histo-
ries, for which the system size and the observation period are both finite.
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5. Conclusions

In this paper, we introduced a class of single-box systems coupled to a pair of par-
ticle reservoirs. In the joint limit where the maximum number of particles N and the 
observation period T go to infinity, we showed analytically that such systems exhibit 
symmetry-breaking dynamical phase transitions (DPTs) in the form of second-order 
singularities in current or activity large deviations. Although the systems are zero-
dimensional, their DPTs were found to reproduce the same critical exponents as those 
of extended diusive systems coupled to boundary reservoirs. In addition, for the spe-
cial case of the Symmetric Antiferromagnetic Process (SAP), we numerically identified 
the scaling exponents governing how finite T or N alters the singular behaviors around 
a DPT. We also found theoretical explanations for these exponents, using a generic 
dynamical Landau theory, which imply that the same exponents apply to other single-
box models in general. While our discussions focused on the cumulant generating func-
tions defined for conditioned trajectory ensembles, it is natural to expect that these 
scaling exponents also govern the rounding of the conjugate large deviation functions 
at finite T or N, which are more readily observable in empirical experiments.

Despite the huge dierence in the number of degrees of freedom, the single-box 
models capture the essence of the symmetry-breaking mechanism involving the longest-
wavelength mode of an extended diusive system. Thus it seems reasonable to con-
jecture that the critical phenomena of these two kinds of systems belong to the same 
universality class—the role played by the macroscopic length scale L in an extended 
system should be fully equivalent to that of N in a single-box model. Based on these 
considerations, it would be interesting to apply our finite-N and finite-T scaling hypoth-
eses to identifying symmetry-breaking DPTs from the numerical or empirical data gen-
erated by extended diusive systems.
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Appendix A. Derivation of the path-integral representation

Here we present a detailed derivation of equations (6) and (7) based on the method 
described in [70, 89]. First, we discretize time by dividing the observation time [0, T ] 
into N  short time intervals of duration ∆t, so that T = N∆t. For the sth time interval 
t ∈ [(s− 1)∆t, s∆t], we define the random variables I

(a)
s  and I

(b)
s  as
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I(r)s =




1 if a particle hops to the right across a bond next to reservoir r,

−1 if a particle hops to the left across a bond next to reservoir r,

0 if nothing happens,
� (A.1)

with r ∈ {a, b}. Then, using the definitions of JT and KT shown in equations (3) and (4), 
the first equation of equation (6) can be rewritten as

eTΨ(λ,µ) =
〈
eT (λJT+µKT )

〉
=

〈
e
∑N

s=1

[
λ
2

(
I
(a)
s +I

(b)
s

)
+µ

2

(∣∣∣I(a)s

∣∣∣+
∣∣∣I(b)s

∣∣∣
)]〉

.� (A.2)

To convert this expression into a path integral form, we note that in the discretized 
dynamics the state of the box is updated according to

ns − ns−1 = I(a)s − I(b)s for s = 1, . . . ,N ,� (A.3)

where we used a shorthand notation ns ≡ n(s∆t). Thus we can write

eTΨ(λ,µ) =
N∑

n0=0

· · ·
N∑

nN=0

Pn0

N∏
s=1

〈
δ
(
ns − ns−1 − I(a)s + I(b)s

)
e

λ
2

(
I
(a)
s +I

(b)
s

)
+µ

2

(∣∣∣I(a)s

∣∣∣+
∣∣∣I(b)s

∣∣∣
)〉

I

=
N∑

n0=0

· · ·
N∑

nN=0

Pn0

N∏
s=1

∫ i∞

−i∞

dn̂s

2π
e−n̂s(ns−ns−1)

〈
e
n̂s

(
I
(a)
s −I

(b)
s

)
+λ

2

(
I
(a)
s +I

(b)
s

)
+µ

2

(∣∣∣I(a)s

∣∣∣+
∣∣∣I(b)s

∣∣∣
)〉

I

,

� (A.4)
where Pn0 denotes the initial state distribution, 〈·〉I stands for the average over all 

possible sequences of I
(a)
s  and I

(b)
s , and the second equation is obtained by the Fourier 

transform of each Dirac delta function. We also note that n̂s corresponds to the auxil-
iary field variable in the standard Martin–Siggia–Rose (MSR) formalism [90–93]. The 
average 〈·〉I can be evaluated using the following probability distribution of all possible 
outcomes

(
I(a)s , I(b)s

)
=





(1, 0) with probability WR(n̄a,ns)∆t,

(−1, 0) with probability WL(n̄a,ns)∆t,

(0, 1) with probability WR(ns, n̄b)∆t,

(0,−1) with probability WL(ns, n̄b)∆t,

(0, 0) otherwise,

� (A.5)

which simply follows from the definitions of the hopping rates. Thus we have
〈
e
n̂s

(
I
(a)
s −I

(b)
s

)
+λ

2

(
I
(a)
s +I

(b)
s

)
+µ

2

(∣∣∣I(a)s

∣∣∣+
∣∣∣I(b)s

∣∣∣
)〉

I

= 1 +Hλ,µ(ns, n̂s)∆t = eHλ,µ(ns,n̂s)∆t+O(∆t2),� (A.6)

where Hλ,µ is as defined in equation (7). Using this result in equation (A.4), we find

eTΨ(λ,µ) =
N∑

n0=0

· · ·
N∑

nN=0

∫ i∞

−i∞

dn̂1

2π
· · ·

∫ i∞

−i∞

dn̂N

2π
Pn0 e

−
∑N

s=1[n̂s(ns−ns−1)−Hλ,µ(ns,n̂s)∆t].

� (A.7)
Taking the limit where N  goes to infinity, we can replace 

∑
s with a time integral and 

introduce a shorthand notation
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N∑
n0=0

· · ·
N∑

nN=0

∫ i∞

−i∞

dn̂1

2π
· · ·

∫ i∞

−i∞

dn̂N

2π
Pn0

N→∞−−−→
∫

D[n, n̂].� (A.8)

Thus we finally obtain equations (6) and (7).

Appendix B. Generalization to nonzero boundary driving

If the hopping rate has a multiplicative form

WR(n1,n2) = U(n1)V (n2),� (B.1)
the results discussed above can readily be generalized to the case of nonzero boundary 
driving n̄a �= n̄b. In this case, the particle-hole symmetry requires

n̄a = N − n̄b.� (B.2)
Using equations (8)–(10), (B.2), and introducing shorthand notations Ūa ≡ U(n̄a) and 
Ūb ≡ U(N − n̄a), the four hopping rates in equations (1) and (2) can be written as

WR(n̄a,n) = Ūa V (n), WL(n̄a,n) =
1

ν
Ūb V (N − n),

WL(n, n̄b) =
1

ν
Ūb V (n), WR(n, n̄b) = Ūa V (N − n).

�
(B.3)

We note that, to impose the bound 0 � n � N , the hopping rates are further con-
strained by

U(0) = V (N) = 0.� (B.4)
Using these hopping rates in equation (7), the Hamiltonian again takes the form shown 
in the last line of equation (14), except that γ ≡ (νŪa + Ūb)/ν  and

z(λ,µ) ≡
eµ/2 cosh

(
λ
2
+ tanh−1 νŪa−Ūb

νŪa+Ūb

)

cosh
(
tanh−1 νŪa−Ūb

νŪa+Ūb

) .� (B.5)

Thus the nonzero boundary driving only modifies the axis of the Gallavotti–Cohen 
symmetry.

Appendix C. A note on the steady-state distribution

To ensure that the symmetric profile (27) gives the true optimal profile for λ and µ 
close to zero, we also require that ρ = 1/2 gives the typical state of the system in the 
(unconditioned) steady state. To identify the criteria for this requirement, we revisit 
the rate equations (1) and (2). Equation (B.3) implies that the rate equations can be 
combined into a single equation

n
γV (n)−−−−−−−⇀↽−−−−−−−

γV (N−n−1)
n+ 1.� (C.1)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Thus, after the rescaling of all variables by the powers of N, the steady-state distribu-
tion satisfies

Ps

(
1

2
+ δρ

)
= Ps

(
1

2

)N |δρ|∏
k=0

v(1/2 + k/N)

v(1/2− k/N)
� (C.2)

regardless of the sign of δρ. Clearly Ps attains the maximum at ρ = 1/2 if v(ρ) is a 
monotonically decreasing function. Moreover, for small δρ one can write

ln
Ps(1/2 + δρ)

Ps(1/2)
= N

Nf |δρ|∑
k=0

1

N
ln

v(1/2 + k/N)

v(1/2− k/N)
� N

∫ δρ

0

dx
2v̄′x

v̄
=

Nv̄′

v̄
δρ2,

� (C.3)
so that, given v̄′ < 0, Ps can be approximated by a Gaussian distribution

Ps(ρ) ∼ exp

[
−N

|v̄′|
v̄

(
ρ− 1

2

)2
]
.� (C.4)

Thus, if one observes the system in the steady state, the typical deviation of the initial 

state from ρ = 1/2 has the scale 
√

v̄/(N |v̄′|). This deviation plays an important role in 
the finite-T corrections.
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