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Introduction Motivations

Dynamical excitations in glass-forming liquids

From: Keys et. al PRX 1 021013 (2011)
Can we model this simply?
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Introduction Motivations

Example 0: (in 1D for simplicity)

b b b

Independent sites

Unconstrained model

L sites n = {ni} with
{

ni = 0 unexcited site
ni = 1 excited site •

Transition rates in each site:
excitation with rate W(0i → 1i) = c
unexcitation with rate W(1i → 0i) = 1− c

Equilibrium distribution: Peq(n) =
∏

i
cni(1− c)1−ni

Mean density of excited sites: ⟨n⟩ = 1

L
∑

i
⟨ni⟩ = c
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Introduction Kinetically constrained models (KCM)

Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around excited sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be excited to allow i to change

unexcitation: b b b
1− c 1− c

excitation: b b bb b b b
c c c c

same equilibrium distribution Peq(n) with&without the constraint
BUT: ageing, super-Arrhenius slowing down,
dynamical heterogeneity

−→ static free-energy landscape not useful
−→ need for a genuinely dynamical description
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Kinetically Constrained Models Dynamical Phase coexistence

Space-time “bubbles” of inactivity

From: Merolle, Garrahan and Chandler, PNAS 102, 10837 (2005)
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Kinetically Constrained Models Dynamical Phase coexistence

Space-time “bubbles” of inactivity

[Fig. by A. Leos Zamorategui]
Vivien Lecomte (LPMA – Paris VI-VII) Finite-size LDF in FA models 17/09/2014 5 / 18



Kinetically Constrained Models Dynamical Phase coexistence

Questions

Active and inactive histories
having a probability of the same order

↕
Coexistence of dynamical phases?

How to describe a dynamical 1st order phase transition?
Dynamical Landau free-energy landscape?
(i.e. competition between different optima)
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Statistics over histories Dynamical ensemble

Activity of histories: order parameter

Activity K = number of events = (# excitations) + (# unexcitations)

(Dynamical) canonical ensemble
β conjugated to energy (statics)
s conjugated to activity K (dynamics)

s-ensemble:



aah

s < 0 : more active histories (“large” activity K > K̄)
s = 0 : equilibrium state (equilib. activity K = K̄)
s > 0 : less active histories (“small” activity K < K̄)

⟨O⟩s =

⟨
Oe−sK⟩⟨
e−sK⟩ ⟨

e−sK⟩ ∼ etψ(s)

P(K ≃ kt, t) ∼ etπ(k) ψ(s) = max
k

{
π(k)− sk

}
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Dynamical phase transition dimension 1

Dynamical phase transition: FA model (d=1)
Density of excitations ρ(s) depending on histories.
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Dynamical phase transition

Dynamical Landau free-energy landscape F(ρ, s)
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Dynamical free energy: ψ(s) = − min
ρ︸ ︷︷ ︸

reached at ρ=ρ(s)

F(ρ, s)
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Dynamical phase transition model on a complete graph

Dynamical free energy picture: in “mean-field”

“Mean-field” version of the FA model: (on a complete graph)

A + A c−−−⇀↽−−−
1−c

A

Rates for number n of excitations (with L sites):

W+(n) ≡ W(n → n + 1) = c(L − n)n
L

W−(n) ≡ W(n → n − 1) = (1− c)nn − 1

L

Kinetic constraint ∝ number of excited neighbours
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Dynamical phase transition model on a complete graph

Dynamical free energy picture: in “mean-field”

Extremalization principle:

ψ(s) = −min
P̸=0

⟨P| −W sym
K (s)|P⟩

⟨P|P⟩

Thermodynamic limit (finite density ρ = n
L): P(n) ∼ e−Lf(n/L)

1

Lψ(s) = −min
ρ

{
−2e−s√W+W− + W+ + W−

}
One can also use Donsker-Varadhan⟨

e−sKδ
(
1

Lt

∫ t

0

dt′ n(t′) = ρ
)⟩

∼ e−tLF(ρ,s)
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Dynamical phase transition model on a complete graph

Dynamical free energy picture: in “mean-field”

Mean-field version of the FA model: fK(s) = min
ρ

F(ρ, s)

= F(ρ(s), s)
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Dynamical phase transition model on a complete graph

Dynamical free energy picture: in “mean-field”
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Finite-size effects

Rounding of the first-order transition

Finite-size effects: required to understand P(K, t)
Scale of fluctuations: s = λ

L (transition at λc > 0)

Vivien Lecomte (LPMA – Paris VI-VII) Finite-size LDF in FA models 17/09/2014 13 / 18



Finite-size effects

Rounding of the first-order transition

Finite-size effects: required to understand P(K, t)
Scale of fluctuations: s = λ

L (transition at λc > 0)

1 2 3 4
Λ

0.05

0.10

0.15

0.20

0.25

0.30

ΡHΛ LL

Vivien Lecomte (LPMA – Paris VI-VII) Finite-size LDF in FA models 17/09/2014 13 / 18



Finite-size effects

Rounding of the first-order transition

Finite-size effects: required to understand P(K, t)
Scale of fluctuations: s = λ

L (transition at λc > 0)

-0.4 -0.2 0.2 0.4
x

0.05

0.10

0.15

0.20

0.25

Ρ
�

Fine finite-size scaling: λ = λc + e−αLx
Vivien Lecomte (LPMA – Paris VI-VII) Finite-size LDF in FA models 17/09/2014 13 / 18



Finite-size effects

Idea of the method

Extremalization principle:

ψ(s) = −min
P̸=0

⟨P| −W sym
K (s)|P⟩

⟨P|P⟩

Large-deviation form for the eigenvector: P(n) ∼ e−Lf(n/L)

⋆ infinite-size limit: one only needs ρ = argmin f
⋆ in a window around λc: one needs more

Equation for f(ρ) (from extremalization)
Exactly at coexistence (λ = λc): non-analyticity of f(ρ)

P(n) = Pn<nc
inactive(n) + Pn≥nc

active (n)

Around coexistence (λ ≃ λc):

[in a good basis] [sub-finite-size effects]

P(n) =
(
1 + a(s)

)
Pn<nc

inactive(n) +
(
1− a(s)

)
Pn≥nc

active (n)
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Conclusion

Summary

First-order dynamical phase transition
⋆ competition between active and inactive region in space-time
⋆ dynamical heterogeneities

“Mean-field” model (complete graph)
⋆ Dynamical Landau free-energy landscape
⋆ finite-size effects

Perspectives:
⋆ Finite dimension? [T Bodineau, VL, C Toninelli, JSP 2012]
⋆ Finite time? (Gap, spectal density)
⋆ Other models?
⋆ Link to 1st order quantum phase transition
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Conclusion

Thank you for your attention!
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Appendix

Appendix: operators

We assume detailed balance: Peq(C)W(C → C′) = Peq(C′)W(C′ → C)
Maximization principle:

ψ(s) = max
P

⟨P|Wsym
K (s)|P⟩

⟨P|P⟩

What is Wsym?
WC′C = W(C → C′)− r(C)δCC′

Symetrization by R = P
1
2
eq(C)δCC′ : Wsym = R−1WR

(Wsym)C′C = [W(C → C′)W(C′ → C)]
1
2 − r(C)δCC′

we have
(Wsym)† = Wsym
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