Partial exam

Contents

1 Fluctuations for a Kardar-Parisi-Zhang interface (in the directed polymer approach) 1
1.1 Without disorder 1
1.2 With disorder 2
2 Large deviations in Markov chains 3
2.1 Statistics of the activity K 3
2.2 Statistics of the time-integrated escape rate R 4

Reminder

We say that a Brownian motion W_{x} is a Brownian motion of coordinate x and diffusion constant D when $W_{0}=0$ and

$$
\begin{equation*}
\left\langle\left(W_{x}-W_{x^{\prime}}\right)^{2}\right\rangle=D\left|x-x^{\prime}\right| \tag{1}
\end{equation*}
$$

This 2-point correlation function fully characterizes the distribution of W_{x}. Explain why.

1 Fluctuations for a Kardar-Parisi-Zhang interface (in the directed polymer approach)

Consider a one-dimensional 'interface' or 'polymer': a trajectory $y(t)$ starting at the origin $(y(0)=0)$.

One is interested in the behaviour of the average variance at large scale t

$$
\begin{equation*}
B(t)=\left\langle y(t)^{2}\right\rangle \tag{2}
\end{equation*}
$$

It depends on the distribution of the trajectory. (Here and below we assume a symmetric distribution: $\langle y(t)\rangle=0)$.

1.1 Without disorder

A good model for an continuous interface living in an environment without disorder is to consider that $y(t)$ is a Brownian motion of coordinate t and diffusion coefficient equal to 1 .

1. Determine $B(t)$. Find the roughness exponent ζ (defined by $B(t) \sim C t^{2 \zeta}$ as $t \rightarrow \infty$, where C is a constant).
2. What is the distribution $P(y, t)$ of the "arrival point" y of the interface at scale t ?

1.2 With disorder

To implement the influence of disorder in the environment seen by the interface, one might justify that a good model is given by the following distribution of the 'arrival point' y of the interface at fixed scale t :

$$
\begin{equation*}
P_{V}(y, t) \propto e^{-\frac{1}{2} \frac{y^{2}}{t}+V(y)} \tag{3}
\end{equation*}
$$

Here $V(y)$ is a Brownian motion of coordinate y and diffusion constant D. It can be understood as a "disorder" seen by the extremity y of the interface at scale t

1. When $D=0$, does V play a role? Do we recover the model "without disorder" of §.1.1?
2. Justify in details that the roughness, averaged over disorder, writes

$$
\begin{equation*}
B(t)=\left\langle\frac{\int d y y^{2} e^{-\frac{1}{2} y^{2}+V(y)}}{\int d y e^{-\frac{1}{2} y^{2} t}+V(y)}\right\rangle_{V} \tag{4}
\end{equation*}
$$

where $\langle\ldots\rangle_{V}$ represents the average over V
3. Consider a generic Brownian motion W_{x} of coordinate x and diffusion constant D. Using the Reminder around (1), show that

$$
\begin{equation*}
\left\langle F\left[W_{a \bar{x}}\right]\right\rangle_{W}=\left\langle F\left[a^{1 / 2} \bar{W}_{\bar{x}}\right]\right\rangle_{\bar{W}} \tag{5}
\end{equation*}
$$

Where $\bar{W}_{\bar{x}}$ is a Brownian motion of coordinate \bar{x} and diffusion constant D. In this expression F is a function (or "functional") which depends on many values of W_{x} (for instance $\left.F\left[W_{x}\right]=\int d x W_{x}\right)$
4. Using the results of the two previous questions, perform in (4) the change of variable $y=t^{z} \bar{y}$ and find the exponent z such that (4) takes the form

$$
\begin{equation*}
B(t)=\left\langle\frac{\int d \bar{y}\left(t^{z} \bar{y}\right)^{2} e^{t^{\alpha}\left[-\frac{1}{2} \bar{y}^{2}+\bar{V}(\bar{y})\right]}}{\int d \bar{y} e^{t^{\alpha}\left[-\frac{1}{2} \bar{y}^{2}+\bar{V}(\bar{y})\right]}}\right\rangle_{\bar{V}} \tag{6}
\end{equation*}
$$

where you have to determine the exponent α.
5. We admit that the following saddle-point evaluation is valid:

$$
\begin{equation*}
\int d \bar{y} f(\bar{y}) e^{t^{\alpha}\left[-\frac{1}{2} \bar{y}^{2}+\bar{V}(\bar{y})\right]} \sim f\left(\bar{y}^{\star}\right) e^{t^{\alpha}\left[-\frac{1}{2}\left(\bar{y}^{\star}\right)^{2}+\bar{V}\left(\bar{y}^{\star}\right)\right]} \quad \text { as } t \rightarrow \infty \tag{7}
\end{equation*}
$$

where \bar{y}^{\star} is the point where $t^{\alpha}\left[-\frac{1}{2} \bar{y}^{2}+\bar{V}(\bar{y})\right]$ reaches its maximum. Does \bar{y}^{\star} depends on t ? Does \bar{y}^{\star} depends on V ? We admit that \bar{y}^{\star} does not depends on f in our case.
6. Use this result in (6) so as to obtain the roughness exponent ζ in

$$
\begin{equation*}
B(t) \sim C t^{2 \zeta} \quad \text { as } t \rightarrow \infty, \tag{8}
\end{equation*}
$$

where C is a constant. How does ζ compare to the case without disorder? Provide a physical interpretation.
7. [Long] Following a similar route (i.e. using the Reminder around (1) so as to express $B(t)$ in a form similar to (6), but now with \bar{V} of diffusion constant 1 , and D appearing elsewhere, thanks to a rescaling of the form $y=A t^{z} \bar{y}$, with A a well-chosen constant), find how the constant C in (8) depends on D.

2 Large deviations in Markov chains

We consider a finite set of configurations \mathcal{C} and a continuous time Markov chain described by transition rates $W\left(\mathcal{C} \rightarrow \mathcal{C}^{\prime}\right)$.

2.1 Statistics of the activity K

We focus on histories of duration t and call K the number of events (or "jumps between configurations") during the time window $[0, t]$. We are interested in the statistics of K.

1. Justify that

$$
\begin{equation*}
\partial_{t} P(\mathcal{C}, K, t)=\sum_{\mathcal{C}^{\prime}} W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right) P\left(\mathcal{C}^{\prime}, K-1, t\right)-r(\mathcal{C}) P(\mathcal{C}, K, t) \tag{9}
\end{equation*}
$$

2. From this, show in details that

$$
\begin{equation*}
\partial_{t}\langle K\rangle=\langle r(\mathcal{C})\rangle \tag{10}
\end{equation*}
$$

where you have to define the averages on both sides of this equality.
[Hint: multiply (9) by K and sum over K; note also that $\sum_{K} P(\mathcal{C}, K, t)=P(\mathcal{C}, t)$ and explain why this equality holds.]
3. We introduce the Laplace transform

$$
\begin{equation*}
\hat{P}(\mathcal{C}, s, t)=\sum_{K} e^{-s K} P(\mathcal{C}, K, t) \tag{11}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left\langle e^{-s K}\right\rangle=\sum_{\mathcal{C}} \hat{P}(\mathcal{C}, s, t) \tag{12}
\end{equation*}
$$

where you have to specify what is the average on the left hand side.
4. We thus see that the study of the time behaviour of $\hat{P}(\mathcal{C}, s, t)$ gives access to $Z(s, t)$ defined as $Z(s, t)=\left\langle e^{-s K}\right\rangle$. We introduce the "cumulant generating function" $\psi(s)$ as

$$
\begin{equation*}
\psi(s)=\frac{1}{t} \log Z(s, t) \tag{13}
\end{equation*}
$$

Show that $\psi(0)=0, \psi^{\prime}(0)=-\frac{1}{t}\langle K\rangle$, and $\psi^{\prime \prime}(0)=\frac{1}{t}\left[\left\langle K^{2}\right\rangle-\langle K\rangle^{2}\right]$.
The function $\psi(s)$ is called the "cumulant generating function" (its successive derivatives in 0 provide the cumulants of K). It describes the statistics of K.
5. From (9) and (11), write the equation of evolution of $\hat{P}(\mathcal{C}, s, t)$ as

$$
\begin{equation*}
\partial_{t} \hat{P}(\mathcal{C}, s, t)=\ldots \tag{14}
\end{equation*}
$$

6. Introducing the vector $|\hat{P}(s, t)\rangle=\sum_{\mathcal{C}} \hat{P}(\mathcal{C}, s, t)|\mathcal{C}\rangle$ whose components are the $\hat{P}(\mathcal{C}, s, t)$, rewrite the previous evolution equation in a linear form

$$
\begin{equation*}
\partial_{t}|\hat{P}(s, t)\rangle=\mathbb{W}(s)|\hat{P}(s, t)\rangle \tag{15}
\end{equation*}
$$

and show in details that the components of the deformed evolution operator $\mathbb{W}(s)$ are

$$
\begin{equation*}
\mathbb{W}(s)_{\mathcal{C} \mathcal{C}^{\prime}}=e^{-s} W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right)-r(\mathcal{C}) \delta_{\mathcal{C} \mathcal{C}^{\prime}} \tag{16}
\end{equation*}
$$

7. Does $\mathbb{W}(s)$ preserve probability?
8. Show that $Z(s, t)=\langle\mathbf{1}| e^{t \mathbb{W}(s)}\left|P_{0}\right\rangle$ where P_{0} is the initial distribution and $\langle\mathbf{1}|=\sum_{\mathcal{C}}\langle\mathcal{C}|$.
9. Show in details that in the large time limit $\psi(s)$ is the maximal eigenvalue of $\mathbb{W}(s)$.

2.2 Statistics of the time-integrated escape rate R

We are now interested in the statistics of the time-integrated escape rate R, on a time window $[0, t]$

$$
\begin{equation*}
R(t)=\int_{0}^{t} d \tau r(\mathcal{C}(\tau)) \tag{17}
\end{equation*}
$$

where $\mathcal{C}(\tau)$ represents the configuration at time τ.

1. [Long - you can admit the result.] Using the explicit expression of the probability of a trajectory (obtained by time-ordered exponential method), show that

$$
\begin{equation*}
\left\langle e^{-\sigma R}\right\rangle=\langle\mathbf{1}| e^{t \bar{W}(\sigma)}\left|P_{0}\right\rangle \tag{18}
\end{equation*}
$$

where $\overline{\mathbb{W}}(\sigma)$ is a matrix of components

$$
\begin{equation*}
\overline{\mathbb{W}}(\sigma)_{\mathcal{C C}^{\prime}}=W\left(\mathcal{C}^{\prime} \rightarrow \mathcal{C}\right)-(1+\sigma) r(\mathcal{C}) \delta_{\mathcal{C}^{\prime}} \tag{19}
\end{equation*}
$$

and P_{0} the initial distribution.
2. Using this result, explain why $\bar{\psi}(\sigma)$, the cumulant generating function for R,

$$
\begin{equation*}
\bar{\psi}(\sigma)=\frac{1}{t} \log \left\langle e^{-\sigma R}\right\rangle \tag{20}
\end{equation*}
$$

is given by the largest eigenvalue of $\overline{\mathbb{W}}(\sigma)$.
3. Find a relation of the form $\mathbb{W}(s)=a(s) \mathbb{W}(b(s))$ where $a(s)$ and $b(s)$ are two functions of s that you have to determine. Deduce from it a relation of the form $\psi(s)=(\ldots) \bar{\psi}(\ldots)$
4. What does this mean for the relation between the statistics of K and the statistics of R ? Relate the 2 first cumulants of K and the 2 first cumulants of R.

