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Reminder

We say that a Brownian motion W, is a Brownian motion of coordinate x and diffusion constant
D when Wy = 0 and
(Wy = Wy)?) = D]z — | (1)

This 2-point correlation function fully characterizes the distribution of W,. Explain why.
1 Fluctuations for a Kardar-Parisi-Zhang interface (in the di-

rected polymer approach)

Consider a one-dimensional ‘interface’ or ‘polymer’: a trajectory y(t) starting at the origin
(y(0) = 0).
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One is interested in the behaviour of the average variance at large scale ¢
2
B(t) = (y(t)") (2)
It depends on the distribution of the trajectory. (Here and below we assume a symmetric

distribution: (y(t)) = 0).

1.1 Without disorder

A good model for an continuous interface living in an environment without disorder is to consider
that y(¢) is a Brownian motion of coordinate ¢ and diffusion coefficient equal to 1.
1. Determine B(t). Find the roughness exponent ¢ (defined by B(t) ~ Ct?¢ as t — oo, where
C is a constant).

2. What is the distribution P(y,t) of the “arrival point” y of the interface at scale t?



1.2 With disorder

To implement the influence of disorder in the environment seen by the interface, one might
justify that a good model is given by the following distribution of the ‘arrival point’ y of the
interface at fixed scale t:

2
Py(y,t) oc e 2 T VW) (3)

Here V (y) is a Brownian motion of coordinate y and diffusion constant D. It can be understood
as a “disorder” seen by the extremity y of the interface at scale ¢

1. When D = 0, does V' play a role? Do we recover the model “without disorder” of §.1.17

2. Justify in details that the roughness, averaged over disorder, writes

where (...),, represents the average over V'

3. Consider a generic Brownian motion W, of coordinate x and diffusion constant D. Using
the Reminder around (1), show that

(F[Waa])yy = (Fla'?Wa]) | (5)

Where W5 is a Brownian motion of coordinate Z and diffusion constant D. In this expres-
sion F' is a function (or “functional”) which depends on many values of W, (for instance
FW,] = [ dzWy,)

4. Using the results of the two previous questions, perform in (4) the change of variable
y = t*y and find the exponent z such that (4) takes the form

/ dy (t5)? " [F37°+V @)
B(t) :< / dij 1= 37+V (@) > '
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where you have to determine the exponent a.
5. We admit that the following saddle-point evaluation is valid:
[ 5@ O] ) RO st o 7)

where ¢* is the point where ¢t [—%gf + V(gj)] reaches its maximum. Does 7* depends
on t? Does * depends on V7 We admit that §* does not depends on f in our case.

6. Use this result in (6) so as to obtain the roughness exponent ¢ in
B(t) ~ Ct**  ast — oo, (8)

where C' is a constant. How does ( compare to the case without disorder? Provide a
physical interpretation.

7. [Long] Following a similar route (i.e. using the Reminder around (1) so as to express
B(t) in a form similar to (6), but now with V' of diffusion constant 1, and D appearing
elsewhere, thanks to a rescaling of the form y = At*y, with A a well-chosen constant),
find how the constant C' in (8) depends on D.



2 Large deviations in Markov chains

We consider a finite set of configurations C and a continuous time Markov chain described by
transition rates W (C — C').

2.1 Statistics of the activity K

We focus on histories of duration ¢ and call K the number of events (or “jumps between config-
urations”) during the time window [0,¢]. We are interested in the statistics of K.

1. Justify that
P(C,K,t) ZW P(C'K —1,t) — r(C)P(C, K,t) (9)

2. From this, show in details that
O (K) = (r(C)) (10)
where you have to define the averages on both sides of this equality.
[Hint: multiply (9) by K and sum over K ; note also that ), P(C,K,t) = P(C,t) and
explain why this equality holds.]

3. We introduce the Laplace transform

P(C,s,t)=> e *KP(C,K,t) (11)
K
Show that
e ) =Y "P(C,s,1) (12)
C

where you have to specify what is the average on the left hand side.
4. We thus see that the study of the time behaviour of P(C, s, ) gives access to Z(s, t) defined
as Z(s,t) = (e”*K). We introduce the “cumulant generating function” ¢ (s) as
1
U(s) = ;log Z(s,1) (13)
Show that ¥(0) = 0, ¢'(0) = —3(K), and W’( ) = ¢ [(K?) — (K)?].

The function 9 (s) is called the “cumulant generating function” (its successive derivatives
in 0 provide the cumulants of K'). It describes the statistics of K.

5. From (9) and (11), write the equation of evolution of P(C, s,t) as
QP(C,s,t) = (14)

6. Introducing the vector |P(s,t)) = Yo P(C,s,t)|C) whose components are the P(C, s, 1),
rewrite the previous evolution equation in a linear form

QP (s, 1)) = W(s)|P(s,1)) (15)
and show in details that the components of the deformed evolution operator W(s) are
W(S)ccf = e_SW(C, — C) - T(C)(Scc/ (16)

7. Does W(s) preserve probability?
8. Show that Z(s,t) = (1|e"(*)|Py) where P, is the initial distribution and (1] = 3".(C|.

9. Show in details that in the large time limit (s) is the maximal eigenvalue of W(s).



2.2 Statistics of the time-integrated escape rate R

We are now interested in the statistics of the time-integrated escape rate R, on a time window
[0,1]

t
R(t) :/ dr r(C(1)) (17)
0
where C(7) represents the configuration at time 7.

1. [Long — you can admit the result.] Using the explicit expression of the probability of a
trajectory (obtained by time-ordered exponential method), show that

(e77) = (1™ Ry) (18)
where W(o) is a matrix of components
W(o)eer = W(C" =€) = (1 +0)r(C)dccr (19)
and Py the initial distribution.

2. Using this result, explain why (o), the cumulant generating function for R,

9o) = 7 logle™™) (20)

is given by the largest eigenvalue of W(o).

3. Find a relation of the form W(s) = a(s)W(b(s)) where a(s) and b(s) are two functions
of s that you have to determine. Deduce from it a relation of the form ¥(s) = (...)u(...)

4. What does this mean for the relation between the statistics of K and the statistics of R?
Relate the 2 first cumulants of K and the 2 first cumulants of R.
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