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Reminder

We say that a Brownian motion Wx is a Brownian motion of coordinate x and diffusion constant
D when W0 = 0 and

〈(Wx −Wx′)
2〉 = D|x− x′| (1)

This 2-point correlation function fully characterizes the distribution of Wx. Explain why.

1 Fluctuations for a Kardar-Parisi-Zhang interface (in the di-
rected polymer approach)

Consider a one-dimensional ‘interface’ or ‘polymer’: a trajectory y(t) starting at the origin
(y(0) = 0).

y

t

One is interested in the behaviour of the average variance at large scale t

B(t) = 〈y(t)2〉 (2)

It depends on the distribution of the trajectory. (Here and below we assume a symmetric
distribution: 〈y(t)〉 = 0).

1.1 Without disorder

A good model for an continuous interface living in an environment without disorder is to consider
that y(t) is a Brownian motion of coordinate t and diffusion coefficient equal to 1.

1. Determine B(t). Find the roughness exponent ζ (defined by B(t) ∼ Ct2ζ as t→∞, where
C is a constant).

2. What is the distribution P (y, t) of the “arrival point” y of the interface at scale t?

1



1.2 With disorder

To implement the influence of disorder in the environment seen by the interface, one might
justify that a good model is given by the following distribution of the ‘arrival point’ y of the
interface at fixed scale t:

PV (y, t) ∝ e−
1
2
y2

t
+V (y) (3)

Here V (y) is a Brownian motion of coordinate y and diffusion constant D. It can be understood
as a “disorder” seen by the extremity y of the interface at scale t

1. When D = 0, does V play a role? Do we recover the model “without disorder” of §.1.1?

2. Justify in details that the roughness, averaged over disorder, writes

B(t) =

〈∫ dy y2 e−
1
2
y2

t
+V (y)∫

dy e−
1
2
y2

t
+V (y)

〉
V

(4)

where 〈...〉V represents the average over V

3. Consider a generic Brownian motion Wx of coordinate x and diffusion constant D. Using
the Reminder around (1), show that〈

F
[
Wax̄

]〉
W

=
〈
F
[
a1/2W̄x̄

]〉
W̄

(5)

Where W̄x̄ is a Brownian motion of coordinate x̄ and diffusion constant D. In this expres-
sion F is a function (or “functional”) which depends on many values of Wx (for instance
F [Wx] =

∫
dxWx)

4. Using the results of the two previous questions, perform in (4) the change of variable
y = tz ȳ and find the exponent z such that (4) takes the form

B(t) =

〈∫ dȳ (tz ȳ)2 et
α[− 1

2
ȳ2+V̄ (ȳ)]∫

dȳ et
α[− 1

2
ȳ2+V̄ (ȳ)]

〉
V̄

(6)

where you have to determine the exponent α.

5. We admit that the following saddle-point evaluation is valid:∫
dȳ f(ȳ) et

α[− 1
2
ȳ2+V̄ (ȳ)] ∼ f(ȳ?) et

α[− 1
2

(ȳ?)2+V̄ (ȳ?)] as t→∞ (7)

where ȳ? is the point where tα
[
−1

2 ȳ
2 + V̄ (ȳ)

]
reaches its maximum. Does ȳ? depends

on t? Does ȳ? depends on V ? We admit that ȳ? does not depends on f in our case.

6. Use this result in (6) so as to obtain the roughness exponent ζ in

B(t) ∼ Ct2ζ as t→∞, (8)

where C is a constant. How does ζ compare to the case without disorder? Provide a
physical interpretation.

7. [Long] Following a similar route (i.e. using the Reminder around (1) so as to express
B(t) in a form similar to (6), but now with V̄ of diffusion constant 1, and D appearing
elsewhere, thanks to a rescaling of the form y = Atz ȳ, with A a well-chosen constant),
find how the constant C in (8) depends on D.
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2 Large deviations in Markov chains

We consider a finite set of configurations C and a continuous time Markov chain described by
transition rates W (C → C′).

2.1 Statistics of the activity K

We focus on histories of duration t and call K the number of events (or “jumps between config-
urations”) during the time window [0, t]. We are interested in the statistics of K.

1. Justify that

∂tP (C,K, t) =
∑
C′
W (C′ → C)P (C′,K − 1, t) − r(C)P (C,K, t) (9)

2. From this, show in details that
∂t〈K〉 = 〈r(C)〉 (10)

where you have to define the averages on both sides of this equality.

[Hint: multiply (9) by K and sum over K ; note also that
∑

K P (C,K, t) = P (C, t) and
explain why this equality holds.]

3. We introduce the Laplace transform

P̂ (C, s, t) =
∑
K

e−sKP (C,K, t) (11)

Show that 〈
e−sK

〉
=
∑
C
P̂ (C, s, t) (12)

where you have to specify what is the average on the left hand side.

4. We thus see that the study of the time behaviour of P̂ (C, s, t) gives access to Z(s, t) defined
as Z(s, t) =

〈
e−sK

〉
. We introduce the “cumulant generating function” ψ(s) as

ψ(s) =
1

t
logZ(s, t) (13)

Show that ψ(0) = 0, ψ′(0) = −1
t 〈K〉, and ψ′′(0) = 1

t [〈K
2〉 − 〈K〉2].

The function ψ(s) is called the “cumulant generating function” (its successive derivatives
in 0 provide the cumulants of K). It describes the statistics of K.

5. From (9) and (11), write the equation of evolution of P̂ (C, s, t) as

∂tP̂ (C, s, t) = . . . (14)

6. Introducing the vector |P̂ (s, t)〉 =
∑
C P̂ (C, s, t)|C〉 whose components are the P̂ (C, s, t),

rewrite the previous evolution equation in a linear form

∂t|P̂ (s, t)〉 = W(s)|P̂ (s, t)〉 (15)

and show in details that the components of the deformed evolution operator W(s) are

W(s)CC′ = e−sW (C′ → C)− r(C)δCC′ (16)

7. Does W(s) preserve probability?

8. Show that Z(s, t) = 〈1|etW(s)|P0〉 where P0 is the initial distribution and 〈1| =
∑
C〈C|.

9. Show in details that in the large time limit ψ(s) is the maximal eigenvalue of W(s).
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2.2 Statistics of the time-integrated escape rate R

We are now interested in the statistics of the time-integrated escape rate R, on a time window
[0, t]

R(t) =

∫ t

0
dτ r(C(τ)) (17)

where C(τ) represents the configuration at time τ .

1. [Long – you can admit the result.] Using the explicit expression of the probability of a
trajectory (obtained by time-ordered exponential method), show that

〈e−σR〉 = 〈1|etW̄(σ)|P0〉 (18)

where W̄(σ) is a matrix of components

W̄(σ)CC′ = W (C′ → C)− (1 + σ)r(C)δCC′ (19)

and P0 the initial distribution.

2. Using this result, explain why ψ̄(σ), the cumulant generating function for R,

ψ̄(σ) =
1

t
log〈e−σR〉 (20)

is given by the largest eigenvalue of W̄(σ).

3. Find a relation of the form W(s) = a(s)W̄(b(s)) where a(s) and b(s) are two functions
of s that you have to determine. Deduce from it a relation of the form ψ(s) = (...)ψ̄(...)

4. What does this mean for the relation between the statistics of K and the statistics of R?
Relate the 2 first cumulants of K and the 2 first cumulants of R.
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