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Abstract

We study the probability distribution of a time-averaged current flowing through a 1D diffusive
system, connected to a pair of reservoirs at its two ends. Sufficient conditions for the occurrence of
a host of possible dynamical phase transitions both in and out of equilibrium are derived. These
transitions manifest themselves as singularities in large deviation functions, resulting in enhanced
current fluctuations. Microscopic models which implement each of the scenarios are presented,
with possible experimental realisations. Depending on the model, the singularity is associated
either with a particle-hole symmetry breaking, which leads to a continuous transition, or in the ab-
sence of the symmetry with a first-order phase transition. An exact Landau theory which captures
the different singular behaviours is derived.

Current distribution in and out of equilibrium

•Microscopic description: particles interact in a 1D channel connected to reservoirs

•Observables:

⋆Current Q on a time window [0, tf]: Q = (# jumps to the right) − (# jumps to the left)

⋆Activity K on a time-window [0, tf]: K = (# jumps to the right) + (# jumps to the left)

•Macroscopic description: particle density field ρ(x, t), current field j(x, t)

Integrated current: Q =
∫ 1
0

dx
∫ tf

0
dt j(x, t)

Large deviations

•Mean value: 1
tf

Q→ j̄ as tf→∞.

•What about fluctuations? As tf→∞, the distribution of 1
tf

Q obeys a large-deviation principle

Prob
(

1
tf

Q = J
)

∼ e−tfϕL(J) where ϕL(J) is the ‘rate function’

•Canonical instead of micro-canonical approach: the moment-generating function

〈

e−sQ
〉

∼ etfψL(s)

•Analogy: ϕL(J) plays the role of a dynamical entropy, ψL(s) a dynamical free energy.

•Connection through a dynamical change of ensembles:

⋆ ‘s-ensemble’: histories biased by 〈e−sQ〉

⋆ Typical value jL(s) of 1
tf

Q in the s-ensemble:

jL(s) = lim
tf→∞

1

tf

〈

Qe−sQ
〉

〈e−sQ〉
= −ψ′L(s)

⋆ In other words: a given s in the s-ensemble corresponds to histories of the non-biased system
with an atypical current of value jL(s) = −ψ′

L
(s). In particular: s = 0⇔ jL(s) = j̄.

⋆ Legendre transform:

ψL(s) = −min
j

{

sj + ϕL( j)
}

(the minimum is reached in j = jL(s))

ϕL( j) = −min
s

{

sj + ψL(s)
}

(min reached in s = sL( j) such that j = jL(sL( j)))

The example of large-N models

Simple Partial Exclusion Process (SPEP) Simple Inclusion Process (SIP)

Figure: Jump rates (for sites with occupancies between 0 and N per site).

Rescaling of the large deviation functions: ψL(s = λ/N) = ΨL(λ) ϕL( j = J/N) = ΦL(J).

Macroscopic Fluctuation Theory [1] in a nut-shell

•Continuity equation: ∂tρ(x, t) + ∂x j(x, t) = 0 , which is in fact...

• ... a Langevin equation for the fluctuating current: j(x, t) = −D(ρ)∂xρ + σ(ρ)E +
√

σ(ρ)η(x, t)

•Gaussian small noise: 〈η(x, t)η(x′, t′)〉 = L−1δ(x−x′)δ(t− t′) with L≫ 1 the number of lattice sites.

•Corresponding Martin-Siggia-Rose-Jansen-de Dominicis representation forΨ(λ) = 1
LΨL(λ/L):

Ψ(λ) = lim
tf→∞

1

Ltf
log

∫

DρDρ̂ e−L
∫ tf

0
dt
∫ 1

0
dx [ρ̂∂tρ−H(ρ,ρ̂)]

•Hamiltonian: H(ρ, ρ̂) ≡ −D(ρ)(∂xρ)(∂xρ̂) +
σ(ρ)

2 (∂xρ̂)(2E + ∂xρ̂)

• Large-L limit (small noise) yields saddle-point equations of the optimal ρ(x, t).

Known results

For processes related to the Simple Exclusion Process (constant D(ρ), quadratic σ(ρ)):
[2] Additivity principle: the optimal profile is time-independent for not too large deviations.
[3] Periodic boundary conditions: the optimal profile is a travelling wave for large enough λ.
[4] Periodic boundary conditions: for K, the opt. prof. is stationary but non-uniform for (idem).

[5] Periodic 2D system: on top of the previous 2nd-order transitions, 1st also exist.

The approach we followed [6]: construct a Landau theory

Method (for any functions D(ρ) and σ(ρ)):

•Assume that σ(ρ) has an extremum in ρ = ρ̄, i.e. σ′(ρ̄).

• Take boundary conditions with reservoir of densities ρa = ρb = ρ̄.

•Check that the flat profile ρ(x) = ρ̄ is an optimal profile.

•Observe that under certain conditions (and for |λ − λ0| > λc), the non-uniform profile

ρm(x) = ρ̄ +m sinπx +O(m)

is also an optimal profile, better than the flat one.

•Construct a Landau theory for the sole parameter m (instead of the full functional space).

(This involves an explicit expansion of ρm(x) up to order m4.)

• Treat the case ρa,b = ρ̄ ± δρ perturbatively in δρ≪ 1. Idem for a bulk field E.

•Determine the criteria for the following possible transitions:

(i) Second-order singularity for large current:

⋆ the rescaled cumulant-generating functionΨ(λ)

⋆ the rescaled rate function Φ(J)

⋆ the corresponding optimal profiles

(ii) First-order singularity for large
current.

(iii) Second-order singularity for
small current.

Remarks:

•Origin of the transition very different from the case of periodic boundary conditions.

• Physical picture:

⋆ If σ′′(ρ̄) > 0: transition⇐ competition btw diffusion (favours flat) & noise (fav. modulations)

⋆ If σ′′(ρ̄) < 0: transition⇐ competition btw diffusion (favours flat) & field E (fav. modulations)

• Explicit system realisations: Katz-Lebowitz-Spohn (KLS) model; a baby-KLS model; WASEP.

Open questions

• Spatially discrete systems (in the large-N limit): existence and characterisation of transitions.

• Experimental realisations? (Heat current in RC circuits [Ciliberto’s group]). Quantum analog?

•Non-uniform and time-dependent optimal solutions? (Observed numerically in [7].)
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