

<u>s</u>

DYNAMICAL SYMMETRY BREAKING AND PHASE TRANSITIONS

IN DRIVEN DIFFUSIVE SYSTEMS

Yongjoo Baek⁽¹⁾, Yariv Kafri⁽¹⁾ & Vivien Lecomte^(2,3)

⁽¹⁾Department of Physics, Technion, Haifa 32000, Israel

⁽²⁾Laboratoire Interdisciplinaire de Physique (LIPhy UMR 5588), CNRS, Université Grenoble-Alpes

⁽²⁾Laboratoire de Probabilité et Modèles Aléatoires (LPMA UMR 7599), CNRS, Université Paris Diderot & Université Pierre et Marie Curie

Abstract

We study the probability distribution of a **time-averaged current** flowing through a 1D diffusive system, connected to a pair of reservoirs at its two ends. Sufficient conditions for the occurrence of a host of possible dynamical phase transitions both in and out of equilibrium are derived. These transitions manifest themselves as singularities in **large deviation** functions, resulting in enhanced current fluctuations. Microscopic models which implement each of the scenarios are presented, with possible experimental realisations. Depending on the model, the singularity is associated either with a particle-hole **symmetry breaking**, which leads to a continuous transition, or in the absence of the symmetry with a **first-order phase transition**. An exact **Landau theory** which captures the different singular behaviours is derived.

Current distribution in and out of equilibrium

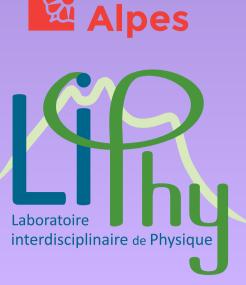
Macroscopic Fluctuation Theory [1] in a nut-shell

• **Continuity equation**: $\partial_t \rho(x, t) + \partial_x j(x, t) = 0$, which is in fact...

... a Langevin equation for the fluctuating current: j(x, t) = -D(ρ)∂_xρ + σ(ρ)E + √σ(ρ)η(x, t)
Gaussian small noise: ⟨η(x, t)η(x', t')⟩ = L⁻¹δ(x - x')δ(t - t') with L ≫ 1 the number of lattice sites.
Corresponding Martin-Siggia-Rose-Jansen-de Dominicis representation for Ψ(λ) = ¹/_LΨ_L(λ/L):

$$\Psi(\lambda) = \lim_{t_{\rm f}\to\infty} \frac{1}{Lt_{\rm f}} \log \int \mathcal{D}\rho \mathcal{D}\hat{\rho} \, e^{-L \int_0^{t_{\rm f}} \mathrm{d}t \int_0^1 \mathrm{d}x \left[\hat{\rho}\partial_t \rho - H(\rho,\hat{\rho})\right]}$$

• Hamiltonian: $H(\rho, \hat{\rho}) \equiv -D(\rho)(\partial_x \rho)(\partial_x \hat{\rho}) + \frac{\sigma(\rho)}{2}(\partial_x \hat{\rho})(2E + \partial_x \hat{\rho})$ • Large-*L* limit (small noise) yields **saddle-point** equations of the **optimal** $\rho(x, t)$.



UNIVERSITÉ

🔮 Grenoble

• Microscopic description: particles interact in a 1D channel connected to reservoirs

Reservoir of density ρ_a

Reservoir of density ρ_b

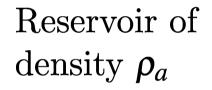
Time- and space-integrated current Q

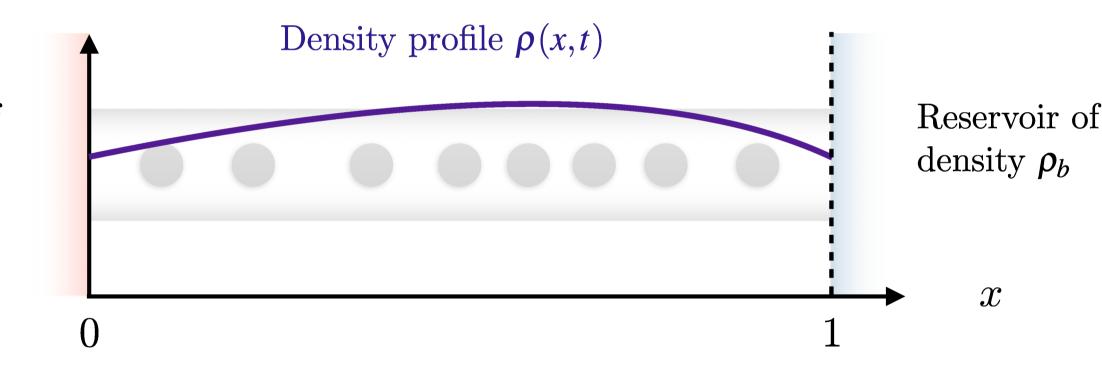
• Observables:

★ Current *Q* on a time window $[0, t_f]$: *Q* = (# jumps to the right) – (# jumps to the left) ★ Activity *K* on a time-window $[0, t_f]$: *K* = (# jumps to the right) + (# jumps to the left)

• **Macroscopic description**: particle density field $\rho(x, t)$, current field j(x, t)

Integrated current: $Q = \int_0^1 dx \int_0^{t_f} dt j(x, t)$





Known results

For processes related to the Simple Exclusion Process (constant $D(\rho)$, quadratic $\sigma(\rho)$): [2] Additivity principle: the optimal profile is time-independent for not too large deviations. [3] *Periodic* boundary conditions: the optimal profile is a **travelling wave** for large enough λ . [4] *Periodic* boundary conditions: for *K*, the opt. prof. is **stationary but non-uniform** for (idem). [5] *Periodic* 2D system: on top of the previous 2nd-order transitions, 1st also exist.

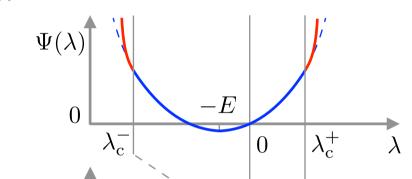
The approach we followed [6]: *construct* a Landau theory

Method (for *any functions* $D(\rho)$ and $\sigma(\rho)$): • Assume that $\sigma(\rho)$ has an extremum in $\rho = \bar{\rho}$, *i.e.* $\sigma'(\bar{\rho})$. • Take boundary conditions with **reservoir** of densities $\rho_a = \rho_b = \bar{\rho}$. • Check that the flat profile $\rho(x) = \bar{\rho}$ is an optimal profile. • Observe that under certain conditions (and for $|\lambda - \lambda_0| > \lambda_c$), the **non-uniform** profile $\rho_m(x) = \bar{\rho} + m \sin \pi x + O(m)$

is also an optimal profile, **better than the flat one**.

- Construct a Landau theory for the sole parameter m (instead of the full functional space). (This involves an explicit expansion of $\rho_m(x)$ up to order m^4 .)
- Treat the case $\rho_{a,b} = \bar{\rho} \pm \delta \rho$ perturbatively in $\delta \rho \ll 1$. Idem for a bulk field *E*.
- Determine the criteria for the following **possible transitions**:

(*i*) Second-order singularity for large current:
★ the rescaled cumulant-generating function Ψ(λ)
★ the rescaled rate function Φ(*J*)
★ the corresponding optimal profiles



 $\Phi(J)$

Diffusivity $D(\rho)$ Conductivity $\sigma(\rho)$

Large deviations

• Mean value: $\frac{1}{t_f}Q \rightarrow \overline{j}$ as $t_f \rightarrow \infty$.

• What about **fluctuations**? As $t_f \to \infty$, the distribution of $\frac{1}{t_f}Q$ obeys a *large-deviation principle*

 $\operatorname{Prob}\left(\frac{1}{t_{\rm f}}Q = J\right) \sim e^{-t_{\rm f}}\varphi_L(J)$ where $\varphi_L(J)$ is the 'rate function'

• Canonical instead of micro-canonical approach: the *moment-generating function*

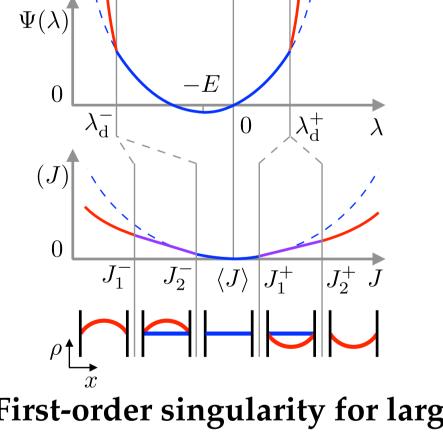
 $\left\langle e^{-sQ}\right\rangle \ \sim \ e^{t_{\rm f}\psi_L(s)}$

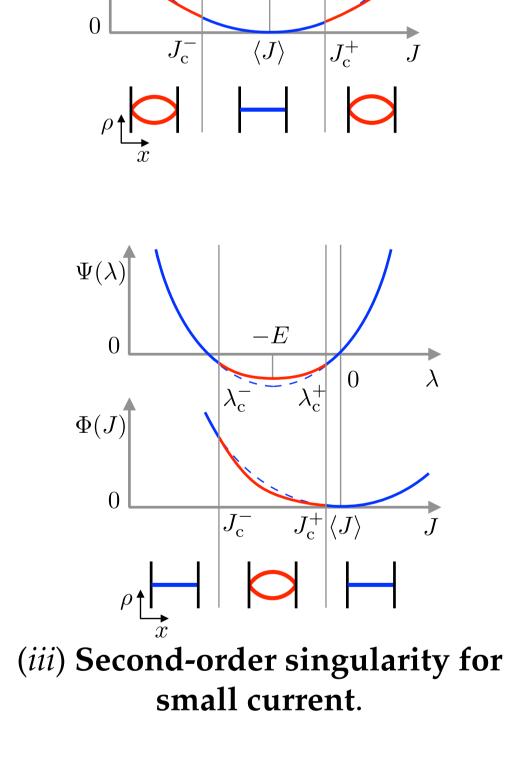
- Analogy: $\varphi_L(J)$ plays the role of a dynamical **entropy**, $\psi_L(s)$ a dynamical **free energy**.
- Connection through a dynamical **change of ensembles**:
- ★ 's-ensemble': histories biased by $\langle e^{-sQ} \rangle$
- ★ Typical value $j_L(s)$ of $\frac{1}{t_f}Q$ in the *s*-ensemble:

 $j_L(s) = \lim_{t_f \to \infty} \frac{1}{t_f} \frac{\left\langle Q e^{-sQ} \right\rangle}{\left\langle e^{-sQ} \right\rangle} = -\psi'_L(s)$

- ★ In other words: a given *s* in the *s*-ensemble corresponds to histories of the non-biased system with an atypical current of value $j_L(s) = -\psi'_L(s)$. In particular: $s = 0 \Leftrightarrow j_L(s) = \overline{j}$.
- **★** Legendre transform:

 $\psi_L(s) = -\min_j \{sj + \varphi_L(j)\}$ (the minimum is reached in $j = j_L(s)$)





(*ii*) First-order singularity for large current.

Remarks:

• Origin of the transition **very different** from the case of periodic boundary conditions.

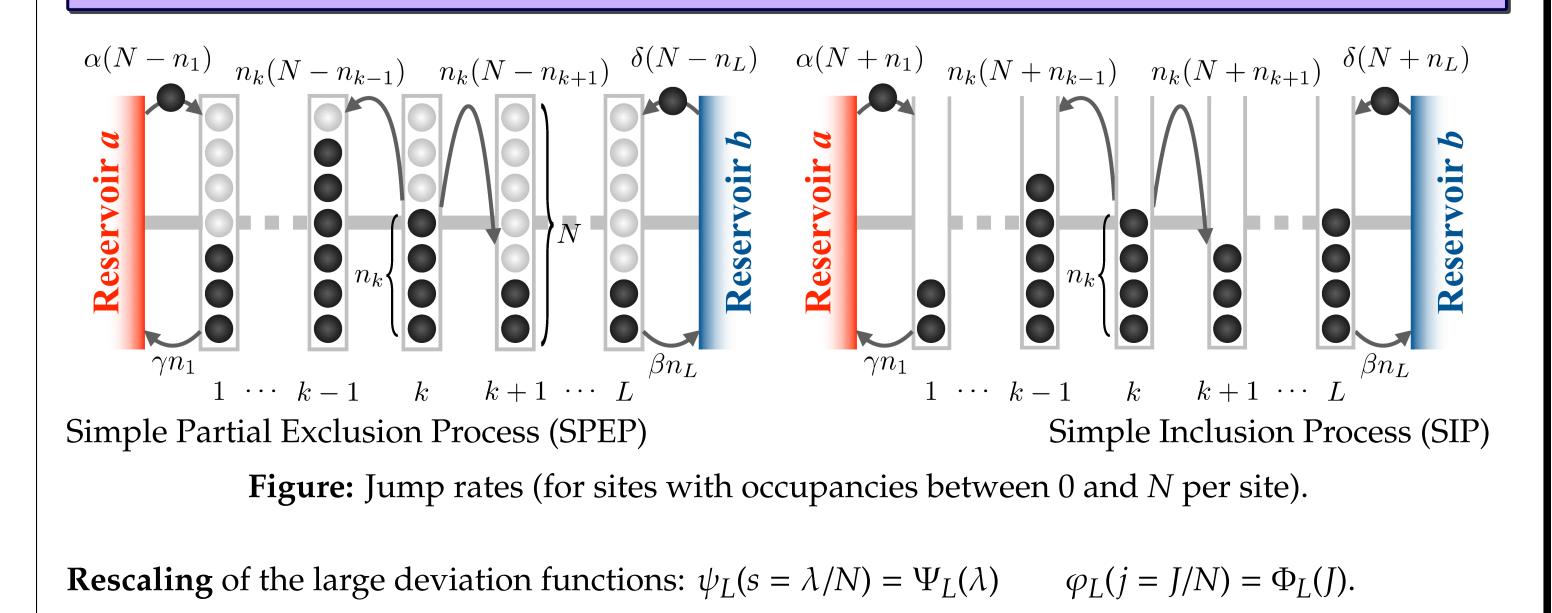
• Physical picture:

★ If $\sigma''(\bar{\rho}) > 0$: transition \Leftarrow competition btw diffusion (favours flat) & noise (fav. modulations) ★ If $\sigma''(\bar{\rho}) < 0$: transition \Leftarrow competition btw diffusion (favours flat) & field *E* (fav. modulations) ● **Explicit system** realisations: Katz-Lebowitz-Spohn (KLS) model; a baby-KLS model; WASEP.

Open questions

 $\varphi_L(j) = -\min_{s} \{sj + \psi_L(s)\}$ (min reached in $s = s_L(j)$ such that $j = j_L(s_L(j))$)

The example of large-*N* **models**



Spatially discrete systems (in the large-*N* limit): existence and characterisation of transitions.
Experimental realisations? (Heat current in RC circuits [Ciliberto's group]). Quantum analog?
Non-uniform and time-dependent optimal solutions? (Observed numerically in [7].)

References

- [1] Lorenzo Bertini, Alberto De Sole, Davide Gabrielli, Giovanni Jona-Lasinio, and Claudio Landim. Macroscopic fluctuation theory. *Rev. Mod. Phys.* 87, 593 (2015).
- [2] Thierry Bodineau and Bernard Derrida. Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle. *Phys. Rev. Lett.* **92**, 180601 (2004).
- [3] Thierry Bodineau and Bodineau Derrida. Distribution of current in nonequilibrium diffusive systems and phase transitions. *Phys. Rev. E* **72**, 066110 (2005).
- [4] Cécile Appert-Rolland, Bernard Derrida, Vivien Lecomte, and Frédéric van Wijland. Universal cumulants of the current in diffusive systems on a ring. *Phys. Rev. E* **78**, 021122 (2008).
- [5] Nicolás Tizón-Escamilla, Carlos Pérez-Espigares, Pedro L. Garrido, and Pablo I. Hurtado. Order and symmetry-breaking in the fluctuations of driven systems. *arXiv:1606.07507 [cond-mat]* (2016).
- [6] Yongjoo Baek, Yariv Kafri, and Vivien Lecomte. Dynamical Symmetry Breaking and Phase Transitions in Driven Diffusive Systems. *Phys. Rev. Lett.* **118**, 030604 (2017).
- [7] Ohad Shpielberg, Yaroslav Don, and Eric Akkermans. Numerical Study of Continuous and Discontinuous Dynamical Phase Transitions for Boundary Driven Systems. *arXiv:1612.07605 [cond-mat]* (2016).