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Abstract

On the macroscopic scale, and for most of their properties, systems in equilibrium
can be described without prior knowledge of their dynamics. This is at variance
with what occurs in out-of-equilibrium systems (with slow glassy dynamics, or in
far from equilibirum steady-states) where the microscopic dynamics is the key to
the systems’ macroscopic features.

To probe aspects intrinsic to the dynamics of physical systems, we imported
concepts of the theory of dynamical systems into the description of systems with
Markov dynamics [1]. These consist in focusing on the various histories (and their
fluctuations) that the systems may follow.

We will show on specific examples how these tools can shed light onto the “dynam-

ical phases” of such systems, even when considering simple equilibrium processes.

Dynamical Complexity

We consider systems endowed with continuous time Markovian dy-
namics, of transition rates W (C → C′) between different configura-
tions. The probability P (C, t) for the system to be in a configuration
C obeys the master equation:

∂tP (C, t) =
∑

C ′

[

W (C′ → C)P (C′, t) −W (C → C′)P (C, t)
]

• In a state of probability distribution P (C), the Gibbs-Boltzman
entropy S[P ] embodies the (static) complexity of the system:

S[P ] = −
∑

C

P (C) lnP (C)

• Stemming from the dynamical system theory, a fair measure of the
dynamical complexity of a system is given by Kolmogorov-Sinai
entropy hKS (in the long time limit):

hKS = lim
t→∞

−
1

t

∑

histories

Prob{history} ln Prob{history}

KS entropy and Markov dynamics

Following Gaspard, one can discretize a continuous-time process in
small time slices and compute the Kolmogorov-Sinai entropy by par-
alleling the usual dynamical system theory. However, the correspond-
ing hdiscrete

KS (τ ) is not well defined when sending the time step τ to
zero:

hdiscrete
KS (τ ) = ln

(
1

τ

)
∑

C,C ′

Pst(C) W (C → C′)

−
∑

C,C ′

Pst(C) W (C → C′) lnW (C → C′)

To give hKS a unit-independent definition, the quantity Prob{history}
has to be dimensionless. One possibility is to consider the probability
of an history C0 → . . . → CK of different successive configurations,
which writes

Prob
(
C0 → . . . → CK

)
=
W (C0 → C1)

r(C0)
. . .

W (CK−1 → CK)

r(CK−1)

where r(C) =
∑

C ′W (C → C′) represents the escape rate from con-
figuration C. Between time 0 and t, the number K of jumps among
configurations is not fixed. One can thus define

hKS ≡ −
1

t

〈

Prob(C0 → . . .→ CK) ln Prob(C0 → . . .→ CK)
〉

jumps

where 〈·〉jumps represents the averaging over the number of events and
over the durations between two successive events.

An example: the ferromagnet

As an illustration, we consider the infinite range Ising ferromagnet,
composed of N spins thermostated at inverse temperature β.
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Fig. 1: KS entropy
of the infinite range
Ising ferromagnet
(with N≫1 spins),
as a function of the
inverse temperature
β.

As indicated in fig. 1, the existence of a (static) phase transition
between an ordered phase (β > 1) and a disordered phase (β < 1) is
well reflected in the behaviour of the KS entropy, which is constant
(at order N ) in the disordered phase. Moreover, as expected from
common sense, we observe that the ordered phase is dynamically less
chaotic than the disordered one.

Time-reversed KS entropy and entropy

flux

Reversing the arrow of time may change the way in which systems get
dynamically more complex. To characterize the chaoticity of a system
observed backwards in time, one is interested in looking at the time-

reversed KS entropy hRKS. Both hKS and hRKS can be extracted from
the long-time behaviour of the history-dependent observables Q±:

Q±(t) =

K−1∑

k=0

ln
W (Ck ⇄ Ck+1)

r(Ck)

as we have (with t→ ∞)

hKS = −
〈Q+〉

t
and hRKS = −

〈Q−〉

t

where 〈·〉 stands for the average over the histories spanning from 0 to
t. As pointed out by Gaspard in the context of discrete-time Markov
processes, the difference between hRKS and hKS is equal to the entropy
current flowing through the system. In our formalism, the same equal-
ity holds at the level of the fluctuating observables:

Q+(t) −Q−(t) =

K−1∑

k=0

ln
W (Ck → Ck+1)

W (Ck+1 → Ck)
= QS(t)

The quantity QS(t) is the integrated Lebowitz-Spohn-Gaspard-Maes
entropy current. It represents the entropy variation due to the ex-
change of particles and/or energy between the system and the envi-
ronment.

S
[
P (t)

]
− S

[
P (0)

]
= Σ(t)

︸︷︷︸
positive

production

− 〈QS(t)〉
︸ ︷︷ ︸

exchange
entropy

State-dependent KS entropy

From the master equation, hKS appears as the mean value, in the

stationary state, of an instantaneous observable J+(C)

hKS = −〈J+〉st with J+(C) =
∑

C ′

W (C → C′) ln
W (C → C′)

r(C)

where 〈X〉st =
∑

CXPst(C) and Pst is the stationary state. This
expression strongly suggests to define a state-dependent KS entropy

hKS[P ] = −〈J+〉P = −
∑

C

P (C)J+(C)

where P (C) now represents any probability distribution.
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Fig. 2: hKS[P ] for
the infinite range Ising,
in a state of mean mag-
netisation m, as a func-
tion of m, at β = 1.2 .
The equilibrium mag-
netisation meq ≃ 0.66
is solution of the mean-
field equation meq =
tanh βmeq .

For the Ising ferromagnet (fig. 2), hKS[P ] only depends on the mean
magnetisation m in the state P (C). This example illustrates how the
KS entropy evolves when the systems starts from a completely disor-
dered state (m = 0) [or in an ordered state (m = 1) ] before aquiring,
in the long-time limit, its equilibrium magnetisation meq.

A “dynamical free energy” : the

topological pressure ψ(s)

• In equilibrium, the Gibbs-Boltzman partition function reads

Zeq(β) =
∑

C

e−βH[C] = eNf(β) (large N )

Configurational phase transitions give birth to non-analyticities in
the mean free-energy f (β).

• Stemming from the dynamical system theory, the dynamical parti-
tion function reads

Zdyn(s, t) =
∑

histories
from 0 to t

Prob{history}1−s = etψ(s) (large t)

The parameter s enables to probe low or high probability histo-

ries . The topological pressure ψ(s) plays the rôle of a dynamical
free energy.

In the context of continuous-time Markov processes, the dynamical
partition function Zdyn(s, t) appears as the generating function of the
cumulants of the observable Q+(t):

Zdyn(s, t) =
〈

e−sQ+(t)
〉

The topological pressure ψ(s) appears as the largest eigenvalue of the
operator:

W+(C, C′) = W (C′ → C)1−sr(C′)s − r(C)δC,C ′

Topological pressure of the ferromagnet
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Fig. 3: the topological pressure ψ(s)

(or “dynamical free energy”) of the Ising

model in the ordered phase (β = 1.4).

Fig. 4: the dynamical order parame-

ter m(s) corresponding to the topologi-

cal pressure ψ(s) of the Ising ferromag-

net.

• In the low temperature phase, the topological pressure ψ(s) (fig.

3) is not analytic at s⋆ = 0. This dynamical phase transition

comes from the fact that

- histories more chaotic than the stationary ones are similar to
disordered-phase histories (m(s) = 0).

- histories less chaotic than the stationary ones are similar to
ordered-phase histories (0 < m(s) < meq).

A system with an absorbing state: the

contact process

Consider an (infinite range) contact process: N ≫ 1 sites are either
free or occupied by a particle, and each site is subject to the following
Markov transition rules:

- each occupied site becomes empty with rate 1

- each empty site becomes occupied with rate λn/N , where n is the
total number of particles.
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Fig. 5: the topological pressure ψ(s)

(or “dynamical free energy”) of the con-

tact process (λ = 5).

Fig. 6: the dynamical order parame-

ter ρ(s) corresponding to the topological

pressure ψ(s) of the contact process.

Again, the topological pressure ψ(s) (fig. 5) is not analytic at s⋆ = 0,
which reflects the presence of two dynamical phases in the thermody-
namic limit:

- an active phase of non-zero density ρ = 1 − 1
λ

- an absorbing state in which the system does not evolve anymore

The density ρ(s) plays here the rôle of a dynamical order parameter

with respect to the transition between the active and inactive phase.

Summary and perspectives

•Meaningful extension of dynamical system theory to continuous-
time stochastic processes.

•A tool to probe statistics of histories: thermodynamics in phase
space.

• Extension to systems whose dynamics is governed by rare events.
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