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Abstract

While several analytical arguments support power-law scaling behaviours in disordered elastic systems, those are often restricted
to special dimensionalities and/or classes of disorder. The Gaussian Variational Method (GVM) offers a simplification that
consists in finding the “best” quadratic Hamiltonian representing the initial problem (after introducing replicæ and integrating
over disorder). It provides an approximation allowing one to determine correlation functions and their scalings — at the price of
solving a variational equation.

The GVM can present two sorts of issues: (i) a technical one: solving the variational equation can be difficult and (ii) a physical
one: the scaling exponents can be wrong. As a benchmark study, we consider here the fluctuations of the directed polymer in 1+1
dimensions in a Gaussian random environment with a finite correlation length and at finite temperature (whose scaling exponents
belong to the KPZ universality class and are known exactly).

We unveil the crucial role played by two ‘cut-off’ lengths: the disorder correlation length and the system size. We focus on a
numerical algorithm to solve the variational equation, based on a fixed-point approach. Results support the idea that correctly
taking into account the finiteness of the mentionned cut-offs allows one to capture correct scaling exponents through GVM.

Based on: E Agoritsas and V Lecomte, J. Phys. A: Math. Theor. 50 104001 (2017)

Interfaces in the Directed Polymer language
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Geometrical parametrization:

⋆ longitudinal coordinate z

⋆ univalued transverse coordinate u(z)

⋆ no bubbles, no overhangs

Directed Polymer (DP) parametrization:

⋆ longitudinal coordinate: DP growing time t = z

⋆ transverse coordinate: DP endpoint y(t) = u(z)

⋆ working at fixed time t ⇐⇒ integration of fluctu-
ations at scales smaller than t

Model & questions

•Competing ingredients in the total energy HV [y(·), t] = Hel[y(·), t] +Hdis[y(·), t]:
⋆ elastic energy (flattens the interface) vs disorder potential (deforms the interface)

Hel[y(·), t] = c

2

∫ t

0
dt′

[
∂t′y(t

′)
]2 Hdis

V [y(·), t] =
∫ t

0
dt′ V

(
t′, y(t′)

)

⋆ no disordered potential V (t, y): diffusive behaviour (typically, y ∼ t1/2), Edwards-Wilkinson (EW)

⋆ disordered potential V (t, y): super-diffusive behaviour (—, y ∼ t2/3), Kardar-Parisi-Zhang (KPZ)

•Nature of the disordered potential V (t, y): “Random-Bond”, i.e.

centered, Gaussian distributed, of 2-point function V (t, y)V (t′, y′) = Dδ(t′ − t)Rξ(y
′ − y)

disorder correlator: smoothed delta

R
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scaling as Rξ(y) =
1
ξ Rξ=1(y/ξ)

•What is the distribution of the (quenched) polymer end-point free-energy, encoding its fluctuations?

partition function: ZV (t, y) =

∫ y(t)=y

y(0)=0
Dy(t′)e−

1

THV [y(t
′),t] free energy: FV (t, y) = − 1

T
logZV (t, y)

•What is the variance of the polymer endpoint at scale t?

encoded in the roughness B(t) = 〈y(t)2〉 =

∫
dy y2ZV (t, y)∫
dy ZV (t, y)

?∼ const× t2ζ

︸ ︷︷ ︸
at large scale t → ∞

• Summary of parameters:

elastic constant c disorder strength D temperature T disorder correlation length ξ

Evolution equations & Symmetries

• Stochastic Heat Equation for the partition
function ZV (t, y)

∂tZV =
[T
2c
∂2y −

1

T
V (t, y)

]
ZV (t, y) (SHE)

Linear, multiplicative noise, ZV (0, y) = δ(y)

• Statistical Tilt Symmetry:

FV (t, y) = c
y2

2t
+
T

2
log

2πT t

c︸ ︷︷ ︸
elastic contribution

+ F̄V (t, y)︸ ︷︷ ︸
disorder

contribution

F̄V (t, y) invariant by translat◦ in distribution

• Implies B(t) = Bth(t) +Bdis(t) with

Bth(t) =
Tt
c and Bdis(t) = 〈y(t)〉2

•Kardar-Parisi-Zhang equation for the free-
energy FV (t, y)

∂tFV =
T

2c
∂2yFV − 1

2c

[
∂yFV

]2
+ V (t, y)

(KPZ)
Non-linear, additive noise,
FV (0, y): “sharp wedge” initial condition

•Tilted KPZ equation for the disorder free-energy
F̄V (t, y)

∂tF̄V +
y

t
∂yF̄V =

T

2c
∂2yF̄V − 1

2c

[
∂yF̄V

]2
+ V (t, y)

Simple initial condition F̄V (0, y) = 0

Replicæ

〈O [y(tf)]〉 =
∫

DV P̄ [V ]

∫
y(0)=0Dy(t)O [y(tf)] e

− 1

TH[y(·),V ;tf]

∫
y(0)=0Dy(t) e−

1

T
H[y(·),V ;tf]

= lim
n→0

∫

y1(0)=0
Dy1(t) (. . . )

∫

yn(0)=0
Dyn(t)O [y1(tf)] e

− 1

T H̃[y1(·),...,yn(·);tf]

H̃ [y1(·), . . . , yn(·); tf ] =
∫ tf

0
dt


c
2

n∑

a=1

(∂tya(t))
2 − D

T

n∑

a,b=1

Rξ(ya(t)− yb(t))




GVM for an infinite system (tf → ∞)

Trial Hamiltonian:

H̃0
[
y
]
=

1

2

∫

R

d̄q
n∑

a,b=1

ya(−q)G−1
ab (q)yb(q) (with d̄q ≡ dq

2π)

Parametrization:

G−1
ab (q) = cq2δab − σab with σab described by a function σ(u) [0 ≤ u ≤ 1]

Re-parametrization:

[σ] (u) = u σ(u)−
∫ u

0
dv σ(v) (⋆)

Variational equations (for a Gaussian correlator function):

σ(u) =
2√
π
β

3

2

[
ξ2 + β−1

∫

R

d̄q
[
G(q)−G(q, u)

]]−3

2

(⋆⋆)

∫

R

d̄q
[
G̃(q)− G(q, u)

]
=

1

u

1√
[σ](u)

−
∫ 1

u

dv

v2
1√
[σ](v)

(⋆ ⋆ ⋆)

A fixed-point algorithm to solve the GVM variational equation

Start from an ‘initial’ σ0(u). To evaluate σk+1(u) from σk(u), iterate the following procedure:

• determine [σk](u) from σk(u), using (⋆)

• determine the corresponding
∫
R
d̄q

[
G̃k(q)− Gk(q, u)

]
, using (⋆⋆)

• determine the next iteration σk+1(u) as follows [see (⋆ ⋆ ⋆)]:

σk+1(u) =
2√
π
β

3

2

[
ξ2 + β−1

∫

R

d̄q
[
G̃k(q)−Gk(q, u)

]]−3

2

If σk(u) → σ∞(u) as k → ∞, one expects a fixed point σ∞(u) [stable solution of (⋆ ⋆− ⋆ ⋆⋆)]

Numerical test: GVM for an infinite system
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Iterations increase from red to dark purple.
Compatible with the analytical solution (dashed blue)

σ(u) =

{
Au9 if u < uc

[σ](uc) if u > uc

(yielding a wrong roughness exponent ζ = ζFlory =
3
5)

GVM for a finite system (tf < ∞)

Rescalings chosen such that : ξ̊(tf) =
ξ

tζ
f

(D
cT

)1
3

and β̂(tf) =

[
tf
T 5

cD2

]1

3

with ζ = ζKPZ = 2
3.

Variational equations, now with discrete Fourier modes ω ∈ 2πZ/tf :

σ(u) =
2√
π
β̂

3

2

{
β̂ξ̊2 +

∑

ω

[
G̃(ω)−G(ω, u)

]}−3

2

(⋆⋆)′

∑

ω

[
G̃(ω)−G(ω, u)

]
=

1

u

coth
(
1
2

√
[σ](u)

)

2
√
[σ](u)

−
∫ 1

u

dv

v2

coth
(
1
2

√
[σ](v)

)

2
√

[σ](v)
(⋆ ⋆ ⋆)′

Slope 10
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(Left) Solution of (⋆⋆)′, (⋆ ⋆ ⋆)′ when σ′(u) 6= 0.
(Top) Numerical procedure for small ξ (iterations in-
crease from red to dark purple).

• Compatible with a σ(u) behaving as:
plateau+full RSB+plateau

• Effective 1-step solution ⇒ correct ζ = ζKPZ = 2
3

Open questions: full solution in 1D ; extensions to other dimensions, disorder, elasticity.


