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Quasiequilibrium during aging of the two-dimensional Edwards-Anderson model
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We test the quasiequilibrium picture of the aging dynamics—strictly valid in the asymptotic dynamical
regime of aging systems—in the preasymptotic aging regime of the two-dimensional Edwards-Anderson spin
glass model. We compare the fluctuation-dissipation characteristic for spin autocorrelation function and re-
sponse with a corresponding one obtained for a suitably defined correlation function and its conjugated
response. In agreement with the quasiequilibrium picture we find that after a short transient the two corre-
sponding fluctuation-dissipation rati@SDR'’s) coincide at equal times. Moreover we show that, as it happens
for the usual FDR, the dynamic FDR at finite time coincides with the static one at finite size.
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[. INTRODUCTION correlation functiorCg(t,t,,) corresponding to an observable
B, and we define an auxiliary limiting functiong(qa)

In recent times, following developments in spin glass=|imtt HWCB(t’tw)|CA(t,tW)=qA7 the following relation
mean-field theory1,2], much emphasis has been put on thepo1d o
study of off-equilibrium fluctuation-dissipation relations dur-
ing aging dynamics in glassy systems. These relations quan- Xg(qs(da))=Xa(qa), 3
tify the deviation of the ratio between correlation functions
and conjugated responses from the one implied by théhe meaning of which is that the function,(t,t,) and
fluctuation-dissipation theorem valid at equilibrium, andXg(t,t,,) coincide asymptotically for equal times. Moreover,
have been posed at the basis of a detailed thermodynamicial Ref. [6] it has been shown that in a large class of finite-
and statistical description of the dynamics of glagsess|. dimensional systems with short range interactiofg) de-
Linear response theory allows one to relate possibldined in an out of equilibrium context is deeply related to the
asymptotic violation of the fluctuation-dissipation theorem tonature of the equilibrium free-energy landscape. In fact, con-
the failure of ergodicity at the level of the equilibrium mea- sidering the overlap probability functiq©PP P(q) [7] de-
sure[6]. scribing the statistics at equilibrium of the correlations of the

Given the correlation functiorc(t,t,) of a certain ob- observableA in two configurations chosen with the Boltz-
servableA, and its conjugated response functipft,t,,) de-  mann weight, the linear response theory implies
scribing the effect at timé of a field conjugated t@\ acting
from time 0 to timet,, one can define the fluctuation- —fqd 'P(q’ 4
dissipation ratid FDR) X(t,t,,) from the relation x(q)= 0 a'P@’). (

S

aC(t,ty)/aty This equality implies that eithex(q) and P(q) are both
X(t'tw):TM' () nontrivial or they are both trivial and could be taken as the
starting point for an experimental measure of the equilibrium
This is just unity in equilibrium conditions while deviates OPF from off-equilibrium dynamics. Of course, it does not
from it off-equilibrium and, in general, depends on the ob-imply the existence of some short range system where it is
servable quantityA at hand. In mean-field spin glasses theVerified nontrivially. Going through the derivation one real-
FDR admits a nontrivial limit in the aging regime, where the izes that Eq.(4) expresses the commutation of the thermo-
correlations assume a scaling invariant behavior. Moreoveglynamic limit and the long time limit as far as certain sus-
in the long time limit, taken after the thermodynamic limit, ceptibilities are concerned. Notice also that, owing to @g.

one can define the function Eq. (3) expresses the fact that for two observalAeand B,
couples of states with identicaj, also have identicaljg,

x(q)=lim X(tytw)|C(t,tW):qa 2 i.e., the functionqa(gg) defined in the dynamics describes

tty—o the relation between different overlaps in equilibrium ergodic

components. This property has been shown to be deeply re-
which can have a nontrivial behavior. When this happenslated to ultrametricity in Refl.6] where it was found that the
x(q) turns out to have an important covariance property uncombination of relation$3) and(4) implies ultrametricity.
der exchange of the given observalllehosen in the mea- The meaning of Eq(4) has been clarified in Ref.3]
sure of correlation and response. If we have a correlatiomvhere it has been discussed ha{g) can be related to the
function Cx(t,t,,) corresponding to an observab®eand a density of metastable states, or quasistates, with free-energy
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density slightly above the minimum, implying that quasis-dimensions is due to the fact that at a given tityehere is
tates of equal free energy are selected with equal probabilitg slowly growing lengthé(t,,) over which the system has
during the dynamical process. The identify and the cova- effectively equilibrated, an(q,t,) would approximately
riance property3) allow one to rationaliz¢3,8] the interpre-  respect the relatiort4) with P(q,L=£(ty)) [18]. Such an
tation of the ratiosT/x(q) for different values ofj as effec- extension would suggest the approximate validity at finite
tive temperatures governing the exchanges of heat amoriine of a quasiequilibrium picture of the aging dynamics in
slow modes evolving on waiting time-dependent time scaleyvhich quasistates with equal free energy are selected with
[9]. equal probability, and the static-dynamic equivalence would
Effective temperatures dependent grmean that while jUSt reflect the properties of the equilibrium |andscape of the
modes evolving on the same scale are in equilibrium witHinite size system. The hypothesis is rather suggestive as it
each other, heat exchanges between modes evolving dould provide a framework to interpret aging properties in
widely separated scales do not occur. It has been recentf appropriate time scale even for systems which display
shown[10,11] that in trap models wherg(q) has a non- interrupted aging. Here, while in a certain time window slow
trivial q dependence, but ultrametricity does not hold, differ-€volution and approximated scaling laws for correlations
ent quantities define different FDR’s, a situation where itf'ind/or sgsceptibilities are observed, the final asymptotic state
would be difficult to identify the FDR's with effective tem- IS €rgodic.
peratures. Conversely, Barrat and Berthi@?] studied To test this extension Berthier and Barfa8] studied the
Lennard-Jones models of glass-forming liquids where a FDRWO-dimensional Edwards-Anders¢@D EA) model, which
constant inq seems to describe the off-equilibrium dynam- ©n one hand displays strong aging effects at finite times, and

ics, and found that density fluctuations at different wave vec@ nontrivial OPF for finite size, on the other it is known to
tors define the same FDR. finally reach a paramagnetic state at all finite temperatures.

Numerical simulations of three- and four-dimensiona'ln tha.t WOI’k |t was found that indeed thel’e eXiStS a corre-

spin glass Edwards-Anderson models, comparing extrapol&Pondencé —t,, such that the relatiofd) holds. More re-
tions of the OPF from finite size systems and extrapolation§ently, Berthier also studied the three- and four-dimensional
of the FDR from finite time, indicate the nontriviality, and Case in a preasymptotic regime obtaining similar re$@f.
consistently the identity, of both functiof43]. This has In the light of the previous considerations about the link
been taken as an evidence in favor of a “replica symmetry@mong effective temperatures and time scale separation,
breaking(RSB) scenario” for finite-dimensional spin glasses. these findings appear rather surprising. Here, no time scale
These extrapolations however have been questioned in geParation is possible, slow modes have to exchange heat in
series of papers showing that the OPF in systems withougrder to eventually equilibrate_. In order t_o save the picture,
RSB, i.e., where the OPF is trivial in the thermodynamicOne can of course hypothesize that this exchange occurs
limit, can be plagued by severe finite size effects such thatadiabatically,” in such a way that modes evolving at the
for relatively small systems it appears similar to what oneSame rate appear to be able to equilibrate at their effective
expects for systems with RSB4]. In such conditions RSB temperature with faster or slower modes before exchanging
could be wrongly inferred from extrapolations of the finite heat. If this consideration applies, FDR corresponding to dif-
size OPFP(q,L) of systems of too small sizas while the  ferent quantities should appear approximately equal to one
true P(q) is a trivial singles function. In the same way one @another. In order to test this hypothesis we consider as in
could think that off-equilibrium times in the simulation are Ref.[19] 2D EA model where as mentioned aging is inter-
too short to reliably extrapolate the asymptotic FDR from thefupted after a finite relaxation time. In our analysis we define
finite t,,, and that the true asymptotic one is just a single fla§ome suitable correlation and response function, not obvi-
step as in domain growth problerfiss]. ously related to the usual spin autocorrelation and its associ-
On the experimental side it is clear that many system&ted response, and compare the FDR for both couples of
with slow aging dynamics are found in preasymptotic re-functions. In addition, in two dimensions we test the equiva-
gimes‘ A common phenomenon is the one of interrupted adence-b-etween the static and the dynamIC FDR fOI’ the new
ing, found e.g., in Ref[16], where a slow dynamical regime duantities. _ _
similar to usual aging eventually crosses over to equilibrium ~Our results are then compared with analogous measures in
behavior. In addition, even in three-dimensional spin glassedhe Viana-Bray(VB) diluted spin glass, where Edd4) is
the paradigmatic systems where aging could persist indefknown to hold nontrivially. _
nitely, one sees that many quantities are far from their final _The remaining of the paper is organized as follows. In the
values. In particular, the experiments of idson and Ocio following section, we introduce the relevant q_uantltl_es, then
[17], where the first experimental determination of the FDRWe present and discuss the results of the simulations, and
in spin glasses was achieved, show FD curves that strongfnally the conclusions are outlined.
depend on the waiting time, signifying that the dynamics is
still in.some preasymptot_ic regime. In such _conditions it. is of Il. DEFINITION OF THE OBSERVABLES
great interest to enquire if the concepts valid for aging in the
asymptotic regime can be adapted to get an adequate picture The model we will consider consists of a pair of spin
of the dynamics on much shorter time regimes. glass systems with independent random coupling and identi-
In this context, one can hypothesize that the identity be€al number of spins coupled through random interactions.
tween static and dynamic FDR’s found in three and fourBefore explicitly introducing the model let us say a few
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words to motivate this choice, keeping in mind that our taskAs the second couple of correlation-response pair we con-
will be to compare FDR’s corresponding to different sider the spin cross-correlation functift
correlation-response couples. In spin ngels, defined in

terms of an exchange HamiltoniaH=2{-.J;;S;S;, the _ -1 T2 2 ol ,
natural and most commonly used choice to prJobe dynamicaICC'OSS(t’tW) (2N) z. (IS DS () +SOS (IR
correlations is the spin autocorrelation function at different (10
times, C(t,t,)=N"13(S(t)S(t,)), the corresponding

“zero field cooled” susceptibility with respect to small local and

iid. Gaussian field; with varianceh?, introduced in the

systems at timé,, and kept on at later times, reagét,t,,) Yerosd trty) =
=(1INh2)=(h;S(1)), where the overline denotes the aver- 2Nh2K
age over the field. A second common choice is the “energy (11)
correlation function,” also known as “link overlap”

N ; here(- - -) indicates an average over the initial conditions
Ce(t,tw) =N"1Z; ;3;(Si(t)Si(t)), and the associated re- W ales _
sponsexe(t,ty) = (UNN) (3, h S (1)). In mean field, for and the overbar indicates on average over the disorder. We

: , . will speak about direct correlation and response, respec-
Gaussian long rang&;’s one can show that in the thermo- .. .

A N ) ) tively, for Egs.(8) and(9) and cross correlation and response
dynamic limit, choosing the variance of tlig’s to be equal

. ) . for Egs.(10) and (11).
:ﬁelg\;/'ngpn?crs]as for all times and with no assumption about An explicit formula for Ceroedt,ty) and Rergedtty)

= —dxcrosdt,tw)/dt, as functionals of C(t,t,) and
_ 2 R(t,ty) = —dx(t,ty)/dt,, can be given for smaK using lin-
Celt,tw) =Clttw)", © ear response theory:

Ei‘, ((h?sSk(t)+ hIS(1)R)),

dxe(t,ty) dxe(t,ty) ty
aty =C(ttw) aty, 6) Ccross(titw):KZIB[ fo dsC(t,s)R(ty,,S)

so that, automatically, for all times, the FDR'’s defined with t
these guantities coincide with the one defined with the usual + fodsC(tW S)R(L,8)
correlations and response. Analogously at equilibrium, one
finds that the relatiomg(q)=q? holds and 21Pz(qe(q)) ¢
=P(q) is independent of the ultrametric nature of the orga- Rerosd T, ty) = Kzﬁf dsRt,5)R(s,ty,), (12
nization of the states. ty

Then, in order to test the quasiequilibrium picture one | . . o . .
needs to compare overlaps nontrivially related one to thé‘"h'ch S.hOWS that .|f.the cross FDR coincides with the direct
other. Consider, therefore, two copies of spin glass system&N€: it is for nontrivial reasons.
with identical number of spins, and identically distributed,
but independent quenched disorder and coupled by a random lll. RESULTS AND DISCUSSION
field R;. The Hamiltonian of this compound system is de-
fined by

We studied the cross quantities in two different systems of
Ising spins with random quenched disorder, the Edward
Anderson model, a bidimensional square lattice of spins of

H=>, Jiljsllsjl+2 JﬁS,ZSJ-ZJrE RS'S?, (7)  sizeN=LXL, and the fixed connectivity versid@1] of the
i i i Viana-Bray model[22], where the spins are on a random
lattice with fixed connectivityc=10 and sizeN. For both
whereJ;; andJ;; represent the quenched disorder in copies Imodels, we considered two copies with identical number of
and 2, respectively, and are quenched variables respectirgins and independent quenched disorder coupled by a ran-
the lattice topology and otherwise taken as iid from a Gaussdom field R;==K as in the preceding section wit
ian distribution with mean 0 and variance 1. The varialles =1/2. For this large value oK we are out of the linear
which couple spins with identical label in the two copies response regime that allowed us to derive the explicit form
have been chosen randomly with valugs= =K. of the cross quantities as a function of the usual ones, but

The dynamical spin autocorrelation function now reads even if the relationg12) do not hold, there is no reason to
believe that the relation betweeX.,ss and X becomes
trivial.

In order to have as a reference results for a system where
the picture sketched in the Introduction certainly holds, we

C(t,t,)=(2N) "1 (Sh(t)Sk(ty) + SA(1)S2(ty)), (8)

and the corresponding response present first the data of the simulations of the Viana-Bray
model.

1 In the first test, we compared the FD plots in dynamic

x(tty) = 5 2 (hiSH () +h?Si(1)). (9)  simulations of aging experiments with the static ones ob-

2Nhg tained through the parallel tempering technique. Our results
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0-8 T T T T
0.7 -_-——_*%)‘("‘“-% .
o »?*i;&éﬂ
0.6 ﬂgﬂ;k .
~ S
S g5t %ﬂ‘(h 4 FIG. 1. Fluctuation-dissipation plot for the
,% }\;\x VB model. A vertical shift is necessary to super-
=2 0.4 | - | impose the equilibrium curvélines) to the dy-
% BNUX namic one(symbolg. N=164,196,256, and 324
3 ozl wx | and t,=107,10°, and 10, T=2.18. Lower
= X curves stand for cross-response and cross-
&~ 02 | i correlation functions while the upper ones reflect
. the usual correlation and response functions.
0 0.2 04 0.6 0.8 1

C(t’ tw 2 CL' r0oSs (t’ tw)

are summarized in Fig. 1. We can observe that, on one han(;i,(sll ’SIZ) and S :(31’ ,SIZ’): q(S,S’)=(1/2N)EiS|1$11'
the static characteristics have small finite size dependence, ' . , ' '
P 85257, while Qorosd S.S') = (L/2N) S R(SIS? +57S!).

on the other, the dynamical curves have little dependence . ) ol o
the waiting times. As expected, the dynamic curves coincidoéFheE using Eq(4) we derive the equilibrium quantitieg(q)

with the static ones for the direct functions. For the crosstNd X(dcrosd and compare them with the results obtained
functions they also coincide, provided the static curves aréom the dynamic simulations. o N
shifted vertically; this is normal as it should be noted that the  Although we did not try to measure the joint probability
maximum value oftss in the equilibrium OPF of finite  P(Q.dcrosd, We could extract a functioncos{(q) as im-
systems is unity, while dynamicall€,,<d{t,t,) is mono-  Plied by the relation3) and compare with the one directly
tonically decreasing from the valu@ .t ,t,)<1 fort  obtained from the dynamics. The results can be seen in Fig.

>t,,. Therefore, one should subtract a constant to the secorl Where one can see that the static and the dynamic curves
approach each other for values of,,ss smaller than

; D . _rl ’ ’

integral 9f P.(Q”OSS)' S(q?’OSS)_f_qcrossXC'OSS(q )dg’ to Cerosdtw,tw). This is what one should expect because, as

compare it with the dynamic function. discussed above, in dynamics this is the largest value of
We then tested to what extent H@) is valid when finite Cerosdtty), and tends to its limit from below fot,,— .

systems in statics are compared to systems evolved for finil€onyersely in statics, for finite systems, the probability dis-

aging times in gynamms. From the statics we get the funcyipution always extends to values gf,,s< larger than the

tions P(q) and P(qcr0sd, Whereq is defined as the usual maximum value for an infinite system.

(direch overlap between two independent replic& We then pass to the study of the two-dimensional system.
0-4 T T T T
0.35 | .
0.3 i
§ 0.25 . FIG. 2. Parametric curves of the cross corre-
~ lation as a function of the direct one. The lines
:‘:} 02 r a * . are the equilibrium curvebl=144 and 196 and
= . the points the dynamic oneg=10,1¢,10°, and
§ 015 < - 10*. We see that the curves approach each other
© " for values ofqc,oss SMaller thanC. osdty tw),
01t 4 which seems to have reached tifs— limit.
0.05 i
0 1 1 1 1
0 0.2 04 0.6 0.8 1
Cit), q
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0. 4 T T T LY T T T

FIG. 3. Fluctuation-dissipation plot for the EA
model at temperatur€=0.43 and waiting times
t,=10% (black symbols and t,=10° (white
symbolg in comparison with equilibrium func-
tions (lines) for systems of sizé. =8,10. A ver-
tical and a horizontal shift are necessary to super-
impose the equilibrium and the dynamic curves.
Lower curves stand for cross-response and cross-
correlation functions while the upper ones reflect
the usual correlation and response functions.

T X(t’tw) JT Xcross(t’tw)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C(t’ tw 2 CL' r0oSs (t’ tw)

We studied the aging dynamics of the 2D EA model with =10, for the static ones. The upper curves correspond to the
unitary Gaussian couplings dt=0.43, where no sign of usual functions(similar curves were already presented in
thermalization can be observed in the correlation function ugRef. [19]), while the lower ones reflect the cross functions.
to waiting times as high at,=10°. In our simulations we  Unfortunately, it turns out that in order to superimpose the
used h§=0.02 and checked it to be in the linear responsestatic and dynamic curves, a vertical shift 8§q) is not
regime using the valub2=0.01. On the equilibrium side, enough and a horizontal shift should also be performed.

using the p_arallel tempering techniq_[%] we were able to In order to understand this point we note that differently
calculate with good precision the spin glass order parametet what happens for the direct function for which by con-
P(q), as well as the functio®(gc,os9 - structionC(t,t) =1, the value ofC,,s{t,t) evolves in time.

In Fig. 3 we present a fluctuation-dissipation plot for theln such conditions the definition of the FDR in terms of the
model. As observed by Berthier and Barfdf], one can simple correlation is not necessarily the most appropriate. In
superimpose the finite time curves of the direct functionsfact, the study of running away systerfesg., Brownian mo-
with the second integral of the equilibrium OPF of suitabletion or particles in nonconfining random potentia?s24))
size systems at the same temperature. The points represeshiow that a better definition is obtained considering the fol-
the data obtained by the dynamic simulation, while the linedowing combination of the correlation functidB;,,sdt,t,,)
are those obtained by studying the static of the model using: 3[ Cosdt,t) + Cerosd tw tw) — 2Ccrosdt,tw)] [25]. This
the parallel tempering technique. We present for clarity onlyobviously is not the only combination which could be used;
plots at two different waiting times,,= 10? andt,,= 10°, for ~ e.g., in Ref.[11] it was suggested the use Bf,o<{t,ty)

the dynamic simulations and two lattice sizéss8 andL =Ce¢rosdt,t) = Cirosdt,ty), however, we preferred to
0-3 T T T T T ."1 T T T
0.25
FIG. 4. Fluctuation-dissipation plot for the 2D
2 0.2 EA model usingB and B, as abscissad,,
A =10 (crossesandt,,= 10° (white squares The
?§ 0.15 agreement of the dynamical characteristic and the
2 ) static one(lines) for the cross quantity is compa-
:f rable to the direct one. In this case no shift of the
2 o1 curves is needed. Lower curves stand for cross-
response and cross-correlation functions while
the upper ones reflect the usual correlation and
0.05 response functions.
0 "l 1 1 1 1 1 1 1 1 1

0 005 01 0I5 02 025 03 035 04 045 05
B(t)tw I Bcrns.v(t’tw)
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0-3 T T T T T
0.25 |
2 02
E
'y FIG. 5. Comparison between the relation be-
é 0.15 L tweenB.,,ss andB as obtained directly from the
= dynamics and supposing E€) in statics. Solid
g lines: the static data fdc =8,10. Points: the dy-
Q o1}t namical data are,,=10%,10°. The sizes of the
static data aré. =8,10.
0.05
0
0 0.1 0.2 0.3 04 0.5 0.6

B(it,), b

present the data usinB¢oss, Which is symmetric in the the histogram of thé.,,sscorresponding to configuratiors
configurations at the two times and admits the interpretationynd ' such thatq.,0<{S,S') is positive. The results are
of a distance between the configurations at timg@ndt.  presented in Fig. 4, which shows that the agreement between
We checked all the results below usitg,oss instead of  the static and dynamic curves for the cross quantities is com-
Bcross Which turn out to be equivalent within our numerical paraple to the direct ones, for the same lattice sizes.
accuracy. Next, we compare the relation betweBg,,s{t,t,) and

The static analog of the functidBcos{t,ty) is given by Bt t,) obtained directly in dynamics and relating the values
two configurationsS andS', and the quantitb.,s{S,S’)  with equalx in statics as explained above. This is shown in
=7[crosdS'S) *+ AcrosdS',S') ~20cr0s{S,S')]. Inorderto  Fig. 5 where we show that for the times and lengths consid-
compare the dynamical FDR with the static one we shoulgred, there is a good correspondence between statics and
be cautious of the symmetry of the Hamiltonian under congynamics.
temporary reversal of all the spins. As discussed in F&f. Finally, given the good quality of our susceptibility data,
the proper static probability distribution to compare with theye could take the derivatives of theversusB characteris-
dynamics is not the full distribution but the distribution tics so as to compare directly at equal times the cross FDR
modulo the symmetry of the Hamiltonian. For the function Xerosd tity) With the direct oneX(t,t,). The comparison is
P(qg), symmetric unden— —q, one just needs to consider shown in Fig. 6, which shows that even for waiting times as
the pOSitiVeq part of the function multlplled by Zfor nor- Short aStW: 102 the two quantities are Very C|Ose to each
malization. In order to eliminate this symmetry in the dis- other. Preliminary results indicate that this is also the case in
tribution P(b.,,s9 in an analogous way, we can just considerthree and four dimensions.

1-2 T T T
1.1
1§
0.9 ¢
3
& 0.8 . .

g FIG. 6. Direct comparison of the FDR for the
W 0.7 cross and direct quantities in the 2D EA model.
= The temperature i$=0.43 and the waiting times
= 06
= are, from bottom to topt,,= 10%,10°,10*. After a
> 0.5 short transient both quantities do coincide.

0.4
0.3
0.2
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IV. CONCLUSIONS ics can be described in terms of effective temperatures, and
. on the other that these temperatures are related to the density
In this paper we have proposed the use of cross- - C
. ) S of states of finite systems on a scal&,). Preliminary re-
correlation functions and response in disordered systems {0 Its in th d four di . indi hat th kind
robe the existence of effective temperatures during aging iy ts in three and four dimensions indicate that the same Kin
Sisordered svstems. We have compared the behavior of of behavior is found in these systems for time scales much
i 4 y P ' Shorter than the ones needed to reach an asymptotic state.
mean-field model with the one of a paramagnet, where aging
is a transient behavior. We find that at equal times the FDR’s
for direct and cross quantities coincide within numerical er-
ror after a short transient. The correspondence among dy- We thank A. Barrat and L. Berthier for many useful dis-
namical FDR at finite time and a static one for finite size iscussions and suggestions. V.L. wishes to thank the members
confirmed as far as the cross quantities are concerned. These ICTP, where part of this work was elaborated, for their

two findings support on one hand the idea that aging dynamkind hospitality.
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