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Quasiequilibrium during aging of the two-dimensional Edwards-Anderson model
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2École Normale Supe´rieure de Cachan, 94235 Cachan, France

3Complex Systems and Superconductivity Laboratory, Physics Faculty-IMRE, University of Havana,
La Habana, Cuba

~Received 12 September 2003; published 31 December 2003!

We test the quasiequilibrium picture of the aging dynamics—strictly valid in the asymptotic dynamical
regime of aging systems—in the preasymptotic aging regime of the two-dimensional Edwards-Anderson spin
glass model. We compare the fluctuation-dissipation characteristic for spin autocorrelation function and re-
sponse with a corresponding one obtained for a suitably defined correlation function and its conjugated
response. In agreement with the quasiequilibrium picture we find that after a short transient the two corre-
sponding fluctuation-dissipation ratios~FDR’s! coincide at equal times. Moreover we show that, as it happens
for the usual FDR, the dynamic FDR at finite time coincides with the static one at finite size.
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I. INTRODUCTION

In recent times, following developments in spin gla
mean-field theory@1,2#, much emphasis has been put on t
study of off-equilibrium fluctuation-dissipation relations du
ing aging dynamics in glassy systems. These relations q
tify the deviation of the ratio between correlation functio
and conjugated responses from the one implied by
fluctuation-dissipation theorem valid at equilibrium, a
have been posed at the basis of a detailed thermodynam
and statistical description of the dynamics of glasses@3–5#.
Linear response theory allows one to relate poss
asymptotic violation of the fluctuation-dissipation theorem
the failure of ergodicity at the level of the equilibrium me
sure@6#.

Given the correlation functionC(t,tw) of a certain ob-
servableA, and its conjugated response functionx(t,tw) de-
scribing the effect at timet of a field conjugated toA acting
from time 0 to time tw , one can define the fluctuation
dissipation ratio~FDR! X(t,tw) from the relation

X~ t,tw!5T
]C~ t,tw!/]tw

]x~ t,tw!/]tw
. ~1!

This is just unity in equilibrium conditions while deviate
from it off-equilibrium and, in general, depends on the o
servable quantityA at hand. In mean-field spin glasses t
FDR admits a nontrivial limit in the aging regime, where t
correlations assume a scaling invariant behavior. Moreo
in the long time limit, taken after the thermodynamic lim
one can define the function

x~q!5 lim
t,tw→`

X~ t,tw!uC(t,tw)5q , ~2!

which can have a nontrivial behavior. When this happe
x(q) turns out to have an important covariance property
der exchange of the given observableA chosen in the mea
sure of correlation and response. If we have a correla
function CA(t,tw) corresponding to an observableA and a
1063-651X/2003/68~6!/066128~7!/$20.00 68 0661
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correlation functionCB(t,tw) corresponding to an observab
B, and we define an auxiliary limiting functionqB(qA)
5 lim

t,tw→`
CB(t,tw)uCA(t,tw)5qA

, the following relation

holds:

xB„qB~qA!…5xA~qA!, ~3!

the meaning of which is that the functionsXA(t,tw) and
XB(t,tw) coincide asymptotically for equal times. Moreove
in Ref. @6# it has been shown that in a large class of fini
dimensional systems with short range interaction,x(q) de-
fined in an out of equilibrium context is deeply related to t
nature of the equilibrium free-energy landscape. In fact, c
sidering the overlap probability function~OPF! P(q) @7# de-
scribing the statistics at equilibrium of the correlations of t
observableA in two configurations chosen with the Boltz
mann weight, the linear response theory implies

x~q!5E
0

q

dq8P~q8!. ~4!

This equality implies that eitherx(q) and P(q) are both
nontrivial or they are both trivial and could be taken as t
starting point for an experimental measure of the equilibri
OPF from off-equilibrium dynamics. Of course, it does n
imply the existence of some short range system where
verified nontrivially. Going through the derivation one rea
izes that Eq.~4! expresses the commutation of the therm
dynamic limit and the long time limit as far as certain su
ceptibilities are concerned. Notice also that, owing to Eq.~4!,
Eq. ~3! expresses the fact that for two observablesA andB,
couples of states with identicalqA also have identicalqB ,
i.e., the functionqA(qB) defined in the dynamics describe
the relation between different overlaps in equilibrium ergo
components. This property has been shown to be deeply
lated to ultrametricity in Ref.@6# where it was found that the
combination of relations~3! and ~4! implies ultrametricity.

The meaning of Eq.~4! has been clarified in Ref.@3#
where it has been discussed howx(q) can be related to the
density of metastable states, or quasistates, with free-en
©2003 The American Physical Society28-1
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density slightly above the minimum, implying that quas
tates of equal free energy are selected with equal probab
during the dynamical process. The identity~4! and the cova-
riance property~3! allow one to rationalize@3,8# the interpre-
tation of the ratiosT/x(q) for different values ofq as effec-
tive temperatures governing the exchanges of heat am
slow modes evolving on waiting time-dependent time sca
@9#.

Effective temperatures dependent onq mean that while
modes evolving on the same scale are in equilibrium w
each other, heat exchanges between modes evolving
widely separated scales do not occur. It has been rece
shown @10,11# that in trap models wherex(q) has a non-
trivial q dependence, but ultrametricity does not hold, diff
ent quantities define different FDR’s, a situation where
would be difficult to identify the FDR’s with effective tem
peratures. Conversely, Barrat and Berthier@12# studied
Lennard-Jones models of glass-forming liquids where a F
constant inq seems to describe the off-equilibrium dynam
ics, and found that density fluctuations at different wave v
tors define the same FDR.

Numerical simulations of three- and four-dimension
spin glass Edwards-Anderson models, comparing extrap
tions of the OPF from finite size systems and extrapolati
of the FDR from finite time, indicate the nontriviality, an
consistently the identity, of both functions@13#. This has
been taken as an evidence in favor of a ‘‘replica symme
breaking~RSB! scenario’’ for finite-dimensional spin glasse

These extrapolations however have been questioned
series of papers showing that the OPF in systems with
RSB, i.e., where the OPF is trivial in the thermodynam
limit, can be plagued by severe finite size effects such
for relatively small systems it appears similar to what o
expects for systems with RSB@14#. In such conditions RSB
could be wrongly inferred from extrapolations of the fini
size OPFP(q,L) of systems of too small sizesL, while the
true P(q) is a trivial singled function. In the same way on
could think that off-equilibrium times in the simulation a
too short to reliably extrapolate the asymptotic FDR from
finite tw , and that the true asymptotic one is just a single
step as in domain growth problems@15#.

On the experimental side it is clear that many syste
with slow aging dynamics are found in preasymptotic
gimes. A common phenomenon is the one of interrupted
ing, found e.g., in Ref.@16#, where a slow dynamical regim
similar to usual aging eventually crosses over to equilibri
behavior. In addition, even in three-dimensional spin glas
the paradigmatic systems where aging could persist ind
nitely, one sees that many quantities are far from their fi
values. In particular, the experiments of He´risson and Ocio
@17#, where the first experimental determination of the FD
in spin glasses was achieved, show FD curves that stro
depend on the waiting time, signifying that the dynamics
still in some preasymptotic regime. In such conditions it is
great interest to enquire if the concepts valid for aging in
asymptotic regime can be adapted to get an adequate pi
of the dynamics on much shorter time regimes.

In this context, one can hypothesize that the identity
tween static and dynamic FDR’s found in three and fo
06612
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dimensions is due to the fact that at a given timetw there is
a slowly growing lengthj(tw) over which the system ha
effectively equilibrated, andX(q,tw) would approximately
respect the relation~4! with P„q,L5j(tw)… @18#. Such an
extension would suggest the approximate validity at fin
time of a quasiequilibrium picture of the aging dynamics
which quasistates with equal free energy are selected
equal probability, and the static-dynamic equivalence wo
just reflect the properties of the equilibrium landscape of
finite size system. The hypothesis is rather suggestive a
would provide a framework to interpret aging properties
an appropriate time scale even for systems which disp
interrupted aging. Here, while in a certain time window slo
evolution and approximated scaling laws for correlatio
and/or susceptibilities are observed, the final asymptotic s
is ergodic.

To test this extension Berthier and Barrat@19# studied the
two-dimensional Edwards-Anderson~2D EA! model, which
on one hand displays strong aging effects at finite times,
a nontrivial OPF for finite size, on the other it is known
finally reach a paramagnetic state at all finite temperatu
In that work it was found that indeed there exists a cor
spondenceL→tw such that the relation~4! holds. More re-
cently, Berthier also studied the three- and four-dimensio
case in a preasymptotic regime obtaining similar results@20#.

In the light of the previous considerations about the li
among effective temperatures and time scale separa
these findings appear rather surprising. Here, no time s
separation is possible, slow modes have to exchange he
order to eventually equilibrate. In order to save the pictu
one can of course hypothesize that this exchange oc
‘‘adiabatically,’’ in such a way that modes evolving at th
same rate appear to be able to equilibrate at their effec
temperature with faster or slower modes before exchang
heat. If this consideration applies, FDR corresponding to
ferent quantities should appear approximately equal to
another. In order to test this hypothesis we consider as
Ref. @19# 2D EA model where as mentioned aging is inte
rupted after a finite relaxation time. In our analysis we defi
some suitable correlation and response function, not o
ously related to the usual spin autocorrelation and its ass
ated response, and compare the FDR for both couple
functions. In addition, in two dimensions we test the equiv
lence between the static and the dynamic FDR for the n
quantities.

Our results are then compared with analogous measure
the Viana-Bray~VB! diluted spin glass, where Eq.~4! is
known to hold nontrivially.

The remaining of the paper is organized as follows. In
following section, we introduce the relevant quantities, th
we present and discuss the results of the simulations,
finally the conclusions are outlined.

II. DEFINITION OF THE OBSERVABLES

The model we will consider consists of a pair of sp
glass systems with independent random coupling and ide
cal number of spins coupled through random interactio
Before explicitly introducing the model let us say a fe
8-2
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QUASIEQUILIBRIUM DURING AGING OF THE TWO- . . . PHYSICAL REVIEW E 68, 066128 ~2003!
words to motivate this choice, keeping in mind that our ta
will be to compare FDR’s corresponding to differe
correlation-response couples. In spin models, defined
terms of an exchange HamiltonianH5( i , j

1,N Ji j SiSj , the
natural and most commonly used choice to probe dynam
correlations is the spin autocorrelation function at differe
times, C(t,tw)5N21( i^Si(t)Si(tw)&, the corresponding
‘‘zero field cooled’’ susceptibility with respect to small loca
iid. Gaussian fieldshi with varianceho

2 , introduced in the
systems at timetw and kept on at later times, readsx(t,tw)
5(1/Nho

2)( i^hiSi(t)&, where the overline denotes the ave
age over the field. A second common choice is the ‘‘ene
correlation function,’’ also known as ‘‘link overlap’
CE(t,tw)5N21( i , j Ji j ^Si(t)Sj (tw)&, and the associated re
sponsexE(t,tw)5(1/Nho

2)( i^Ji j hjSi(t)&. In mean field, for
Gaussian long rangeJi j ’s one can show that in the thermo
dynamic limit, choosing the variance of theJi j ’s to be equal
to 1/N, one has for all times and with no assumption ab
the dynamics

CE~ t,tw!5C~ t,tw!2, ~5!

]xE~ t,tw!

]tw
5C~ t,tw!

]xE~ t,tw!

]tw
~6!

so that, automatically, for all times, the FDR’s defined w
these quantities coincide with the one defined with the us
correlations and response. Analogously at equilibrium,
finds that the relationqE(q)5q2 holds and 2qPE„qE(q)…
5P(q) is independent of the ultrametric nature of the org
nization of the states.

Then, in order to test the quasiequilibrium picture o
needs to compare overlaps nontrivially related one to
other. Consider, therefore, two copies of spin glass syste
with identical number of spins, and identically distribute
but independent quenched disorder and coupled by a ran
field Ri . The Hamiltonian of this compound system is d
fined by

H5(
i , j

Ji j
1 Si

1Sj
11(

i , j
Ji j

2 Si
2Sj

21(
i

RiSi
1Si

2 , ~7!

whereJi j
1 andJi j

2 represent the quenched disorder in copie
and 2, respectively, and are quenched variables respe
the lattice topology and otherwise taken as iid from a Gau
ian distribution with mean 0 and variance 1. The variablesRi
which couple spins with identical label in the two copi
have been chosen randomly with valuesRi56K.

The dynamical spin autocorrelation function now read

C~ t,tw!5~2N!21(
i

^Si
1~ t !Si

1~ tw!1Si
2~ t !Si

2~ tw!&, ~8!

and the corresponding response

x~ t,tw!5
1

2Nho
2 (

i
^hi

1Si
1~ t !1hi

2Si
2~ t !&. ~9!
06612
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As the second couple of correlation-response pair we c
sider the spin cross-correlation function@6#

Ccross~ t,tw!5~2N!21(
i

^@Si
1~ t !Si

2~ tw!1Si
2~ t !Si

1~ tw!#Ri&

~10!

and

xcross~ t,tw!5
1

2Nho
2K

(
i

^~hi
2Si

1~ t !1hi
1Si

2~ t !!Ri&,

~11!

where^•••& indicates an average over the initial conditio
and the overbar indicates on average over the disorder.
will speak about direct correlation and response, resp
tively, for Eqs.~8! and~9! and cross correlation and respon
for Eqs.~10! and ~11!.

An explicit formula for Ccross(t,tw) and Rcross(t,tw)
52]xcross(t,tw)/]tw as functionals of C(t,tw) and
R(t,tw)52]x(t,tw)/]tw can be given for smallK using lin-
ear response theory:

Ccross~ t,tw!5K2bF E
0

tw
dsC~ t,s!R~ tw ,s!

1E
0

t

dsC~ tw ,s!R~ t,s!G ,
Rcross~ t,tw!5K2bE

tw

t

dsR~ t,s!R~s,tw!, ~12!

which shows that if the cross FDR coincides with the dire
one, it is for nontrivial reasons.

III. RESULTS AND DISCUSSION

We studied the cross quantities in two different systems
Ising spins with random quenched disorder, the Edw
Anderson model, a bidimensional square lattice of spins
sizeN5L3L, and the fixed connectivity version@21# of the
Viana-Bray model@22#, where the spins are on a rando
lattice with fixed connectivityc510 and sizeN. For both
models, we considered two copies with identical number
spins and independent quenched disorder coupled by a
dom field Ri56K as in the preceding section withK
51/2. For this large value ofK we are out of the linear
response regime that allowed us to derive the explicit fo
of the cross quantities as a function of the usual ones,
even if the relations~12! do not hold, there is no reason t
believe that the relation betweenXcross and X becomes
trivial.

In order to have as a reference results for a system wh
the picture sketched in the Introduction certainly holds,
present first the data of the simulations of the Viana-B
model.

In the first test, we compared the FD plots in dynam
simulations of aging experiments with the static ones
tained through the parallel tempering technique. Our res
8-3
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FIG. 1. Fluctuation-dissipation plot for the
VB model. A vertical shift is necessary to supe
impose the equilibrium curve~lines! to the dy-
namic one~symbols!. N5164,196,256, and 324
and tw5102,103, and 104, T52.18. Lower
curves stand for cross-response and cro
correlation functions while the upper ones refle
the usual correlation and response functions.
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are summarized in Fig. 1. We can observe that, on one h
the static characteristics have small finite size depende
on the other, the dynamical curves have little dependenc
the waiting times. As expected, the dynamic curves coinc
with the static ones for the direct functions. For the cro
functions they also coincide, provided the static curves
shifted vertically; this is normal as it should be noted that
maximum value ofqcross in the equilibrium OPF of finite
systems is unity, while dynamicallyCcross(t,tw) is mono-
tonically decreasing from the valueCcross(tw ,tw),1 for t
.tw . Therefore, one should subtract a constant to the sec
integral of P̃(qcross): S(qcross)5*qcross

1 xcross(q8)dq8 to

compare it with the dynamic function.
We then tested to what extent Eq.~3! is valid when finite

systems in statics are compared to systems evolved for fi
aging times in dynamics. From the statics we get the fu
tions P(q) and P̃(qcross), whereq is defined as the usua
~direct! overlap between two independent replicasS
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1 ,Si

2) and S85(Si
18 ,Si

28): q(S,S8)5(1/2N)( iSi
1Si

18

1Si
2Si

28 , while qcross(S,S8)5(1/2N)( iRi(Si
1Si

281Si
2Si

18).
Then using Eq.~4! we derive the equilibrium quantitiesx(q)
and x̃(qcross) and compare them with the results obtain
from the dynamic simulations.

Although we did not try to measure the joint probabili
P(q,qcross), we could extract a functionqcross(q) as im-
plied by the relation~3! and compare with the one directl
obtained from the dynamics. The results can be seen in
2 where one can see that the static and the dynamic cu
approach each other for values ofqcross smaller than
Ccross(tw ,tw). This is what one should expect because,
discussed above, in dynamics this is the largest value
Ccross(t,tw), and tends to its limit from below fortw→`.
Conversely in statics, for finite systems, the probability d
tribution always extends to values ofqcross larger than the
maximum value for an infinite system.

We then pass to the study of the two-dimensional syst
e-
s

her
FIG. 2. Parametric curves of the cross corr
lation as a function of the direct one. The line
are the equilibrium curvesN5144 and 196 and
the points the dynamic onestw510,102,103, and
104. We see that the curves approach each ot
for values ofqcross smaller thanCcross(tw ,tw),
which seems to have reached itstw→` limit.
8-4
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FIG. 3. Fluctuation-dissipation plot for the EA
model at temperatureT50.43 and waiting times
tw5102 ~black symbols! and tw5103 ~white
symbols! in comparison with equilibrium func-
tions ~lines! for systems of sizeL58,10. A ver-
tical and a horizontal shift are necessary to sup
impose the equilibrium and the dynamic curve
Lower curves stand for cross-response and cro
correlation functions while the upper ones refle
the usual correlation and response functions.
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We studied the aging dynamics of the 2D EA model w
unitary Gaussian couplings atT50.43, where no sign o
thermalization can be observed in the correlation function
to waiting times as high astw5105. In our simulations we
usedho

250.02 and checked it to be in the linear respon
regime using the valueho

250.01. On the equilibrium side
using the parallel tempering technique@23# we were able to
calculate with good precision the spin glass order param
P(q), as well as the functionP̃(qcross).

In Fig. 3 we present a fluctuation-dissipation plot for t
model. As observed by Berthier and Barrat@19#, one can
superimpose the finite time curves of the direct functio
with the second integral of the equilibrium OPF of suitab
size systems at the same temperature. The points repr
the data obtained by the dynamic simulation, while the lin
are those obtained by studying the static of the model us
the parallel tempering technique. We present for clarity o
plots at two different waiting times,tw5102 andtw5103, for
the dynamic simulations and two lattice sizes,L58 andL
06612
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510, for the static ones. The upper curves correspond to
usual functions~similar curves were already presented
Ref. @19#!, while the lower ones reflect the cross function
Unfortunately, it turns out that in order to superimpose t
static and dynamic curves, a vertical shift inS(q) is not
enough and a horizontal shift should also be performed.

In order to understand this point we note that differen
to what happens for the direct function for which by co
structionC(t,t)51, the value ofCcross(t,t) evolves in time.
In such conditions the definition of the FDR in terms of t
simple correlation is not necessarily the most appropriate
fact, the study of running away systems~e.g., Brownian mo-
tion or particles in nonconfining random potentials@2,24#!
show that a better definition is obtained considering the
lowing combination of the correlation functionBcross(t,tw)
5 1

2 @Ccross(t,t)1Ccross(tw ,tw)22Ccross(t,tw)# @25#. This
obviously is not the only combination which could be use
e.g., in Ref.@11# it was suggested the use ofFcross(t,tw)
5Ccross(t,t)2Ccross(t,tw), however, we preferred to
the
-
e

ss-
ile
nd
FIG. 4. Fluctuation-dissipation plot for the 2D
EA model usingB and Bcross as abscissas.tw

5102 ~crosses! andtw5103 ~white squares!. The
agreement of the dynamical characteristic and
static one~lines! for the cross quantity is compa
rable to the direct one. In this case no shift of th
curves is needed. Lower curves stand for cro
response and cross-correlation functions wh
the upper ones reflect the usual correlation a
response functions.
8-5
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FIG. 5. Comparison between the relation b
tweenBcross andB as obtained directly from the
dynamics and supposing Eq.~3! in statics. Solid
lines: the static data forL58,10. Points: the dy-
namical data aretw5102,103. The sizes of the
static data areL58,10.
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present the data usingBcross, which is symmetric in the
configurations at the two times and admits the interpreta
of a distance between the configurations at timestw and t.
We checked all the results below usingFcross instead of
Bcross which turn out to be equivalent within our numeric
accuracy.

The static analog of the functionBcross(t,tw) is given by
two configurationsS and S8, and the quantitybcross(S,S8)
5 1

2 @qcross(S,S)1qcross(S8,S8)22qcross(S,S8)#. In order to
compare the dynamical FDR with the static one we sho
be cautious of the symmetry of the Hamiltonian under c
temporary reversal of all the spins. As discussed in Ref.@6#
the proper static probability distribution to compare with t
dynamics is not the full distribution but the distributio
modulo the symmetry of the Hamiltonian. For the functi
P(q), symmetric underq→2q, one just needs to conside
the positiveq part of the function multiplied by 2~for nor-
malization!. In order to eliminate this symmetry in the dis
tribution P̃(bcross) in an analogous way, we can just consid
06612
n

d
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r

the histogram of thebcross corresponding to configurationsS
and S8 such thatqcross(S,S8) is positive. The results are
presented in Fig. 4, which shows that the agreement betw
the static and dynamic curves for the cross quantities is c
parable to the direct ones, for the same lattice sizes.

Next, we compare the relation betweenBcross(t,tw) and
B(t,tw) obtained directly in dynamics and relating the valu
with equalx in statics as explained above. This is shown
Fig. 5 where we show that for the times and lengths cons
ered, there is a good correspondence between statics
dynamics.

Finally, given the good quality of our susceptibility dat
we could take the derivatives of thex versusB characteris-
tics so as to compare directly at equal times the cross F
Xcross(t,tw) with the direct oneX(t,tw). The comparison is
shown in Fig. 6, which shows that even for waiting times
short astw5102 the two quantities are very close to ea
other. Preliminary results indicate that this is also the cas
three and four dimensions.
e
l.
FIG. 6. Direct comparison of the FDR for th
cross and direct quantities in the 2D EA mode
The temperature isT50.43 and the waiting times
are, from bottom to top,tw5102,103,104. After a
short transient both quantities do coincide.
8-6
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IV. CONCLUSIONS

In this paper we have proposed the use of cro
correlation functions and response in disordered system
probe the existence of effective temperatures during agin
disordered systems. We have compared the behavior
mean-field model with the one of a paramagnet, where ag
is a transient behavior. We find that at equal times the FD
for direct and cross quantities coincide within numerical
ror after a short transient. The correspondence among
namical FDR at finite time and a static one for finite size
confirmed as far as the cross quantities are concerned. T
two findings support on one hand the idea that aging dyn
v.
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ics can be described in terms of effective temperatures,
on the other that these temperatures are related to the de
of states of finite systems on a scaleL(tw). Preliminary re-
sults in three and four dimensions indicate that the same k
of behavior is found in these systems for time scales m
shorter than the ones needed to reach an asymptotic sta
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