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Stochastic phenomena are often described by Langevin equations, which serve as a mesoscopic model for
microscopic dynamics. It has been known since the work of Parisi and Sourlas that reversible (or equilibrium)
dynamics present supersymmetries (SUSYs). These are revealed when the path-integral action is written as a
function not only of the physical fields, but also of Grassmann fields representing a Jacobian arising from the
noise distribution. SUSYs leave the action invariant upon a transformation of the fields that mixes the physical
and the Grassmann ones. We show that contrary to common belief, it is possible to extend the known reversible
construction to the case of arbitrary irreversible dynamics, for overdamped Langevin equations with additive
white noise—provided their steady state is known. The construction is based on the fact that the Grassmann
representation of the functional determinant is not unique, and can be chosen so as to present a generalization
of the Parisi-Sourlas SUSY. We show how such SUSYs are related to time-reversal symmetries and allow one
to derive modified fluctuation-dissipation relations valid in nonequilibrium. We give as a concrete example the
results for the Kardar-Parisi-Zhang equation.
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I. INTRODUCTION

The dynamics of a large number of elementary constituents
can often be described by mesoscopic stochastic equations
of motion, where the effects of interactions at small scales
are accounted for by friction and noise. Such an effective
Langevin [1] description applies to various examples, ranging
from particles in a fluid to chemical or economical processes
[2,3] or cosmological inflation [4,5].

Field theory then allows one to write the probability of
trajectories followed by the system using a path-integral
representation that encompasses both classical and quantum
problems [6]. The weight of a trajectory takes the form of
the exponential of (minus) an action. It is convenient to make
the action depend not only on the physical fields, but also on
noncommuting auxiliary ones—known as Grassmann fields—
representing a Jacobian arising from the noise distribution.
This action possesses a generic “supersymmetry” (SUSY),
known as the Becchi-Rouet-Stora-Tyutin (BRST) symmetry
[7–10]. It encodes the conservation of probability. Also, when
the dynamics is reversible (i.e., forces derive from a potential),
a second SUSY was uncovered by Parisi-Sourlas [11] and by
Feigel’man-Tsvelik [12] (after a similar SUSY was found for
the partition function of equilibrium problems [13]).

Such SUSYs, which mix physical and Grassmann fields,
look surprising in a statistical mechanical context; yet, as
other symmetries in physics, they turn out to be a powerful
tool to study a variety of problems. These range from the dy-
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namics of spin glasses [14,15], disordered spin models [16], or
heteropolymers [17], to finite-size effects in critical dynamics
[18], localization [19], renormalization of the random-field
Ising model [20–22], symmetries of Hamiltonian dynamics
[23,24], and metastability in overdamped [25] and inertial [26]
Langevin dynamics, with Witten’s SUSY version of Morse
theory [27]. SUSYs have methodological implications for
renormalization [28] and the derivation of variational princi-
ples [29] or of the Parisi-Wu stochastic quantization [30–32].
The Parisi-Sourlas SUSY implies Ward identities yielding the
equilibrium fluctuation-dissipation relation (FDR) [33,34].
When the dynamics is irreversible, the BRST symmetry re-
mains valid, but the Parisi-Sourlas one is broken e.g., by a
driving field [35,36] or a colored noise [37]. It has been argued
indeed that microreversibility is at the origin of SUSY [34].

In this paper, we prove the contrary, by extending the pre-
viously known results to the case of arbitrary nonequilibrium
Langevin dynamics (in the overdamped limit and for additive
Gaussian white noise). We assume that the stationary distribu-
tion exists and our construction depends explicitly on it. The
key observation is that there are several inequivalent ways to
represent the same Jacobian through Grassmann fields, and
we identify one that presents an extended SUSY generalizing
the Parisi-Sourlas one. We show that the associated Ward
identities yield modified FDRs, recovering some known cases
[38–40]. Then, we explain how this SUSY is directly related
to a time-reversal symmetry between the original Langevin
dynamics and its “adjoint.” We identify the mathematical
structure at the origin of the extended SUSY. The construction
can be carried out both in the Martin-Siggia-Rose-Janssen-de
Dominicis (MSRJD) framework [41–45] and in the Onsager-
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Machlup one [46,47], where it takes a particularly simple
form. Finally, we discuss the cases of spatially correlated
noise, continuum space, and the example of the Kardar-Parisi-
Zhang (KPZ) equation [48].

II. BRST SUSY

Consider a set of scalar fields hi(t ) evolving in time accord-
ing to a Langevin equation,

∂t hi = fi[h] + ηi, (1)

where fi[h] is a deterministic force function of the fields
h = (hi ) at time t , and ηi(t ) is a centered Gaussian white
noise with 〈ηi(t )η j (t ′)〉 = 2T δi jδ(t ′ − t ) (the generalization
to anisotropic correlated noise is detailed below). For instance,
hi(t ) represents the spatial coordinate of a particle tagged by
a discrete index i or the value of the height of an interface
on a lattice site i (as in the KPZ equation). Equation (1) is
equivalent to a Fokker-Planck evolution ∂t P[h, t] = WP[h, t]
for the distribution P[h, t] of h, with

W · = −∂i[ fi[h] · −T ∂i·]. (2)

We denote ∂i ≡ ∂
∂hi

and use implicit summation over repeated
indices (including in squares such as X 2

i ). We assume that the
dynamics possesses a stationary distribution Pst[h] such that
WPst = 0, and define a functional H[h] by Pst[h] ∝ e− 1

T H[h].
This is the so-called quasipotential, which exists under generic
conditions [49]. Then, following Graham [50] and Eyink et al.
[51], we decompose the total force as the sum of a conserva-
tive force −∂iH[h] and a driving force gi[h] as

fi[h] = −∂iH[h] + gi[h]. (3)

The case of reversible dynamics is recovered for gi[h] ≡ 0.
This decomposition is generic when the quasipotential exists.
From (2), the stationary condition WPst = 0 is equivalent to
an identity that will be used thoroughly,

∂igi[h] = 1

T
gi[h] ∂iH[h]. (4)

We consider the distribution of fields on a finite time
window [0, tf] and denote

∫
t = ∫ tf

0 dt (but this time window
can also be R). The path-integral representation [6] of the
trajectory probability follows from a mere change of variable
from the Gaussian noise distribution, Prob[η] ∝ e− ∫

t η2
i /(4T ),

to that of the field h, seen from the Langevin equation (1) as a
functional of the noise,

P[h] =
∣∣∣δη
δh

∣∣∣ e− 1
4T

∫
t ηi[h]2

, ηi[h] ≡ ∂t hi − fi[h]. (5)

Here, ηi[h] is the expression of the noise as a function of
h in the Langevin equation (1), and | δη

δh | = | det δηi[h(t )]
δh j(t ′ ) | is

the functional Jacobian of the change of variables from η to
h. We emphasize that even if the Langevin equation (1) is
additive and does not depend on its time discretization, the
expressions of the Jacobian and of the path-integral action do
depend on the discretization chosen to write them [52–54]. We
adopt the Stratonovich convention, which allows one to use
the rules of calculus in the path integral [55] and to reverse
time without changing the discretization [56,57]. Following
Janssen [41], one then linearizes the square in the exponent of

(5) using a “response field” ĥi(t ) to obtain the MSRJD action.
Introducing anticommuting Grassmann fields �i(t ) and �i(t )
[58] to represent | δη

δh |, we get

P[h] =
∫

DĥD�D� e−SSUSY , (6)

SSUSY =
∫

t

{
ĥiηi[h] − T ĥ2

i − � iη
′
i[h]�

}
. (7)

The response field ĥi is integrated on the imaginary axis,
and η′

i[h] is the Fréchet derivative of ηi[h] which is a linear
operator acting on the vector � as η′

i[h]� = ∂ jηi[h]�j [59].
The BRST SUSY, which originates in the conservation of
probability, is a Grassmann symmetry: it depends on a Grass-
mann parameter ε that allows one to mix the anticommuting
Grassmann and the commuting physical fields as h �→ h + δh,
ĥ �→ h + δĥ, etc., with

BRST: δhi = ε�i, δĥi = 0, δ�i = εĥi, δ�i = 0.

(8)
SSUSY is invariant under (8) since δ(ηi[h]) = η′

i[h]δh =
εη′

i[h]�. (We denote δ(X ) = X [h + δh, . . . ] − X [h, . . . ]).

III. EXTENDED PARISI-SOURLAS SUSY

When forces derive from a potential (gi[h] ≡ 0), another
SUSY was found by Parisi-Sourlas [11] and by Feigel’man-
Tsvelik [12], in relation with the former work of Nicolai
[60–62] (see [63]). It yields the equilibrium FDR [33,34] (as
discussed below). We now extend these results to the generic
Langevin dynamics (1). The key observation is that one can
identify a Grassmann action, different from (7), but that still
fully represents the Langevin equation (1) and possesses a
SUSY,

S†
SUSY =

∫
t

{
ĥi ηi − T ĥ2

i + 1

T
gi ∂iH − �iη̃

′†
i �

}
, (9)

η̃i[h] = ∂t hi + ∂iH[h] + gi[h] (10)

(for compaction, we drop some dependencies in h). For an
operator A, we set (A†)i j = Aji [64]. The Grassmann part
of S†

SUSY involves η̃i[h], whose signification as the noise of
an “adjoint” dynamics becomes clear below when relating
SUSYs to time reversal.

For a reversible dynamics (gi[h] ≡ 0), one sees that
SSUSY = S†

SUSY: the actions (7) and (9) are identical. For an
arbitrary irreversible dynamics (gi[h] 	= 0), one has SSUSY 	=
S†

SUSY, and yet, as we now show in detail, the actions (7)
and (9) represent the same Langevin equation (1) [and thus
the same Fokker-Planck operator (2)]. This is due to the fact
that when integrating over �,�, the extra term 1

T gi ∂iH in
(9) ensures that the Jacobian | δη

δh | is correctly represented. To
show this, we first recall that in Stratonovich discretization
[28,42,65–71],∣∣∣∣δη[h]

δh

∣∣∣∣ = exp

{
− 1

2

∫
t
tr f ′

i [h]

}
, (11)

which can be obtained by time discretization [72], and where
the trace is tr f ′

i [h] = ∂i fi[h] . The time discretization of �,�

in (7) is crucial to correctly represent the Jacobian (11)
[73]. Integrating over the fields �,� in e−S†

SUSY yields |δη̃
δh| =

044120-2
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e
1
2

∫
t tr (∂iH+gi )′[h]; see Eq. (11). Thus, the contribution of the last

two terms in (9) is e− ∫
t { 1

T gi∂iH− 1
2 tr(∂iH+gi )′}, but this expression

is in fact equal to the Jacobian (11) because the stationary
condition (4) implies 1

T gi ∂iH = tr g′
i. We thus have shown that∫

DĥD�D� e−SSUSY = ∫
DĥD�D� e−S†

SUSY .
Hence, despite being different in general, the actions SSUSY

and S†
SUSY both correctly represent the trajectory probability

of the Langevin equation (1) (and we denote by 〈·〉 and
〈·〉† the corresponding averages). Physically, this means that
observables depending only on h and ĥ have the same aver-
age: 〈O[h, ĥ]〉 = 〈O[h, ĥ]〉†. This is, of course, not the case
if O depends on � or �. This freedom of representation
originates in the fact that the Jacobian depends only on the
diagonal components of the operator η′

i[h] through the trace
tr f ′

i [h] = ∂i fi[h], and not on all its components, (η′
i[h]) j =

δi j∂t − ∂ j fi[h] [74].
Then, one checks by direct computation that

PS1:

{
δhi = εT �i, δĥi = ε(δi j∂t − ∂ jgi[h])� j,

δ�i = ε(∂t hi − gi[h] − T ĥi ), δ�i = 0
(12)

leaves S†
SUSY invariant, up to time-boundary terms. This SUSY

generalizes the Parisi-Sourlas one to arbitrary irreversible dy-
namics (1) since, for reversible dynamics (gi[h] ≡ 0), we have
S†

SUSY = SSUSY, and (12) yields the known SUSY [11]. An
important difference with the reversible case gi[h] ≡ 0 is that
this transformation is now nonlinear in general because of the
terms ∝ gi[h] in (12). We also uncover a dual SUSY,

PS2 :

{
δhi = εT �i, δĥi = ε∂i jH[h]� j,

δ�i = −ε(∂iH[h] − T ĥi ), δ�i = 0,
(13)

which seems to have been unnoticed even for gi[h] ≡ 0 (per-
haps because it is nonlinear, even in this case).

We emphasize that this construction can also be for-
mulated using the superfield, with explicit expressions for
the generators of PS1,2 [75]. One can also transpose it
to the Onsager-Machlup formalism straightforwardly: indeed,
the passage from the MSRJD to the Onsager-Machlup action
is done by integrating over the response field, which amounts
to replacing ĥ by its optimal value, ĥopt = 1

2T η[h] [75]. The
corresponding SUSY transformation is obtained likewise, as
made explicit below.

The nonequilibrium SUSY that we derived is more intri-
cate than in equilibrium since it involves two actions (SSUSY

invariant only under BRST and S†
SUSY only under PS1,2) and

depends explicitly on the steady state. However, it allows one
to derive physical consequences, as shown now.

IV. MODIFIED FDRs

Symmetries of the action imply Ward identities for cor-
relation functions: denoting h1 = hi1 (t1) (and similarly for
other indices, functions, or operators), the BRST symmetry
(8) implies, in particular, 〈h1�2〉 = 〈(h1 + δh1)(�2 + δ�2)〉,
and hence 〈h1δ�2〉 + 〈δh1�2〉 = 0, which means

〈h1ĥ2〉 = −〈�1�2〉, (14)

and we find that the two-point correlator of the Grassmann
fields is a response function. In particular, these correlators

are 0 for t1 < t2. From the invariance of 〈h1�2〉† under the
SUSYs PS1,2, we similarly infer

〈h1(∂t h2 − g2[h2])〉 = T 〈h1ĥ2〉 − T 〈�1�2〉†, (15)

〈h1∂2H[h2]〉 = T 〈h1ĥ2〉 + T 〈�1�2〉†, (16)

where we used that for observables independent of �, �, the
actions SSUSY and S†

SUSY yield the same averages. The causal
structure of the Grassmann contribution to S†

SUSY shows that
〈�1�2〉† = 0 for t1 > t2 [76] (which can also be inferred from
the interpretation of 〈�1�2〉† as a response function in the
adjoint dynamics; see below). We thus obtain two modified
FDRs,

〈h1(∂t h2 − g2[h2])〉 = T 〈h1ĥ2〉 if t1 > t2, (17)

〈h1∂2H[h2]〉 = T 〈h1ĥ2〉 if t1 > t2. (18)

Note that adding (15) and (16), or (17) and (18), one obtains
〈h1(η2[h2] − 2T ĥ2)〉 = 0, which is always valid, as can be
checked using δ(e−SSUSY )/δĥ2 = (η2[h2] − 2T ĥ2)e−SSUSY and a
functional integration by part.

Since the right-hand side of the relation (17) is the response
function 〈h1ĥ2〉 = 〈δh1/δf2〉f=0 to a perturbation f �→ f + f

of the total force, this relation entails a modified FDR, valid
in nonequilibrium (the equilibrium one, 〈h1∂t h2〉 = T 〈h1ĥ2〉,
is recovered for g[h] ≡ 0 and can be derived from the Parisi-
Sourlas SUSY [33,34]). A relation similar in spirit was
derived in [50,51], but in a particular setting where the per-
turbation is acting only on the conservative part of the force,
so that the left-hand side of (17) has no contribution from g[h].
One checks that (17) and (18) are equivalent to the Agarwal
FDR [38] and its equivalent formulations (e.g., [39,40,49,77–
83]). Also, Eqs. (17) and (18) and other Ward identities can be
read as providing information on the quasipotential when it is
not known.

V. STRUCTURE OF THE EXTENDED SUSY

Noting that �i(∂iH + gi )′[h]†� = −�i(∂iH + gi )′[h]�,
and that integrating by parts

∫
t �i∂t�i = ∫

t �i∂t�i, we define

a new action S†
SUSY = S†

SUSY − 1
T [H[h]]

tf
0 which is written as

S†
SUSY =

∫
t

{
ĥi ηi − T ĥ2

i − 1

T
(∂t hi − gi )∂iH + �iη̄

′
i�

}
,

(19)

η̄i[h] = −∂t hi + ∂iH[h] + gi[h]. (20)

With ηi+η̄i

2 = ∂iH and ηi−η̄i

2 = ∂t hi − gi, one obtains

S†
SUSY=

∫
t

{
− 1

T

(ηi − η̄i

2
− T ĥi

)(ηi + η̄i

2
− T ĥi

)
+�iη̄

′
i�

}
.

(21)

Such a rewriting renders manifest that S†
SUSY is invariant under

the SUSYs PS1,2 (without generating any boundary term).
Indeed, from (12),

PS1 ⇒
{

δ
(

ηi−η̄i

2 − T ĥi
) = 0, δ�i = εδ

(
ηi−η̄i

2 − T ĥi
)
,

δ
(

ηi+η̄i

2 − T ĥi
) = εT η̄′

i�,

044120-3



MARGUET, AGORITSAS, CANET, AND LECOMTE PHYSICAL REVIEW E 104, 044120 (2021)

so that the variations of the two products in (21) cancel
each other very simply. PS2 presents a similar structure with
the roles of ηi + η̄i and ηi − η̄i exchanged. The identified
structure explains how ∂iH and the “covariant derivative”
∂t h − g[h] (see [84] for KPZ) play a dual role in the SUSYs
PS1,2 and in the modified FDRs (15) and (16).

The actions S†
SUSY and S†

SUSY have an equivalent physical
content as they are equal up to time-boundary terms. A careful
treatment of these shows that the averages in (15) and (16) on
a finite time window are those sampled by the steady state
Pst[h] at initial time [75].

In the Onsager-Machlup formalism, the corresponding
actions are particularly simple: SOM = ∫

t { η2

4T − �η′�} and

S†
OM = ∫

t { η̄2

4T + �η̄′�}, with SOM verifying the BRST SUSY
(8), and S†

OM being invariant by the PS SUSY δh = εT �,
δ� = − ε

2 η̄, δ� = 0 corresponding to PS1,2.

VI. TIME REVERSAL WITHOUT GRASSMANN

One can also represent P[h] as a path integral on the
response field only, P[h] = ∫

Dĥ e−SMSR , with the Jacobian
contribution (11) included in the action,

SMSR[h, ĥ] =
∫

t

{
ĥi ηi[h] − T ĥ2

i + 1

2
∂i fi[h]

}
. (22)

Consider a time reversal of the field hi(t ) = hS
i (tR) (with tR =

tf − t) combined with either one of these two response-field
transformations (denoting ϕ̇ = ∂tϕ),

TR1 : ĥi(t ) = ĥS
i (tR) − 1

T

{
ḣS

i (tR) + gi[h
S]

}
, (23)

TR2 : ĥi(t ) = −ĥS
i (tR) + 1

T
∂iH[hS]. (24)

The adjoint process [78,85] of (1) is the one with a force
f̃i[h] = −∂iH[h] − gi[h] instead of fi[h]. It is the process
followed by time-reversed trajectories [86]. The action S̃MSR

of the adjoint process presents a mapping with SMSR

SMSR[h, ĥ] = S̃MSR[hS, ĥS] − 1

T

[
H[hS]

]tf
0 . (25)

To derive it, one uses the stationary condition (4) and we stress
that the Jacobian and non-Jacobian contributions to the action
(22) interfere. TR1,2 imply, respectively,

〈h1(∂t h2 − g2[h2])〉 = T 〈h1ĥ2〉 − T
〈
hR

1 ĥR
2

〉̃
, (26)

〈h1∂2H[h2]〉 = T 〈h1ĥ2〉 + T
〈
hR

1 ĥR
2

〉̃
, (27)

where the superscript R indicates that the field is time reversed
and 〈·〉̃ is the average for the adjoint process. These relations
imply the modified FDRs (17) and (18) because 〈hR

1 ĥR
2 〉̃ = 0

for t1 > t2 (as this response function is causal). Note that these
modified FDRs were derived above from PS1,2, which are
infinitesimal Grassmann SUSYs, in contrast to TR1,2, which
are discrete symmetries. The mapping (25) also allows one to
recover that e−H/T is the steady state [75]. Comparing (26)
and (27) to (15) and (16), we also identify the Grassmann cor-
relator 〈�1�2〉† for S†

SUSY as being equal to the time-reversed
response function 〈hR

1 ĥR
2 〉̃ in the adjoint dynamics. This allows

one to relate such Grassmann correlators to physical correla-
tion and response functions.

As we now show, this can be inferred from a BRST SUSY.
One can check by direct computation that either of the time-
reversal transformations TR1,2 yields

S†[h, ĥ, �, �] = S̃SUSY[hS, ĥS,−�R, �R] (28)

(note the exchange of � and �), where S̃SUSY is the original
SUSY action (7), but for the adjoint process. It possesses
a BRST symmetry of the type (8), from which we infer

that 〈�1�2〉†(28)= − 〈�R
1 �R

2 〉̃ (14)= 〈hR
1 ĥR

2 〉̃. Hence, 〈�1�2〉† is a
(time-reversed) response function for the adjoint dynamics, as
noted above. Equation (28) also implies identities for higher-
order correlations of � and �.

VII. CORRELATED NOISE

For noises correlated as 〈ηi(t )η j (t ′)〉 = 2T Di jδ(t ′ − t )
with a symmetric invertible matrix D, the previous results
can be generalized as follows. Keeping the same definition
for the quasipotential H, the force is now decomposed as fi =
Di j (−∂ jH + g j ) instead of (3) and the stationary condition (4)
becomes 1

T giDi j∂ jH = Di j∂ig j . The action SSUSY is the same
with ĥ2

i replaced by ĥiDi j ĥ j , and it verifies the BRST (8). Tak-
ing matrix notations and defining now η̃ = ∂t h + D(∇H + g)
and η̄ = −∂t h + D(∇H + g), the actions

S†
SUSY =

∫
t

{
ĥ(η − T Dĥ) + 1

T
gD∇H − �η̃′†�

}
,

S†
SUSY =

∫
t

{
ĥ(η − T Dĥ) − 1

T
(∂t h − Dg)∇H + �η̄′�

}
generalize (9) and (19), and a factorized form similar to (21)
can be identified [75]. SUSYs PS1,2 become [87]

PS1 :

{
δh = εT �, δĥ = εD−1(∂t h − Dg[h])′�,

δ� = εD−1(∂t h − Dg[h] − T Dĥ), δ� = 0,

PS2 :

{
δh = εT �, δĥ = ε(∇H[h])′�,

δ� = −εD−1(D∇H[h] − T Dĥ), δ� = 0,

and they imply the following modified FDR:

〈h1(∂t h2 − Dg2[h2])〉 = T 〈h1Dĥ2〉 − T 〈�1D�2〉†, (29)

〈h1∇H[h2]〉 = T 〈h1ĥ2〉 + T 〈�1�2〉†. (30)

One has 〈�1�2〉† = 〈�1D�2〉† = 0 if t1 > t2.

VIII. KPZ EQUATION AND CONTINUOUS SPACE

Choosing H[h] = ν
2

∑
i(∇ih)2 (with ∇ih = hi+1 − hi)

and gi[h] = λ
6 [(∇ih)2 + ∇ih∇i−1h + (∇i−1h)2], the Langevin

equation (1) is a discretized version of the continuum KPZ
equation ∂t h = ν∂2

x h + λ
2 (∂xh)2 + η. It possesses the SUSYs

that we have derived together with the modified FDRs, since
the chosen discretizations of H and of the nonlinear term
gi[h] ensure that both sides of the stationary condition (4) are
0. Such a situation with an orthogonal decomposition of the
force (gi∂iH = 0) and a zero divergence (∂igi = 0) could be
generic [51].

If i is a lattice index, the continuous-space limit of our
results is obtained directly. For KPZ, one has, for instance,
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〈h1(∂t h − λ
2 (∂xh)2)2〉 = T 〈h1ĥ2〉 and 〈h1∂

2
x h2〉 = T 〈h1ĥ2〉 if

t1 > t2. The second relation was derived in [84]. Note that
not all spatial discretizations of the nonlinear term satisfy
(4): hence, in general, the discretization of gradients must be
specified when it comes to SUSY, FDR, and time reversal
because ∂igi is ambiguous in the continuum if g[h] depends
on gradients—as also seen in singularities of the functional
Fokker-Planck equation [75].

IX. DISCUSSION AND OUTLOOK

We have identified SUSYs related to arbitrary Langevin
equations with Gaussian additive white noise, generalizing
long-known results that were restricted to reversible settings
[11,12]. They can be expressed both in the MSRJD formal-
ism and in the Onsager-Machlup one. The price to pay is
an explicit dependency on the stationary state, and a more
complex structure: two actions both representing the same
physical process and each presenting different SUSYs. The
important outcome is that they entail modified nonequilibrium
FDRs [38] (that provide information on the steady state when
it is not known).

As illustrated for the KPZ equation, the case of spatially
continuous models is obtained directly from the results we
presented, but the spatial discretization of gradients has to be
specified (to make sense of ∂igi in the continuum).

The construction we presented is reminiscent of the deriva-
tion of the Jarzynski relation by Mallick et al. [88], and it
would be interesting to find a unified framework. Our results
apply to nonequilibrium models with a known steady state,
such as the zero-range process [89–91] or mass transport mod-
els [92], and other cases [93–95]. In the small-noise limit, the
adjoint dynamics is often known in macroscopic fluctuation
theory [96], and thus the SUSYs PS1,2 should be applicable.
We note in general that in the small-noise asymptotics of

the Langevin process [97], the quasipotential H[h] can be-
come a singular (nondifferentiable) function of its argument
[98–100], even though H[h] is regular as long as T is finite.
This implies that the T → 0 limit has to be taken in a careful
way. The case of non-Gaussian noise could be investigated
[28]. The extensions to inertial Langevin equations, singular
(D not invertible) or colored noise, or multiplicative noise
deserve further investigation.

The SUSYs that we have unveiled are defined for path
integrals, but the reversible SUSY also has an operator ver-
sion, with the Fokker-Planck operator completed by fermionic
operators representing the Grassmann variables. It was used
by Kurchan et al. to study metastability in overdamped [25]
and inertial [26] Langevin dynamics; see, also, [101]. It would
be interesting to translate our results in these settings. It is a
nontrivial task already in the overdamped case since in the
reversible case the equality of the actions (7) and (9) corre-
sponds to the fact that the extended (fermionic) Fokker-Planck
operator can be made Hermitian (which is an essential aspect
of Kurchan et al.’s construction), while the same property
does not hold in the generic irreversible case that we are con-
sidering. Last, it could be instructive to identify the relation
between our results and the slave process of Refs. [101,102],
and, more generally, with cohomology [103,104].
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