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Microscopic interplay of temperature and disorder of a one-dimensional elastic interface
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Elastic interfaces display scale-invariant geometrical fluctuations at sufficiently large lengthscales. Their
asymptotic static roughness then follows a power-law behavior, whose associated exponent provides a robust
signature of the universality class to which they belong. The associated prefactor has instead a nonuniversal
amplitude fixed by the microscopic interplay between thermal fluctuations and disorder, usually hidden below
experimental resolution. Here we compute numerically the roughness of a one-dimensional elastic interface
subject to both thermal fluctuations and a quenched disorder with a finite correlation length. We evidence the
existence of a power-law regime at short lengthscales. We determine the corresponding exponent ζdis and find
compelling numerical evidence that, contrarily to available analytic predictions, one has ζdis < 1. We discuss
the consequences on the temperature dependence of the roughness and the connection with the asymptotic
random-manifold regime at large lengthscales. We also discuss the implications of our findings for other systems
such as the Kardar-Parisi-Zhang equation and the Burgers turbulence.
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I. INTRODUCTION

Interfaces are ubiquitous in Nature and provide remarkable
challenges both from theoretical and experimental fronts [1].
Experimentally they span very different underlying physics
and characteristic scales, with examples ranging from domain
walls in ferromagnetic or ferroelectric thin films [2–9] to imbi-
bition fronts in porous media [10], fracture surfaces [11–13]
and growing fronts of cell colonies [14–16]. On the theory
side, describing the competition between the elastic interac-
tions that tend to order them, and the temperature and system
heterogeneity that hinder this tendency, is a considerable the-
oretical challenge, with a resulting out-of-equilibrium physics
akin to the one of glasses [17].

A successful theoretical tool to study interfaces is provided
by the disordered elastic systems framework [18–23]: inter-
faces are modeled as elastic objects evolving in a quenched
disordered landscape and subject to thermal noise. Remark-
ably, this minimal description is enough to account for many
key statistical features of the geometry and dynamics of static
or driven interfaces [24]. In particular, geometrical fluctu-
ations are scale-invariant at sufficiently large lengthscales,
evidenced by a power-law behavior of the roughness, defined
as the variance of the relative displacement between two
points in the interface. The associated roughness exponent
provides a robust signature of the universality class to which
an interface belongs [25], depending solely on its dimen-
sionality and on the nature of its elasticity and underlying
disorder [22].

*Corresponding author: nirvana.caballero@unige.ch

Beyond this hallmark of universality, the roughness
prefactor itself encodes quantitative information about the
microphysics of a given system. Labeled nonuniversal, this
roughness feature has been poorly exploited up to now, de-
spite of its crucial experimental relevance for the quantitative
determination of characteristic scales and the validity range of
theoretical predictions in a given experimental setup [26–28].
At equilibrium its amplitude is fixed at short lengthscales
by the microscopic interplay between thermal fluctuations
and a spatially correlated disorder. The resulting temperature
crossover below a characteristic energy scale Tc(ξ ), associ-
ated to the disorder strength and finite correlation length ξ ,
is thus a macroscopic “smoking gun” of the spatial struc-
ture of microscopic disorder [29–31]. Furthermore, studies
using perturbative [32] or variational [29] methods suggest
at short lengthscales a power-law excess roughness—in ad-
dition to thermal fluctuations—with a characteristic exponent
ζdis = 1. Unfortunately a quantitative characterization of this
microscopic interplay, usually hidden below experimental res-
olution, has been difficult to access up to now.

For static one-dimensional (1D) interfaces, understanding
this interplay is important to characterize the finite-time and
steady-state fluctuations of the 1D Kardar-Parisi-Zhang (KPZ)
equation [33,34]. Considerable advances were achieved re-
cently [35–39] allowing for the computation of universal
exponents and distributions [38,39] for spatially uncorrelated
noises. Nevertheless, a regime which resists an exact ana-
lytical treatment is the low-temperature limit in a spatially
correlated disorder [30,31,40–46], despite its relevance to
analyze experimental realizations of KPZ [38,47–49], or of
Burgers turbulence [50,51].

In this paper, we address these issues by numerically
computing the roughness of a 1D interface with short-range
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FIG. 1. (a) Snapshot of an initially flat interface u(y, t ) evolved
under the qEW dynamics (1) up to time t = 109. (b) Roughness
B(r, t ) obtained for interfaces that evolved during different times
averaged over 50 realizations (10 or 5 realizations for the larger
studied times, indicated in the color scale) with and without disorder
(continuous and dotted lines, respectively) at T = 0.01 and ε = 0.1.
Shaded fluctuations are shown in the same color scale. Dashed lines
correspond to the analytical prediction (5) in a clean system. The
expected power law at large distances in the disordered case (with
ζKPZ = 2/3) is indicated in a brown dotted line.

correlated disorder and thermal fluctuations. We unveil the
key regime where the interplay between temperature and dis-
order leads to a roughness excess—compared to bare thermal
fluctuations—and show that it relaxes towards a power-law
behavior Bdis(r) ≈ Adis(T ) r2ζdis at short lengthscale r. For the
specific model we consider, previous analytical but approx-
imate predictions propose ζdis = 1; yet we find compelling
numerical evidence showing that ζdis < 1, with important
consequences on the temperature dependence of the rough-
ness and the connection to the asymptotic random-manifold
regime.

The outline of the paper is the following. After describ-
ing the model in Sec. II, we focus on the roughness and
disentangle its different contributions in Sec. III. We then
present a scaling description for the crossovers between dif-
ferent roughness regimes in Sec. IV. We further discuss the
implications of our results for KPZ-related systems in Sec. V,
and conclude in Sec. VI.

II. MODEL

We consider a 1D interface parametrized at time t by
(y, u(y, t )) ∈ [0, L] × R ⊂ R2, as shown in Fig. 1(a). The dis-
placement field u(y, t ) is univalued with periodic boundary
conditions u(y = 0, t ) = u(y = L, t ). Starting from a flat ini-
tial condition u(y, t = 0) = 0 the interface evolves according
to the quenched Edwards-Wilkinson (qEW) equation [52–55]

in the absence of an external force:

η∂t u(y, t ) = c∂2
y u(y, t ) + Fp(y, u(y, t )) + χ (y, t ). (1)

Thermal fluctuations are described by a centered
Gaussian white noise χ (y, t ) of two-point correlator
〈χ (y1, t1)χ (y2, t2)〉 = 2ηT δ(y2 − y1)δ(t2 − t1), where 〈· · · 〉
denotes the thermal average, η is the friction coefficient
and T the temperature (the Boltzmann constant is fixed to
kB = 1). We fix the units of time and energy by setting η = 1
and the elastic constant c = 1. The disorder is a quenched
random potential Vp(y, u) and its associated pinning force
Fp(y, u) = −∂uVp(y, u), both Gaussian with zero mean and
correlators:

Vp(y1, u1)Vp(y2, u2) = D Rξ (u2 − u1) δ(y2 − y1),

Fp(y1, u1)Fp(y2, u2) = 	ξ (u2 − u1) δ(y2 − y1), (2)

where · · · denotes the average over disorder realizations.
We consider the case of “random-bond” disorder with fi-
nite correlation length ξ , i.e., with a short-range correlator
Rξ (u) = ξ−1R1(u/ξ ) normalized as.

∫
R du Rξ (u) = 1 and D

the disorder strength. Both correlators are even and related
through 	ξ (u) = −D R′′

ξ (u) [21], so that
∫
R du 	ξ (u) = 0.

We numerically integrate (1) keeping u as a continu-
ous variable while discretizing the y direction in L = 512
segments of unit length. These qEW settings allow us to
advantageously replace the Dirac δ(y − y′) by the Kronecker
δyy′ in (2) and thus to implement an uncorrelated disorder
along the internal direction y. In the transverse direction, the
disorder potential is dynamically generated [55,56] with ran-
dom numbers taken from a uniform distribution in the range
[− ε

2 , ε
2 ] at equidistant positions, spaced by 	u = 1. To obtain

the random-bond pinning force at a point u, we interpolate the
two nearest random numbers with a linear spline and take its
derivative with respect to u. With these settings, the correlator
	ξ (u = u2 − u1) = 2

3
D
ξ 3 	adim(û = u/ξ ) is fully given by a

piecewise linear continuous function, 	adim(û), that connects
the values

	adim(û = 0) = 2

	adim(|û| = 1) = −1

	adim(|û| � 2) = 0 (3)

(see Appendix A). Our effective parameters are then {ξ =
1, D = ε2

12 }, where we took ε = 0.1, and we explore the
temperature range T ∈ {0.005, . . . , 0.074}. Further technical
details on the numerical integration are reported in Ap-
pendix B.

We emphasize that we explicitly consider a spatially cor-
related disorder in the transverse direction, i.e., allowing for
a resolution at displacements smaller than ξ . This is a key
difference compared to other numerical studies of the qEW
dynamics, which usually assume a discrete description of the
interface on a lattice, with a disorder completely uncorrelated
from site to site. The latter allows for highly efficient com-
putations to access roughness scalings at asymptotically large
lengthscale [54,57,58], but by definition it prevents any study
of the microscopic interplay between thermal fluctuations
and disorder. For equilibrated 1D interfaces, an alternative
approach is provided by the “1 + 1 directed polymer” in
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a correlated disorder with ξ > 0, studied through the KPZ
equation that its free energy satisfies [31]. The latter re-
quires, however, the disorder to have a finite correlation length
along the internal direction z and bears by construction an
artifact at short lengthscales, these two aspects becoming
increasingly problematic at lower temperatures. Our numer-
ical approach bypasses these issues in order to provide a
reliable characterization, for the qEW dynamics (1), of the
temperature-dependent microscopic interplay we are inter-
ested in.

III. DISENTANGLING ROUGHNESS CONTRIBUTIONS

To characterize the geometrical fluctuations of the interface
we focus on the roughness function (also called “height-height
correlation function” in the context of growing surfaces [25]):

B(r = |y2 − y1|, t ) = 〈[u(y2, t ) − u(y1, t )]2〉. (4)

It quantifies the variance of the relative displacements of
the interface, as a function of the lengthscale r, and inherits
the translation invariance in y of the microscopic disorder.
For a clean system (Fp(y) = 0) we can compute analytically
the time dependence of this correlation for an infinite inter-
face [52,59]:

Bth(r, t ) = Tr

c

[
1 − 1√

πzr
(e−z2r2 − 1) − 2√

π

∫ zr

0
dt e−t2

]
,

(5)

where z =
√

η

8ct . At large times, (5) converges to the static
thermal roughness Bth(r) ≡ Tr

c . To disentangle different con-
tributions on B(r, t ), we introduce the excess roughness
Bdis = B − Bth, defined as the difference between the total
roughness and its analytical value in the clean case. Note
that for a finite size L with periodic boundary conditions, we
have Bth(r, L) = Tr

c (1 − r/L), thus predicting a saturation for
lengthscales r � L/2 and a decrease of the roughness beyond
(also expected for the whole roughness function).

In Fig. 1 we show the evolution of B(r, t ) at a fixed tem-
perature in clean and disordered systems. For the clean case,
results match the analytical prediction (5). For the disordered
case, at very large times and large lengthscales, the power
law ∼ r2ζKPZ with ζKPZ = 2

3 , characteristic of a random-bond
disorder is reached. Note, however, that already after t = 103

the roughness has converged at short lengthscales (r � 20).
In Fig. 2(a) we show B(r, T ) at fixed large time t = 106

averaged over 50 realizations [60]. To increase the statistics,
for each realization that evolved for a time 106, we included
100 more configurations equally spaced in time intervals of
103. This procedure allows us to increase the statistics for
lengthscales at which the interface has already equilibrated.
In Fig. 2(b) we report the corresponding excess roughness
Bdis(r, T ) at different temperatures. The numerical data show
the existence of a power-law regime of Bdis(r, T ) character-
ized by an exponent ζdis. This regime, which can be obscured
by the existence of the large thermal component of the rough-
ness, is nevertheless present and universal [61], and results
from the interplay between the finite correlation of the disor-
der and the thermal fluctuations. As we discuss in Sec. IV
and Sec. V, besides the existence of the regime itself, the

FIG. 2. (a) Roughness of interfaces evolving in a spatially corre-
lated disorder, for different temperatures T . Each curve corresponds
to an average over realizations that evolved with the qEW dynam-
ics (1) for a time t = 106 starting from a flat initial condition. Dashed
lines represent the roughness (5) in absence of disorder. (b) Corre-
sponding excess roughness Bdis(r) due to disorder, obtained as the
difference between the total roughness and the thermal roughness (5).
The decrease beyond r = L/2 is an artifact of the periodic boundary
conditions. Our numerical study shows the existence of a power-law
regime for the excess roughness at small scales, characterized by an
exponent ζdis.

value of the exponent ζdis has important consequences for the
temperature dependence of the roughness.

A fit of Bdis(r) with a power law ∼ r2ζdis in the regime
of small values of r gives an exponent ζdis = 0.91 with a
temperature-dependent amplitude. Given the importance of
estimating if ζdis = 1, we now explore this issue. This result
is further detailed in Fig. 3, where the rescaling of Bdis with
the power law r2ζdis is shown. The collapse of the curves is
very sensitive to the precise value of the exponent and allows
us to rule out with a high confidence a value of ζdis = 1
(see Appendix C). Interestingly, the only currently available
analytical predictions give ζdis = ζ th

dis ≡ 1, in distinct methods:
a finite-temperature perturbative approach [32] and two dif-
ferent computations based on a Gaussian variational method
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FIG. 3. Collapse of the excess roughness Bdis(a, T ) for different
fixed lengthscales a as a function of temperature. The collapse is
obtained with a power law a2ζdis , with ζdis = 0.91 ± 0.05. The insert
shows that the collapse is lost for ζ th

dis = 1.

(GVM) [29]. Our numerical findings thus provide evidence
that nonperturbative approaches, beyond the usual variational
alternatives, are required to determine ζdis. We also checked
that a different disorder distribution leads to the same value of
ζdis (see Appendix D), supporting the robustness of our finding
that ζdis < 1.

IV. CROSSOVERS BETWEEN POWER-LAW
ROUGHNESS REGIMES

To analyze the implications of this result, we de-
termine the relevant lengthscales. The static roughness
B(r) = Bth(r) + Bdis(r) crosses over from a thermal regime
B(r) ≈ Bth(r) = Tr2ζth/c at very short lengthscales to the
random-manifold regime B(r) ≈ Bdis(r) ≈ ξ 2

eff (r/Lc)2ζKPZ at
lengthscales larger than a characteristic length Lc, closely
related to the “Larkin length” in higher-dimensional inter-
faces [19,62]. In our system, ζth = 1

2 and ζKPZ = 2
3 . Previous

analytical studies [29,30,44] have shown that Lc = (T/ f )5

cD2

and ξeff = (T/ f )3

cD , with a temperature-dependent parameter
f . Defining the energy scale Tc = (ξcD)1/3 we expect a
monotonous crossover from f ≈ 1 at T � Tc to f ∼ T/Tc

at T � Tc [63]. The effective characteristic energy scale
Ẽ = T/ f controls all the relevant scales for the geometrical
fluctuations and in the two previous limits, is fixed by ther-
mal fluctuations (Ẽ ≈ T ) or by disorder (Ẽ ≈ Tc). From our
numerical findings Bdis(r) has two power-law regimes with a
crossover lengthscale r0:

Bdis(r) =
{

A1(r/r0)2ζdis : r � r0,

A2(r/r0)4/3 : r � r0.
(6)

Let us fix r0 with a scaling argument to de-
termine {Lc, ξeff} [44]. We rescale the spatial
coordinates (y = bȳ, u = aū) and parameters
{c = c′, D = D0D′, T = ẼT ′, ξ = aξ ′} while leav-
ing the Boltzmann weight invariant so that

B(r; c, D, T, ξ ) = a2B(r/b; c′, D′, T ′, ξ ′). To focus on the
microscopic interplay of temperature and disorder, we fix
the scales a = ξ and Ẽ = T/ f (i.e., {ξ ′ = 1, T ′ = f }) which
implies D0 = (T/ f )3

cξ and b = cξ 2

T/ f [64]. The short-lengthscale
regime where the disorder correlation length and the effective
energy scale Ẽ are equally relevant lies at r � b, so we can
identify r0 = b. Note that the effective disorder strength
D′ = Tc

T f crosses over from D′ ≈ 1 at T � Tc to D′ ∼ Tc/T
at T � Tc. As physically expected, the latter case supports a
small-disorder perturbative expansion at high temperature.

We thus can determine the prefactors for Bdis(r � r0)
in (6): A1 = Bdis(r0) = A2 with A2 fixed from the large scales
from A2/r4/3

0 = ξ 2
eff/L4/3

c . Using r0 = cξ 2

T/ f we get

Adis(T ) = Bdis(r � r0)

r2ζdis
∝ ξ 2T 2

c

(cξ 2)2ζdis

(
f

T

)2(1−ζdis )

. (7)

Note that this implies that ζdis = ζ th
dis = 1 leads to a

temperature-independent roughness prefactor. On the con-
trary, a value ζdis �= 1, as we find numerically, implies that
Adis(T ) does depend on temperature. We report this feature in
Fig. 3, thus further supporting ζdis < 1.

From the behavior of the interpolating parameter f ≈ 1
at T � Tc and f ∼ T/Tc at T � Tc, Eq. (7) implies that
Adis(T ) decreases with increasing T at T � Tc and saturates
at T → 0. This scenario is at variance with our numerical
findings in Fig. 3: Adis(T ) does indeed present a regime of
temperature ∼T −2(1−ζdis ) compatible with (7). However, such
power-law behavior is expected to hold at high T and to
provide an upper bound to the low-T saturation. The rea-
sons for this discrepancy are unclear but could stem from (1)
numerical prefactors in the estimation of Tc(ξ ), so that the
regime T � Tc would in fact be reached below our temper-
ature range; (2) the discretization along the internal direction
y, which could add one lengthscale to take into account in the
scaling analysis. A breakdown of the above scaling argument
cannot be excluded, but r0 = cξ 2 f /T does coincide with a
more involved prediction obtained in the KPZ language [65].
This discrepancy, which does not question the ζdis roughness
regime existence requires further investigations that are be-
yond our present scope.

Let us now turn to the case of very small thermal fluctu-
ations at T → 0+, where the crossover between the thermal
and ζdis power-law regimes can be further examined analyti-
cally and numerically. The crossover lengthscale r0 is always
bounded by the Larkin length Lc:

T � Tc: r0 � Lc, with r0 ∼ cξ 2

T
, Lc ∼ T 5

cD2
,

T � Tc: r0 � Lc ∼ T 5
c

cD2
= c2/3ξ 5/3

D1/3
. (8)

At high temperature, the regime r � r0 where Bdis(r) ∼ r2ζdis

has a small extension and is screened by the thermal contri-
bution Tr/c in B(r); hence, as r increases, the total roughness
B(r) crosses over directly from the thermal to the random-
manifold regime, with a single crossover at the high-T Larkin
length Lc such that Bth(Lc) ≈ Bdis(Lc). On the contrary, in
the limit T → 0+ we have B(r) ≈ Bdis(r), which crosses over
from the power-law regime that we characterized (ζdis) to the
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well-studied random-manifold regime (ζKPZ), and a vanishing
thermal regime at r � r1 ∼ T 1/[1−2(1−ζdis )] [66]. By studying
the lengthscale r1 (see Appendix E), we find our numerical
results to be compatible with a scaling ζdis ≈ 0.91, but not
with ζdis = ζ th

dis = 1.
Physically, the characteristic lengthscales {Lc, r0, r1} and

the energy scale Ẽ = T/ f are related to the microscopic inter-
play between temperature and disorder. The Larkin length can
be deduced from asymptotically large lengthscales, easier to
access analytically and experimentally, hence its crucial role
in previous studies [19,21,29,30,44,62]. In this paper, we ar-
gue instead that it stems as a consequence of short-lengthscale
properties, usually hidden below experimental resolution, that
one can nevertheless investigate via the excess roughness due
to disorder. We expect this scenario—relating the microscopic
interplay to the quantitative amplitude of the macroscopic
fluctuations—to be valid beyond the specific interface (1D
qEW) we considered.

V. IMPLICATIONS FOR OTHER KPZ-RELATED
PROBLEMS

The relevance of these results extends well beyond the sole
equilibrium 1D interface, thanks to the exact mapping onto
the so-called 1 + 1 directed polymer (DP) and the KPZ set-
tings [33,67]. An interface segment can be seen as a polymer
growing along a DP “time”: fixing an extremity of the DP at
the origin [i.e., u(0) = 0], its endpoint distribution encodes,
at a fixed “time” r, the geometrical fluctuations of an equi-
librated interface at a lengthscale r and in a given disorder
realization. The DP free energy, i.e., the logarithm of this
distribution, then obeys a KPZ equation with a “time” r and
a spatially correlated noise Vp (our random potential), with
a “sharp-wedge” initial condition [67]. In this language, the
asymptotic random-manifold scaling at r → ∞ describes the
approach to the KPZ steady-state regime, and the microscopic
interplay at short lengthscales corresponds to the KPZ evolu-
tion at short “times.”

The DP formulation allows one to disentangle the ther-
mal and sample-to-sample fluctuations (thermal and disorder
averages, respectively). It provides in particular a natural de-
composition of the roughness as B(r) = Bth(r) + Bdis(r), with
a direct definition of the excess roughness as the second dis-
order cumulant Bdis(r) = 〈u(r) − u(0)〉2

c
[68]. Such writing

in fact encodes a more general decomposition: in a given
disorder realization, the DP free energy can be decomposed as
the sum of a purely thermal contribution (that remembers the
initial condition u(0) = 0) and a disorder contribution (that
is invariant by translation in distribution and thus forgets—
statistically—the initial condition). Such a manifestation of
the so-called “statistical tilt symmetry” (STS) (valid at ξ =
0 and ξ > 0 [69]) means that Bdis(r) directly encodes the
two-point correlations of the DP endpoint when the ther-
mal fluctuations (that fully capture the initial condition) have
been subtracted. This explains why Bdis(r) gives access to a
regime of fluctuations that is inherent to disorder and that, in
spite of its seemingly artificial definition, it bears a bona fide
physical content. We expect that the excess roughness Bdis(r)
can be generalized to other systems presenting STS (e.g., for

FIG. 4. Summary of the crossover scales at high vs low tem-
perature for the equilibrated 1D qEW interface. Red (respectively
blue) arrows indicate how crossover scales change when the temper-
ature increases (respectively decreases), in both temperature regimes.
We always have r0 � Lc. Note that assuming ξ = 0 corresponds to
setting Tc = 0, in which case we could account only for the high-
temperature regime.

interfaces in higher dimensions or that are discretized in the
longitudinal direction).

The DP free-energy steady-state properties at ξ > 0
have been studied through nonperturbative functional-
renormalization-group [45], but the understanding of the
short-DP-“time” regime is incomplete, either through varia-
tional [70], perturbative [71], or indirect [72] approaches. On
the numerical side, we have previously reported in Ref. [31]
an apparent power-law behavior for Bdis at short lengthscales,
with ζdis ∈ [2, 2.5] depending on the temperature. These ex-
ponent values cannot be directly compared to the one found
in the present paper for two reasons. (1) In Ref. [31], a singu-
larity at initial KPZ “time,” due to the approach used, had to
be amended through a short-time regularization that can affect
Bdis in that regime. (2) In Ref. [31], the disorder presented a
finite correlation length ξz in the internal direction, with ξz ≈ 1
so that r0 ≈ ξz; this is at odds with the assumption ξz = 0
inherent to Eq. (2), especially because ξz is larger than the
typical lengthscales of the regime studied in the present paper.
In fact, addressing these issues partly triggered the present
study, whose settings also have the advantage to apply to
generic nonstationarized interfaces (and not exclusively to the
specific static 1D interface of Ref. [31]).

The scope of the results obtained in the present paper can
thus be extended as follows. Consider the two-point correlator
of the derivative of the DP free energy at “time” r. It is a
central quantity that encodes the scalings of the amplitude of
the KPZ field. Strictly at ξ = 0, it contains a singular Dirac
δ contribution, that is rounded at finite ξ > 0: its properties
thus reflect how the disorder correlation length ξ affects the
KPZ scaling. In Ref. [30], it was shown that scale r0 corre-
sponds to the typical DP “time” at which the maximum of
this correlator saturates to its steady-state value. The short-
lengthscale power-law regime of Bdis(r) governed by ζdis that
we uncovered describes how the DP free-energy (i.e., the
KPZ field) distribution evolves at short times. This indicates
that, to access the KPZ scalings at short times, one needs to
disentangle the disorder from the thermal fluctuations, and
that this happens in the scale-invariant regime governed by
ζdis.

Since r0 → 0 as T → 0, the range of this regime vanishes
in high-temperature limit T � Tc (see Fig. 4). Nevertheless,
already in this limit, the KPZ equation at short times with dif-
ferent initial conditions displays distinct large deviations [73]:
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we thus expect that at finite T and ξ , the short-time regime we
have uncovered will have a counterpart in such large-deviation
analysis. How these features, and more generally the exact
predictions for the KPZ equation available at ξ = 0 [49], are
modified for a given disorder correlator Rξ>0(u), in the low-
temperature limit, remains currently an open issue. Although
the asymptotic roughness exponent ζKPZ = 2

3 is known to be
robust to finite ξ [44], the functional form of the KPZ steady-
state distribution and correlators—as well as their overall
amplitude and characteristic scales—will be modified by the
short-“time” evolution. For instance, in experiments of grow-
ing interfaces in liquid crystals which exhibits geometrical
fluctuations remarkably compatible with the KPZ predictions
at ξ = 0 [47–49]. In particular, short-time fluctuations could
be probed within our approach for the droplet initial condi-
tion (through the excess roughness or more generally after
removing a thermal-like contribution to the KPZ field). Also,
in the large-time regime, their two-point correlator has a
voltage-dependent amplitude which could be a signature of
our “low-temperature” regime [74].

Finally, since the noisy Burgers equation is derived
from the KPZ one, our results translate to the Burgers
turbulence [51] where the small-temperature asymptotics cor-
responds to the inviscid limit and large-scale forcing [46,50].
In particular, the regime we have identified could be compared
to the recent results of Ref. [75], where, within a Fourier
approach, a fluctuation regime scaling as ∼k−1 (with k the
Fourier mode) was identified numerically and could interest-
ingly be analysed with other scaling exponents.

VI. CONCLUSION

In this work, we find that, hidden under thermal fluc-
tuations of a 1D interface, there exists a scale-invariant
regime at short lengthscales governed by an exponent ζdis.
Our numerical analysis shows that ζdis < 1, at variance with
the existing analytical estimates for such exponent ζ th

dis =
1. The discrepancy hints towards the nonperturbative na-
ture of the short-lengthscale regime of Bdis(r), which thus
requires further analytical investigations. In systems where
thermal fluctuations are strong enough, the scaling regime
described by ζdis is hidden under thermal fluctuations. When
the temperature becomes small or when the disorder corre-
lation length becomes large, the power-law behavior B(r) ∼
r2ζdis can be manifested on experimentally or numerically
accessible ranges. For instance, large roughness exponents
were found in a recent modelization [76] of experimental
measurements [77] of magnetic domains subjected to an AC
field. A possible cause can be that the AC field effectively
increases the disorder correlation length in the sample, thus
unveiling the B(r) ∼ r2ζdis regime. It is worth investigating
the existence of such scaling regime in interfaces, and to test
its robustness to features such as overhangs (for instance, in
disordered Ginzburg-Landau models [78], known to reduce
to qEW [59]). Adding a driving force generates a velocity
in a nonlinear “creep regime,” whose scaling is controlled
by the static geometrical exponents. It is natural to wonder
if the scaling regime we unveiled has consequences for the
creep regime, for instance, in avalanches statistics. The case
of higher dimensions random manifolds is also open.
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APPENDIX A: PINNING FORCE CORRELATOR AND
DISORDER STRENGTH

In this Appendix, we detail how we generate the
quenched random potential Vp(y, u) and its associated pin-
ning force Fp(y, u) ≡ −∂uVp(y, u). We recall that the interface
is parametrized by the univalued displacement field u(y, t ),
with the internal coordinate y taking discrete values y = j	y
(where j is an integer, j = 0, . . . , Ly/	y), and the transverse
coordinate u taking continuous values. We consider a disorder
with Gaussian distribution fully characterized by a zero mean
and the two-point correlators:

Vp(y1, u1)Vp(y2, u2) = D Rξ (u2 − u1) δy2y1 ,

Fp(y1, u1)Fp(y2, u2) = 	ξ (u2 − u1) δy2y1 , (A1)

where · · · denotes the average over disorder realizations. We
chose the normalization

∫
R du Rξ (u) = 1, and the correlators

are simply related by 	ξ (u) = −DR′′
ξ (u). In the following,

we thus make explicit the functional 	ξ (u) and the disorder
strength D.

1. Generating a spatially correlated disorder

The pinning potential Vp(y, u) is defined independently for
each discrete value of the coordinate y, so that in what follows,
one fixes y and considers only the coordinate u. The pro-
cedure to generate the corresponding quenched “landscape”
U (u) ≡ Vp(y, u) at fixed y, spatially correlated with a finite
correlation length ξ , is the following (see Fig. 5). We first
discretize the direction u with fixed steps 	u = ξ . A random
number Uk is generated independently at each site u = k	u
(with k an integer) from a probability distribution function
P (Uk ) of zero mean.

Then, on every interval u ∈ [k	u, (k + 1)	u] (i.e., one
has k = �u/	u�) the random pinning potential is defined as
a linear interpolation between Uk and Uk+1:

U (u) = Uk + Uk+1 − Uk

	u
(u − k	u). (A2)

One can easily check that, as required, this definition satis-
fies U (k	u) = Uk and U ((k + 1)	u) = Uk+1. The associated
pinning force Fp(u) = −∂uU (u) is finally given by the discrete
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FIG. 5. For a fixed coordinate y, the random potential Vp(y, u) is
generated by a linear interpolation between random numbers taken
from a uniform distribution with zero mean (orange crosses). The
associated pinning force Fp is obtained from the associated piecewise
derivative Fp(y, u) = −∂uVp(y, u).

derivative

Fp(u) = −Uk+1 − Uk

	u
(A3)

with k = �u/	u� as above.
For our simulations we sort each reference value Uk from

a uniform distribution on the interval [− ε
2 , ε

2 ], with ε > 0. It
has consequently a zero mean and a variance

D0 ≡ (Uk )2 = ε2

12
. (A4)

To keep the discussion general, thereafter we generically de-
note the variance of Uk as a control parameter D0. In addition,
we discuss in Appendix D how choosing an alternative distri-
bution P (Uk ) (nonuniform but with the same variance) leads
to physically consistent results.

2. Piecewise linear force correlator

We start by defining the intermediate two-point correlator
of the force as

	
(2)
ξ (u1, u2) = Fp(u1)Fp(u2). (A5)

Because it is associated to the specific set of intervals
u ∈ [k	u, (k + 1)	u] with k = �u/	u�, it is important to no-
tice that it is not invariant by translation along the u direction.
Indeed, pairs of points (u1, u2) separated by a same distance
u = u2 − u1 can either lie in the same interval [k	u, (k +
1)	u] or not.

One has in fact three possibilities: if (u1, u2) are
(1) In the same interval, one has

	
(2)
ξ (u1, u2) = 2(Ui )2 = 2D0

	u2
; (A6)

(2) In adjacent intervals [(k − 1)	u, k	u] and
[k	u, (k + 1)	u]:

	
(2)
ξ (u1, u2) = −(Ui )2 = − D0

	u2
; (A7)

FIG. 6. Numerical evaluation of the pinning force correlator for
100 different disorder realizations with ε = 1 (gray lines) and its
average (pink). In black dashed line we show 	ξ (u), the expected
correlator given by Eq. (A10) with D0 = 1/12. In the inset, we show
the adimensionalized force correlator 	adim(û) connecting the values
of Eqs. (A11)–(A13).

(3) In more distant intervals [k	u, (k + 1)	u] and
[ j	u, ( j + 1)	u] with |k − j| � 2:

	
(2)
ξ (u1, u2) = 0. (A8)

Henceforth we use that ξ = 	u to emphasize the explicit
dependence on the correlation length ξ .

To recover a translation-invariant correlator, as required in
the definitions (A1), one must average the intermediate corre-
lator 	

(2)
ξ (u1, u2) over all pairs of points (u1, u2) separated by

the same distance u:

	ξ (u) =
∫
R2

du1du2 δ(u2 − u1 − u) 	
(2)
ξ (u1, u2). (A9)

One finds by an explicit computation

	ξ (u) = D0

ξ 2
	adim

(
u/ξ

)
(A10)

with 	adim(û) the piecewise linear continuous function that
connects the values:

	adim(û) = 2 for û = 0, (A11)

	adim(û) = −1 for |û| = 1, (A12)

	adim(û) = 0 for |û| � 2. (A13)

The complete function is plotted in the inset of Fig. 6.
As a self-consistent validation of our procedure, we evalu-

ated numerically the correlator 	ξ (u), and as shown in Fig. 6
we find an excellent agreement with the expression (A10).

3. Correlators in Fourier space and disorder strength

One can check that
∫
R dû 	adim(û) = 0, as expected for

the “random-bond” disorder we consider. To access the dis-
order strength D, we switch to Fourier space where we
can more easily exploit the relation between the correlators
	ξ (u) = −DR′′

ξ (u) from Eq. (A1).
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We first rewrite, similarly to Eq. (A10), the random po-
tential correlator in terms of its adimensionalized version,
starting from its very definition

U (u)U (0) ≡ DRξ (u) ≡ D

ξ
Radim(u/ξ ). (A14)

First, by direct comparison with the definition in Eq. (A4) we
can establish its relation to the variance D0:

D0 ≡ U (0)2 = DRξ (u = 0) = D

ξ
Radim(û = 0), (A15)

and second the relation between the correlators
	ξ (u) = −DR′′

ξ (u) becomes

D0

ξ 2
	adim(û) = − D

ξ 3
R′′

adim(û). (A16)

Defining the Fourier transform along the transverse di-
rection as 	̂adim(q̂) = ∫

R dû eiq̂û	adim(û), one finds by direct
computation that it takes the simple form:

	̂adim(q̂) = 16

(
sin q̂

2

)4

q̂2
. (A17)

Defining similarly the Fourier transform
R̂adim(q̂) = ∫

R dû eiq̂ûRadim(û), Eq. (A16) rewrites

	̂adim(q̂) = D

D0ξ
q̂2R̂adim(q̂). (A18)

At this point, we might think that we have some freedom to
define R̂adim up to an arbitrary constant, but we have in fact
to enforce the imposed normalization

∫
R du Radim(û) = 1 or

equivalently R̂adim(q̂ = 0) = 1. This is achieved by imposing
D

D0ξ
= 1 and thus

R̂adim(q̂) = 16

(
sin q̂

2

)4

q̂4
⇒ lim

q̂→0
R̂adim(q̂) = 1. (A19)

Furthermore, we have by inverse Fourier transform:

Radim(û = 0) =
∫
R

dq̂

2π
R̂adim(q̂) = 2

3
. (A20)

We have, at last, directly access to the disorder strength:

D
(A15)= D0ξ

Radim(û = 0)
(A20)= 3

2
D0ξ . (A21)

The last expression is valid for any random potential gen-
erated by a linear interpolation between uncorrelated random
points, drawn from an arbitrary distribution P (Uk ) with zero
mean and variance D0. For the uniform distribution we con-
sider, Eq. (A4) implies

Duniform = 3
2 D0ξ = 1

8ε2. (A22)

This is the expression that we used at the end of Sec. II in
order to fix the disorder strength.

APPENDIX B: PARAMETERS OF NUMERICAL
SIMULATIONS

To solve the quenched Edwards-Wilkinson equa-
tion [Eq. (1)] and compute the interface roughness, we take
advantage of massively parallel accelerated computing with a

CUDA C + + code running in NVIDIA GPUs with a Volta
architecture, in double precision. At each simulation step we
approximate the second derivative of u along the y direction
by a two-point central finite difference scheme and integrate
in time with a first-order Euler step. Pseudorandom numbers
are generated with a counter-based RNG (Philox, allowing
264 parallel and distinct streams with a period of 2128 [56]).
For the thermal noise, we use Gaussian distributed numbers,
while for the quenched disorder, we use the method described
in Appendix A (and in Appendix D in the consistency check
described in the same section): the method consists in a linear
interpolation of uniformly distributed random numbers with
the implementation proposed in [55]. These random numbers,
uncorrelated from site to site, are dynamically generated
along the evolution of the interface, i.e., we build the disorder
at larger u only if the interface has locally wandered further
away.

Space discretization along the y direction is set to 1 and
time discretization to 10−2. We can simulate four realizations
of systems of 512 sites for 108 steps in approximately 8 hours.
These scheme and parameters give roughness functions in the
clean case which are in very good agreement with the theo-
retical prediction [Eq. (5)]. The corresponding roughness of
the simulated systems differs from the theoretically predicted
values in less than 10−4 for r � 50 and less than 10−3 for
larger values of r (both simulated and predicted roughness
functions are shown in Fig. 1). This excellent agreement is
a strong consistency check that provides a good support for
the validity of the numerical procedure in the disordered case.

APPENDIX C: DETERMINATION OF THE BEST
VALUE OF ζdis

To obtain ζdis from the numerical data presented in the
main text, we fit Bdis(r, T ) independently for each value of
T in the range r = [1, r f ]. For the nine lowest temperatures
we have studied, we find values of ζdis between 0.9 and 0.92.
To determine the best value of this exponent that is compat-
ible with every temperature we considered, we rely on the
following scaling argument. We predict that Bdis(r0, T )/r2ζdis

0
should be independent of r0 for all temperatures T . In Fig. 7
we illustrate that the best choice of ζdis that ensures this
collapse is ζdis = 0.91 ± 0.01. We quantify the spread of the
functions Bdis(r, T )/r2ζtest around their mean value for dif-
ferent values of ζtest by computing the function FT,r (ζ ) =
�T,r (

Bdis (r,T )/r2ζ −�ri Bdis (ri,T )/r2ζ
i

�ri Bdis (ri,T )/r2ζ
i

)
2

with ri = 1, . . . , 5, for the five

lowest studied temperatures. The resulting function has a min-
imum in ζ = 0.91, as shown in the inset of Fig. 7. We note
that the regime where we observe the power-law behavior
characterized by ζdis emerges at relatively short scales. We
obtained the roughness of interfaces that evolved from a flat
initial condition according to Eq. (1) under the same parame-
ters for different system sizes. As shown in Fig. 8 at the scales
we are interested in the difference in the obtained exponents
characterizing the excess power-law regime is of the order
10−3. For our study we then fix L = 29 = 512 in this work.

As shown in Fig. 1, the roughness of an initially flat inter-
face will converge to a steady state at sufficiently long times.
To test how this influences the regime we are interested in,
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FIG. 7. Numerical collapse of the excess roughness, described in the text, for values ζtest of ζdis ranging from 0.89 to 0.93. The value
achieving the best collapse is ζdis = 0.91. At 0.91 the function FT,a(ζ ) (see text) has a minimum, as shown in the inset. The different dashed
lines correspond to the value of a indicated in the caption.

we follow the roughness of interfaces that evolved for long
times at a fixed temperature T = 0.01. As shown in Fig. 9, the
exponent characterizing the excess regime fluctuates around
values which are lower than one.

The region in which the excess regime emerges depends
on the disorder correlation length ξ . We can further verify
our numerical findings by studying the roughness excess for
interfaces evolving under the same conditions as before, but
with a larger disorder correlation length ξ = 2. We observe
that also in this case the exponent ζdis is compatible with the
value 0.91, as shown in Fig. 10.

APPENDIX D: DISORDER GENERATED FROM A
GAUSSIAN DISTRIBUTION

For the temperature T = 0.01, we determined the excess
roughness BGauss

dis (r) for a disorder potential where the Ui’s
are distributed with a Gaussian distribution with the same
variance (Ui )2 = 1/12 as the uniform one; see Eq. (A4). In
Fig. 11, BGauss

dis (r) is compared to the excess roughness Bdis(r)
computed, as in the rest of the paper, for a disordered potential

FIG. 8. Roughness excess obtained for interfaces that evolved
for 105 steps under the same conditions at T = 0.01 for different
system sizes L averaged over 50 realizations. In the inset we show
the difference between the exponents obtained from fitting the curves
with a power law ∼ζdis in the range [1,10]. ζ∞

dis corresponds to the
exponent obtained for the largest system L = 220.

with the Ui’s drawn from a uniform distribution, as described
in Appendix A.

The results show that BGauss
dis (r) is very close to Bdis(r),

as mentioned at the end of Sec. III. This provides a strong
evidence supporting the following points: in the asymptotic
regime r → 0, the power-law behavior Bdis(r) ∼ r2ζdis is uni-
versal, i.e., presents an exponent ζdis which does not depend
on the specific random-potential disorder distribution. This is
an important aspect, as the asymptotic regime r → 0 where
Bdis(r) presents the power-law behavior ∼r2ζdis could have
been sensitive to the details of the disorder correlator at small
scales. Also, the prefactor A in Bdis(r) ∼ A r2ζdis is mainly gov-
erned by the variance D0 of the disorder distribution [which is
the same in the uniform and in the Gaussian distribution we
have used for P (u)]. Last, we expect also that this prefactor A
depends, through a numerical constant, on the rescaled shape
	adim(û) of the disorder correlator. This is seen in the small
difference |BGauss

dis (r) − Bdis(r)| � Bdis(r) shown in the inset
of Fig. 11. Such difference also scales as r2ζdis in the asymp-
totic regime r → 0, indicating that indeed only the prefactor

FIG. 9. Roughness excess obtained for interfaces that evolved
for different times (as indicated by the color scale) at T = 0.01 for
a fixed system size L = 512 averaged over 50 realizations in all
cases, except for t = 2 × 108, where the average was taken over 10
realizations and t = 4 × 108, where the average was taken over five
realizations. The curves were shifted for clarity. See Fig. 10 for the
same analysis in the case ξ = 2.
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FIG. 10. Roughness excess obtained for interfaces that evolved
for different times (as indicated by the color scale) with a disorder
correlation lenght ξ = 2 at T = 0.01 for a fixed system size L = 512
averaged over 50 realizations in all cases, except for the largest stud-
ied time, where the average was taken over seven realizations. The
curves were shifted for clarity. In the inset we show the exponents
obtained from fitting the curves with a power law ∼ζdis, shown in
dotted black lines.

A is affected by the adimensionalized shape of the disorder
correlator.

APPENDIX E: SCALING OF THE CROSSOVER
SCALE r1(T )

At the end of Sec. IV, we mention that the crossover scale
r1 is determined numerically by the intersection between the
two power-law scalings Bdis(r) ∼ r2ζdis and the thermal regime
Tr/c. The scaling arguments presented in the main text indi-

FIG. 11. Roughness (dotted lines) and excess roughness (contin-
uous lines) at T = 0.01 averaged over 50 realizations with increased
statistics, obtained for disorders generated from a uniform and a
Gaussian distribution. In the inset we show the difference between
both excess roughness.

FIG. 12. Behavior of the crossover scale r1(T ). The points are
the result of numerical simulations, while the dashed and full line
curves correspond to the two scenarios discussed in the text. The
exponent α− ≈ 1.25 > 1 is more compatible with the numerical data
and corresponds to ζdis ≈ 0.9 < 1.

cate that r1 scales with temperature as

r1(T ) ∼
{

T 1/[1−2(1−ζdis )] for T � Tc,

T 5 for T � Tc.
(E1)

To determine how our numerical results are compatible with
such predictions, we have used a fitting function

rfit
1 (T ) = C T α− [1 + (T/T 
)α+−α− ] (E2)

(where C and T 
 are constants and α− < α+) that in-
terpolates between the regimes rfit

1 (T ) ∼ T α− for T � T 


and rfit
1 (T ) ∼ T α+ for T � T 
. The prediction of Eq. (E1)

corresponds to

α+ = 5, α− = 1/[1 − 2(1 − ζdis)]. (E3)

A first scenario where ζdis = ζ th
dis = 1 (according to the pertur-

bative analysis of [32], for instance) corresponds to α− = 1.
A second scenario where ζdis ≈ 0.9 < 1 corresponds to α− ≈
1.25 > 1. To distinguish between these two possibilities, we
have fitted the values of r1(T ) obtained numerically with
the function (E2), where we fixed the exponent α± and we
left the constants C and T 
 as free parameters. As shown
in Fig. 12, the data provide strong evidence supporting the
second scenario ζdis ≈ 0.9 < 1. Also, leaving α− as a free
parameter for the fit, one finds α− ≈ 1.33 which corresponds
to the value ζdis ≈ 0.88: it is compatible with the value ζdis ≈
0.91 obtained in the main text with a completely different
method.
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