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Distribution of zeros in the rough geometry of fluctuating interfaces
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We study numerically the correlations and the distribution of intervals between successive zeros in the
fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium
states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show
that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval
property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling
law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As
a by-product we derive a general criterion of the von Neumann’s type to understand how discretization affects
the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially
fractional dynamics. Our results provide an alternative experimental method for extracting universal information
of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the
detection of crossing points.
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I. INTRODUCTION

Persistence and its related first-passage properties have been
of great interest in recent years both in mathematics and in
physics, going from simple models such as the d-dimensional
random walk in its discrete and continuous versions [1,2]
and the non-Markovian acceleration process [3–5], or the
d-dimensional Ising and Potts model at zero temperature
with Glauber dynamics [6,7] to systems with many degrees
of freedom such as the diffusion equation of fields [8],
solid-on-solid surface growth models [9], and fluctuating
interfaces [10–12]. (For a recent review on persistence in
nonequilibrium systems, see Ref. [13].)

The notion of spatial persistence (respectively, temporal
persistence) in these systems refers to a property that does not
change up to a distance x (respectively, up to a time t), being
of special interest the probability distributions P (�) and P (τ )
of the corresponding distances or time intervals between the
successive changes. Due to its possible applications, both spa-
tial persistence [14–16] and temporal persistence [17] of rough
fluctuating interfaces have been investigated. In this case, the
property whose change is monitored is the sign of the interface
height with respect to some reference line, and thus � refers
to the distances between successive zeros of an instantaneous
configuration, and τ to the duration between successive zeros
of the height at a fixed point in space. In a slightly different
context [18,19], the persistent property refers to the fraction
of (for instance, Ising) spins that have never flipped up to
time t . In order to reach a general understanding of these kind
of phenomena it is useful to analyze model systems, such
as Markovian [14,19,20] or non-Markovian [17,21] Gaussian
process with zero mean and unit variance Y (x) [respectively,
Y (t)]. In these cases the strategy to get P (�) [respectively,
P (τ )] is to extract it from the two-point correlation function
C(x,x ′) = 〈Y (x)Y (x ′)〉 [respectively, C(t,t ′) = 〈Y (t)Y (t ′)〉]
by means of the probability that the process Y (x) [respectively,

Y (t)] has the same sign for two different points in space x and
x ′ (respectively, for two different times t and t ′) [14,17,19,20],
via approximation methods such as the independent interval
approximation (IIA) [22,23]. Even for some simple processes,
the derivation of C(x,x ′) [respectively, C(t,t ′)] is not a trivial
task. In the case of the Brownian motion and of the acceleration
process, a suitable transformation maps these two processes
into stationary Gaussian processes for which the two-time
correlation function takes a simpler form—it depends only
on the difference between the two times considered [24].
Some generalizations have been investigated such as the
probability of having N zeros between two times t and t ′
for Markovian [20] and non-Markovian processes [17,25,26].

The persistence probability in different contexts in the
large time or large distance limit is found to follow a power
law Q(�) ∼ �−θ where θ is the persistence exponent (here
again the interval � might refer to time or spatial intervals).
Even for simple diffusion it was shown that the persistence
probability has a nontrivial persistence exponent θ [19,20].
Concerning fluctuating interfaces and surface growth, their
persistence and their associated first-passage properties have
been of considerable interest in the physical literature [10].
Starting from a flat interface and letting it evolve according to
a linear Langevin fractional differential equation ∂tu(x,t) =
−c(−∇2)αu(x,t) + η(x,t) where α relates to the roughness ex-
ponent ζ as α = 1

2 + ζ [which can be associated with nonlocal
harmonic elastic forces on u(x,t) in general], it is found that
the behavior of the temporal persistence probability Q(t0,t),
understood as the probability that the interface stays above (or
below) its initial value at t0 on the interval [t0,t0 + t], depends
strongly on the initial conditions. Two limiting cases were
considered for the temporal persistence in Ref. [27]: for t0 = 0,
the so-called transient or coarsening persistence probability
Q0(t) = Q(t0 = 0,t) is found to decay as Q0(t) ∼ t−θ0 for
t → ∞ with θ0 a nontrivial exponent. On the other hand, for
t0 → ∞ the steady-state persistence probability behaves as
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Qs(t) = limt0→∞ q(t0,t) ∼ t−θs with θs = 1 − ζ = 3
2 − α 	=

θ0 as shown in Ref. [14]. Extensive numerical simulations
for the calculation of temporal persistence in surface growth
processes belonging to different universality classes have been
performed in Ref. [21]. The authors calculate separately the
positive and negative persistent exponents, i.e., the exponents
associated to the intervals where the surface remains above
or below a certain level, respectively, both transient θ±

0 and
steady-state exponents θ±

s . Moreover, the authors show that
θ+
s and θ−

s are always different for surfaces simulated from
nonlinear equations with broken mirror symmetry, since in
this case the surface tends to spend more time on the positive
or negative values. Results have been obtained regarding
spatial persistence of surface growth processes and for one-
dimensional fluctuating interfaces [15,16].

In this paper we investigate finite-time and finite-size effects
for different observables of the stochastic dynamics of ζ =
1/2 Edwards-Wilkinson interfaces with periodic boundary
conditions, which can affect the statistics of its crossing zeros
(we leave the study of the general non-Markovian case for a
forthcoming paper [28]). Since accessible systems are finite,
both experimentally and numerically, this kind of study is of
importance for the numerical validation of analytical results
and their approximations [16,29]. We show, in particular, that
finite-size effects and boundary conditions can affect the shape
of the steady-state spatial distribution of intervals P (�), and the
validity of the IIA for large �. Since the Edwards-Wilkinson
interface is linear and statistically invariant by a change of sign
u(x,t) 
→ −u(x,t), we expect that the steady-state persistence
exponents for the positive and the negative intervals are
equal, i.e., θ+

s = θ−
s = θ . Further, we relate the distribution

of intervals to the first-passage distribution of a random walk.
This mapping between Gaussian interfaces with height u(x,t)
at point x and time t and the stochastic process evolving
via dnX/dtn = η(t) with the correspondence u 
→ X and
x 
→ t is well known (see, for instance, Refs. [14,16,30,31]).
A link between the discretized stationary interface and a
discrete random walk is thus made by means of the Sparre-
Andersen theorem [32]. This theorem describes the persistence
probability P0(n) of a random walker to stay positive (or
negative) up to a step n starting in 0. We discuss as well
the influence of the boundary conditions on the correlator of
consecutive jumps in the interface.

We also analyze the statistics of crossing points in non-
stationary states, starting from an uncorrelated configuration.
While steady states can be directly sampled with their equi-
librium Boltzmann weight, nonstationary states are obtained
by numerically solving the dynamics. To this end we first
derive a numerically stable scheme by generalizing the von
Neumann stability criterion [33] for deterministic differential
equations to the general case of the Langevin spatially
fractional differential equation describing interfaces with local
and nonlocal elasticities. Although we present numerical
results for interfaces with roughness exponent ζ = 1/2, the
stability condition we derive is general and relates the time
step used for the simulations with the roughness exponent ζ

and a parameter related to the time discretization scheme. In
this context, Itô and Stratonovich discretizations are just two
special cases [34,35]. By solving the nonstationary dynamics
within this scheme we obtain the scaling law describing

the temporal evolution of the density of zeros towards the
steady-state results previously analyzed.

The paper is organized as follows. In Sec. II we present
our model and the main observables considered. In Sec. III we
focus on the stationary state of discrete interfaces with periodic
boundary conditions, analyzing in detail the finite-size effects
in the distribution and spatial correlations of intervals between
consecutive zeros. In Sec. IV we focus on nonstationary
interfaces starting from a flat interface. We first compute
exactly the structure factor as a function of time and we obtain
that it keeps track of the choice of convention for the time
discretization. From this expression we extract a general von
Neumann–like stability criterion for the stochastic dynamics
of interfaces. The numerical results for the evolution of the
structure factor of the interface and for the density of zeros
yield time-dependent scaling laws describing the approach
to the steady-state results. Finally, in Sec. V we give our
conclusions and perspectives.

II. MODEL AND OBSERVABLES

In this section we introduce the model of the interface we
are going to study. Although we focus in this paper on the
discrete version of the system which is the one numerically
accessible, we present first the continuous solution of the
Langevin equation introduced above, for completeness. We
also present the observables of interest, namely, the length of
the intervals between successive zeros, the correlation function
for the intervals, the structure factor, and the density of zeros.

To start with, we consider a fluctuating interface of size
L with height u(x,t) at position x and time t measured with
respect to the origin. The function u(x,t) satisfies the linear
Langevin equation

∂tu(x,t) = −c(−∇2)αu(x,t) + η(x,t), (1)

where the exponent α of the Laplacian is related to the
roughness exponent ζ as α = 1

2 + ζ and the thermal noise
η(x,t) is defined with mean 〈η(x,t)〉 = 0 and variance
〈η(x,t)η(x ′,t ′)〉 = 2T δ(x − x ′)δ(t − t ′). We consider periodic
boundary conditions such that u(0,t) = u(L,t). We will be
interested in the fluctuating dynamics of the interface starting
from the flat initial condition u(x,t = 0) = 0. The general
solution of Eq. (1) can thus be written in Fourier space as

u(q,t) =
∫ t

0
e−cq2α (t−t ′)ηq(t ′)dt ′, (2)

where the Fourier transform is defined as u(q,t) =∫ L

0 e−iqxu(x,t)dx, and thus u(q,t = 0) = 0. The Fourier noise
has mean value 〈ηq(t)〉 = 0 and variance 〈ηq(t)ηq ′(t ′)〉 =
2T Lδ(t − t ′)δqq ′ . We will be interested both in the nonsta-
tionary solution of Eq. (1) and its steady-state solution which
is reached at long times t ∼ L2α .

At a given time t , the average height is ū(t) = 1
L

∫ L

0 u

(x,t)dx where L is the size of the interface. We define a
zero as the crossing point of the interface with its mean value
ū(t), i.e., the points such that u(x,t) − ū(t) = 0. Although the
Fourier modes are independent, as shown by (2), the zeros are
defined in real space and thus have a nontrivial statistics. For
simplicity we can fix the mean value of the interface to zero,
which is equivalent to fixing the amplitude of the first mode to
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FIG. 1. An interface with periodic boundary conditions and
height ux(t) measured with respect to its average value ū(t) defined
on a lattice with L sites. The zeros are the points where the interface
intersects its mean value ū(t) given by the crosses. Such zeros divide
the lattice in N intervals of lengths �i , i = 1, . . . ,N . Since we work
in discrete space, the detection of the zeros can be either selecting
the site on the left of the point where the interface crosses its average
value (filled circles at the bottom) or by choosing the site that is
closer to the crossing point (empty circles). Notice how the choice of
the method modifies the length of the intervals between consecutive
zeros. In this case the second and the fourth gray zero are on the
next site on the right if the nearest site was chosen. Moreover, when
choosing a zero as the nearest site to the crossing point, one can
find two zeros at the same site which in turn allows the existence of
intervals of length � = 0.

zero u(q = 0,t) = 0. Under this assumption a zero of u(x,t)
is identified with a change of sign.

In the following we work on a lattice of L sites with spacing

x = 1 and we denote the height of the interface as ux(t)
with x = 1,2, . . . ,L (see Fig. 1). We focus on the Fourier
transform of the height defined as uqk

(t) = ∑L−1
x=0 ux(t)e−iqkx ,

with qk = 2πk/L and k = 0, . . . ,L/2 + 1; as an abuse of
notation we will omit the subscript k in the following. uq(t) sat-
isfies the general discretized equation (12) introduced below.
Periodic boundary conditions and uq=0(t) = ∑L−1

x=0 ux(t) = 0
are assumed. The identification of the zeros of the interface on
a lattice is not trivial as in the continuous case. In Sec. III A we
discuss in detail such way of detecting the zeros which in turn
is fundamental for a proper description of the intervals. After
detecting a change of sign of the interface from one site to the
next, an appropriate method must be defined so that there is not
ambiguity in choosing what site contains the zero (see Fig. 1).
In this paper we define a zero to be the site immediately to
the left of the crossing at which the height changes sign. The
intervals between consecutive zeros are denoted by �i with
i = 1, . . . ,N and by N the number of intervals.

In the stationary state of the interface, we look at the
distribution of the lengths of the spatial intervals P (�), which
will be defined carefully in the next section. In the following,
when talking about an interval of the interface we refer to the
length � of a spatial interval defined on the lattice with spacing

x = 1. The distribution of the intervals � is obtained by
direct sampling of stationary configurations. We will also study

the spatial correlations of the intervals where the correlation
function is defined as C(r) = 〈�i�i+r〉 − 〈�i〉〈�i+r〉 for two
intervals �i and �i+r averaged over all the (ordered) pairs
of intervals. Additionally, we discuss how periodic boundary
conditions induce correlations in the jumps even for a random
walk with increments ηx with mean 〈ηx〉 = 0 and variance
〈ηxη

′
x〉 = 2T δxx ′ . In the nonstationary state we are interested

in the evolution of the density of zeros ρ(t) = N/L, where
N is the number of zeros and L is the size of the lattice.
Such density of zeros is extracted from the dynamics of
the interface evolving from a flat interface at time t = 0.
Concerning the interface, we analyze the structure factor
defined as Sq(t) = 〈u∗

q(t)uq(t)〉 where the uq(t) is the Fourier
transform of ux(t), with q = 2πk/L and k = 0, . . . ,L/2 + 1.

III. STATIONARY STATE

To start with, we analyze the stationary features of the
interface. In this section we refer to the height of the interface
at a certain point x simply as ux = ux(t → ∞) by omitting
the time dependence. We begin with a brief discussion about
the persistence properties of a discrete random walk which
will be naturally extended to the distribution of the intervals
between consecutive zeros. Later on, we study numerically the
correlations between such intervals and we present a scaling
function for such correlations. We conclude this section by
describing how the boundary conditions are determinant for
the appearance of correlations. In particular, we look at the
correlation of the spatial increments of the interface.

A. Distribution of intervals as first-passage
distribution of a random walk

Let us denote un the position of an unbiased random walker
at step n. Then, the persistence probability for this random
walker to stay positive up to step n, having started in u0 > 0, is
denoted by Q(u0,n). Similarly, the probability that the random
walker reaches the origin in exactly n steps starting in u0 > 0
is P (u0,n) = Q(u0,n) − Q(u0,n + 1), which is known as the
first-passage probability. When the random walk is defined in
continuous space and time u(t) with t � 0, the first-passage
probability P (t) is defined as the probability density of the
time at which the random walker changes sign, i.e., the
probability that the process has a zero at time t . In this case
P (t) = −dQ(t)/dt , with Q(t) the persistence probability that
the walker stays positive between time 0 and time t . Note
that already for this simple process in the discrete case the
definition of a zero is not trivial. We will discuss in detail
how to detect the zeros when the process is discrete when
we describe the relation of the discrete random walk with the
fluctuating interface.

Consider now the jump distribution of the random walk
given by the function φ(η) which we assume symmetric
and continuous. The persistence probability Q(u0,n) is the
probability that ui � 0 for all i = 1, . . . ,n having started in
u0. By considering the first step of the walker with a stochastic
jump from u0 to u1 and letting evolve the random walker for
n − 1 steps with the jumps ηi = ui − ui−1 being independent
and identically distributed, we can write a backward equation
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for Q(u0,n) as

Q(u0,n) =
∫ ∞

0
Q(u1,n − 1)φ(u1 − u0)du1 (3)

with initial condition Q(u0,0) = 1 for all u0 � 0.
Although Q(u0,n) depends explicitly on the jump distri-

bution φ(η), as seen in Eq. (3), it can be shown that under
our previous assumptions Q(0,n) is independent of φ(η) (see
Ref. [17], and references therein). Moreover Q(0,n) takes the
following simple form:

Q(0,n) =
(

2n

n

)
2−2n (4)

which is the celebrated Sparre-Andersen theorem [32].
In the limit of large n, the persistence probability Q(0,n)

behaves as ∼n−θ with θ = 1/2 the persistence exponent. This
exponent is universal in the sense that even when Q(u0,n)
depends on φ, θ does not depend either on u0 or on φ. It is
easy to see that the first-passage probability P (0,n) behaves
as ∼n−3/2 at large n.

The excursion made by a discrete random walker starting
at u0 = un=0 that remains positive up to step n and becomes
negative at step n + 1 resembles the behavior of the interface
in a given interval starting from u0 = ux=0(t = 0). With this
image in mind, we can think of the number of steps n during
which the random walker does not change sign as the length
� of the intervals generated by the zeros of the interface
(see Fig. 1). This suggests that the persistence probability
Q(u0,n) defined for the random walk might describe well the
probability Q(u0,�) that the interface ux stays above its mean
height for a distance x = �. At this point, even if this idea
seems reasonable, we are not ready to extend the first-passage
probability P (n) of the discrete random walk to the probability
P (�) that the interface has an interval of length �. First let
us discuss how to define a zero when working on a lattice.
Note that in this case a zero can no longer be identified just
by a change of sign of ux (see Fig. 1). Let us imagine that
ux−1(t) > 0 at x − 1, ux < 0 on the next site, and ux+1 > 0
again on the next, then it exists x ′ ∈ R in the interval (x − 1,x)
such that ux ′ (t) = 0 and x ′′ in the interval (x,x + 1) such that
ux ′′ = 0. Moreover let us assume that both x ′ and x ′′ are closer
to x; in this case we could define a zero to be the site on
the lattice that is closer to the crossing point. If this were
the case, we would find two zeros on the same site x in our
example, therefore an interval of length � = 0 is found between
these two zeros. Another way of finding the zeros would be
choosing always the site on the left (or on the right) to the
crossing point; this would leave in this case a zero on the site
x − 1 and another zero on x, and thus an interval of length
� = 1 between these zeros. The latter method, which we will
adopt, produces simpler results for which the Sparre-Andersen
theorem also applies in spite of the small correlations induced
by periodicity.

Always choosing the site on the left (by symmetry we
obtain the same results if we choose the site on the right)
prevents us from having intervals of length � = 0 which,
however, are allowed in the calculation of the persistence
function Q(u0,n) of a random walk [27]. In our case, if
such intervals of length � = 0 were allowed, we observe,
in comparison with the Sparre-Andersen theorem, that the

statistics for intervals of length � = 1 changes and becomes
more sensitive to the correlations induced by the periodic
boundary condition, which are present even at short scales (see
Sec. III B). Another issue to take into account is that Eq. (4)
is obtained by choosing the initial condition of the random
walker as u0 = 0. However, for our interface with continuous
displacements it is rare to have an interval that starts exactly
at u0 = 0. The effect of the discretization for a random walk
on a semi-infinite domain produces that the average return
time to the origin (first-passage time) is finite. This is in
contrast with the continuous random walk for which such
mean interval is zero due to the infinite number of crossings
that follows after the random walker changes sign for the first
time before making a long excursion. Moreover, the periodic
boundary conditions constrain the sum of the lengths of the
intervals to be exactly L the size of the lattice given, i.e.,∑N

k �k = L, with N the number of intervals which is always
even. Below we discuss the influence of large intervals of
lengths comparable to the system size (� ∼ L/2) on the tail
of the distribution. This question also appears in the study
of extremal or record statistics in random systems as studied
in Refs. [36,37]. Analogously, periodic boundary conditions,
which turn out to be crucial in the study of the steady-state
distributions for finite interfaces, are also considered in Refs.
[16,30,31].

Under the previous assumptions, the probability p(�) of
having an interval of length � � 1 is in a good agreement
with the first-passage probability of a discrete random walk
with initial condition u0 = 0 after normalization which gives
a modified Sparre-Andersen theorem

p(�) = 1

Z
[Q(�) − Q(� + 1)]. (5)

Here Q(�) = ( 2�
�

)2−2� as in Eq. (4) and Z is a normalization
factor

Z =
�max∑
�=1

P (�) =
�max∑
�=1

[Q(�) − Q(� + 1)]

= 1

2
− 2−2L

(
2L

L

)
(6)

which rules out intervals of length � = 0 and � > �max=L−1.
By direct sampling of stationary configurations we can

obtain numerically the distribution of the intervals for different
system sizes L (see Fig. 2). The stationary configurations
in Fourier space for an interface with roughness exponent
ζ present a Gaussian distribution and can thus be directly
obtained from the structure factor Sq = Sq(t → ∞) = 〈u∗

quq〉.
For our Edwards-Wilkinson interface of interest, we have

used the large-scale expression Sq = T L
cq2 with T L = T̃ = 0.1

and c = 1. We discuss in Sec. IV other choices of structure
factors including, e.g., finite-size corrections.

This is done by generating random Gaussian amplitudes uq

with zero mean and variance proportional to Sq as explained
in Ref. [38]. We find that the histograms of the intervals � for
different L satisfy, up to corrections due to the discretization,
the modified Sparre-Andersen theorem (5) as shown in Fig. 2,
at least in the region where the length of the intervals is much
smaller than L/2. Two comments are in order. The method
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FIG. 2. Normalized histogram of the distances between consecu-
tive zeros � for different sizes of the system compared to the modified
Sparre-Andersen theorem p(�) = (q(�) − q(� + 1))/Z with Z the
normalization factor given by Eq. (6) and q(�) = ( 2�

�
)2−2� which is

in good agreement even for small values of �. Vertical lines show
the values of L/2 for L = 8192,16 384,32 768,65 536,131 072 (in
cyan, fuchsia, blue, green, and red, respectively, in the color version).
The inset shows the tail of the distribution for L large (which are
the points for which Sparre-Andersen is no longer valid) with its
points calculated from the average of the original data taken on
logarithmic bins. In the limit L → ∞ Sparre-Andersen is always
satisfied. A scaling law is found for the probability of the intervals
for large values of � for which all the curves superpose. This law is
p(�,L) ∼ L−3/2p̂(�/L) as explained in the text.

of defining the zeros discussed in the previous subsection
influences the results for � > 1: in fact, our convention for the
definition of the location of zeros proves to be in surprisingly
good agreement with the Sparre-Andersen theorem, with the
normalization factor described in (6). One could expect that
correlations induced by the periodic boundary conditions
would render this result invalid, but this is not the case.
However, if one takes other definitions for the locations of
zeros, the correspondence would not hold. Second, for large
� but smaller than the system size, in particular for � < L/2,
the intervals satisfy a power-law behavior P (�) ∼ �−γ with
γ = 3/2. Since this exponent γ for the distribution of intervals
is related to the steady-state persistence exponent θ as γ =
θ + 1, we obtain the expected persistence exponent θ = 1/2
for fluctuating interfaces with roughness exponent ζ = 1/2 or
the persistence exponent of a discrete random walk.

For � above L/2, the effects of periodicity are very strong
and this induces a cutoff at this length scale as observed in the
numerical results. A corresponding scaling law can in fact be
found for the distribution of the intervals for large values of �

which turns out to be p(�) ∼ L−3/2p̂(�/L), with p̂(x) decaying
rapidly for x  1, and p̂(x) ∼ x−3/2 for intermediate x � 1.
Figure 2 shows that intervals of length � > L/2 are indeed
very rare; it also shows that the scaling is valid in the region
for large � < L.

B. Correlations of increments

For a one-dimensional interface drawn from the steady
state described by the height ux at a distance x with initial

condition u0 = 0, the consecutive increments are decorrelated
since the process is Brownian along the spatial direction x

and thus Markovian. By comparing two simple examples,
we investigate first how periodic boundary conditions induce
correlations on the increments even for this simple process. We
start first with the analysis of the correlator of the increments of
a random walk attached in one end and free in the other to find
afterwards the correlator of the process itself. Then we impose
boundary conditions and find the correlator of the jumps for
this constrained system which turn out to present long-range
correlations. We underline that the discretization in space and
the periodic boundary conditions help us to understand the
correlations between intervals. By the end of this section we
define the correlation function for the intervals in the stationary
state and present some numerical results.

1. Example: Interface attached in one end and free in the other

In this case the interface is attached at the origin u0 = 0 but
it is free at the other extreme. The height at every position is
determined by ux+1 = ux + ηx where the noise is distributed
as 〈ηx〉 = 0 and second moment 〈ηxηx ′ 〉 = 2T δxx ′ , thus the
jumps are uncorrelated. Therefore the process at position x is
defined as

ux =
x−1∑
x ′=0

ηx ′

or

�u = M�η, (7)

with M a lower triangular matrix.
The probability of a history is obtained from that of the

noise, which is Gaussian, and for our choice of correlations
above reads as follows:

P (η0,η1, . . . ,ηL−1) ∝ exp

(
− 1

2T
�ηKηx

�η
)

(8)

with T the physical temperature of the process and Kηx
the

identity matrix of dimension L × L. To see how the process �u
is distributed we can get �η from Eq. (7) and insert it in Eq. (8)
as follows:

P (�u) ∝ exp

(
− 1

2T
�u(M−1)†Kηx

M−1 �u
)

= exp

(
− 1

2T
�uKux

�u
)

= exp

(
− 1

2T

L−1∑
x=0

(ux+1 − ux)2

)

since the transformation (7) has unit Jacobian. The matrix
Kux

= (M−1)†Kηx
M−1 has the form of a discrete Laplacian:

Kux
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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The Fourier transform of �u can be also expressed in matrix
form as �uq = F�ux , where we leave the subindex to identify
�u from its Fourier transform. The elements of the matrix F
are Fjk = exp(− 2iπ

L
jk) and the elements of its inverse are

(F−1)jk = 1
L

exp( 2iπ
L

jk). Similarly, we can define the Fourier
transform of the noise as �ηq = F�ηx .

2. Example: Interface with periodic boundary conditions

To determine the correlations induced by the periodic
boundary conditions (PBCs), we now follow the procedure
of the previous example, but backwards. We will start from
the known distribution of the interface position and deduce
from it the correlator of its elementary increments ηx . For
PBCs, the probability of a history in Fourier space �uq is (see
Sec. IV for details)

P [�uq] = exp

(
− 1

2T

∑
q

2(1 − cos q)u∗
quq

)

= exp

(
− 1

2T
�u∗

qKq �uq

)
(9)

with q = 2πk
L

, �uq = F�ux the Fourier transform of �ux , and
∑

q

running over the Fourier index k = 0, . . . ,L − 1.
The probability of a history �ux with PBC takes a similar

form as in the previous example. We substitute �uq in Eq. (9)
in terms of �ux as

P PBC[�ux] ∝ exp

(
− 1

2T
�uxF

†KqF�ux

)

= exp

(
− 1

2T
�uxK

PBC
ux

�ux

)
, (10)

where

KPBC
ux

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1

−1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . −1

−1 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then in Eq. (10) we express �ux = M�ηx in terms of �ηx as
follows:

P PBC[�ηx] ∝ exp

(
− 1

2T
�ηx(FM)†KPBC

q FM�ηx

)

= exp

(
− 1

2T
�ηxK

PBC
ηx

�ηx

)
,

where

KPBC
ηx

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0
... 2 1 · · · 1
... 1

. . .
. . .

...
...

...
. . .

. . . 1
0 1 · · · 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(KPBC
ηx

)i,j

j

i

(a)

j

i

(KPBC
ηx

)i,j

(b)

FIG. 3. (a) Correlator of the noise KPBC
ηx

of an interface with pe-
riodic boundary conditions using the exact Laplacian. (b) Correlator
of the noise KPBC

ηx
of an interface with periodic boundary conditions

with the approximate Laplacian (1 − cos q) ≈ 1
2 q2 [see Eq. (9)]. The

increment correlations out of the diagonal persist even if we cut some
Fourier modes.

describes the correlations of the increments of our interface
with PBCs [see Fig. 3(a)]. We thus observe that the increments
present long-range correlations as a result of the boundary
conditions. Note that if we take the approximation of the
Laplacian for small values of q in Eq. (9), i.e., 1 − cos q ≈
1
2q2, we also obtain a matrix ˜KPBC

ηx
presenting long-range

correlations for the increments, as shown in Fig. 3(b).

C. Spatial correlation of intervals

To see how the intervals generated by the zeros are
correlated we compute the correlation function

C(r) = 〈�i�i+r〉 − 〈�i〉〈�i+r〉, (11)

where the average is made over all the N intervals of the
interface.

For the correlation we observe that for odd values of r ,
the intervals are weakly anticorrelated for small values of r

but converge to zero almost immediately. However, for even
values of r the intervals are strongly anticorrelated (except
for r = 0) and tend more slowly to zero as observed in
Fig. 4 where we plot |C(r)| for r even. The decay of the
correlations seems to approach an exponential behavior at
large r . Moreover the correlation function obeys a scaling
law |C(r)| = L|Ĉ(r/L1/2)| as illustrated in the inset of Fig. 4.

IV. NONSTATIONARY STATE

The simplest equation to describe the evolution in time of
a rough interface is the well-known Edwards-Wilkinson (EW)
equation defined in continuous space and time in Eq. (1). In
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(r̂
L

1
/
2
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r̂ = r/L1/2
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L = 65536
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L = 16384
L = 8192

FIG. 4. Absolute value of the interval correlation C(r) as defined
in Eq. (11) for different sizes L of the system and r even. We
show the rescaled correlation in log-normal scale which follows a
scaling law |C(r)| = L|Ĉ(r/L1/2)|. The obtained scaling function Ĉ

is independent of L (inset figure). |C(r)| seems to follow a nontrivial
law as compared to a pure exponential law ∼e−3r̂/2 given by the solid
line in the inset.

this section we will focus on a general discretized version of
this equation and obtain a stability criterion that generalizes
the well-known von Neumann stability [33]. This criterion
establishes the necessary condition for the solution to be stable
given the discretization scheme chosen.

We denote uq(t) as the Fourier transform of the height of
the interface ux(t); here again we write explicitly the time
dependence. For the discretization of the EW equation, the
time derivative can be discretized by taking a proportion auq(t)
of the function at the current step and (1 − a)uq(t + 
t) of the
function one step later, with a ∈ [0,1]. This results in a general
form of the discretized EW equation as follows:

uq(t + 
t) = [1 − aKq]uq(t) +
√

T̃ 
t ηq(t)

1 + (1 − a)Kq

, (12)

where T̃ = T L and Kq = c
t[2(1 − cos q)]α the Laplacian
with roughness coefficient ζ = α − 1

2 . Kq can be approxi-
mated as c
tq2α for small values of q.

In this equation we recognize the Itô and Stratonovich
discretization when choosing a = 1 and a = 1/2, respectively.
As we will discuss below, the choice of the time-discretization
parameter a is rather important: it influences the form of
steady-state itself, and the stability of the numerical scheme.

A. Discrete-time solution

The solution uq(t) of the continuous EW equation in Fourier
space [see Eq. (1)] given by expression (2) is obtained by direct
integration of Eq. (1). By introducing vq(t) = fq(t)uq(t) such
solution is simply the integral of ∂t [vq(t)] = ∂t [fq(t)uq(t)] =
ecq2t ηq(t). Notice that by considering a step 
t we have that
v(t + 
t) − v(t) ≈ 
tecq2t ηq(t) = g(t) with g(t) a function
that does not depend explicitly on uq(t). In the following we
find a similar solution for the discrete equation (12) written as
a geometric sum as in Eq. (14) below. We provide the details

of the computations since it allows one to pinpoint the precise
origin of the stability from the convergence of a geometric
sum.

Equation (12) corresponds to the most general discretiza-
tion of the EW equation in Fourier space for which the
discretization is controlled by the parameter a. Let us rewrite
Eq. (12) as follows:

uq(t + 
t) = Aquq(t) + Bq(t), (13)

with Aq and Bq(t) given by

Aq = 1 − aKq

1 + (1 − a)Kq

and

Bq(t) =
√

T̃ 
t ηq(t)

1 + (1 − a)Kq

,

where a ∈ [0,1] and Kq = c
t[2(1 − cos q)]α or for small
values of q, Kq = c
tq2α with α = 1

2 + ζ for any roughness
exponent ζ .

We would like to find fq(t) so that we can express vq(t) =
fq(t)uq(t) as for the continuous case and from here to find
uq(t) that satisfies Eq. (13).

To start with, we seek a function g(t) independent of uq(t)
such that vq(t + 
t) − vq(t) = g(t). This holds if Aqf (t +

t) − f (t) = 0, i.e., f (t) = A0A

−t/
t
q . Notice that f (t)

can also be written as f (t) = A0exp[− t

t

log 1−aKq

1+(1−a)Kq
] ≈

A0e
tcq2+O(
t) (we used the approximation for small values

of q and ζ = 1/2). Thus, in this case we recover the function
f (t) found in the continuous solution of the EW equation by
taking the limit 
t → 0.

For finite 
t , one has

vq(t + 
t) − vq(t) = A−t/
t
q ηq(t)

with A0 = 1+(1−a)Kq√
T̃ 
t

Aq . Then we can find the solution of v(t)
as follows:

vq(t) =
t−
t∑
t ′=0

A−t ′/
tηq(t ′) + A0vq(0)

with the step in the sum of size 
t . The solution uq(t) =
vq(t)/fq(t) in discrete time is

uq(t) = 1

A0

t−
t∑
t ′=0

A(t−t ′)/
t
q ηq(t ′) + At ′/
t

q uq(0), (14)

where we take uq(0) = 0 for simplicity. This is the discrete
equivalent of the continuous solution (2).

B. Structure factor from discrete-time solution

We found above the discrete solution of Eq. (12). From here
the structure factor can be found straightforwardly as follows:

Sq(t) = 〈u∗
q(t)uq(t)〉 = 2

A2
0

t∑
t ′=
t

A2t ′/
t
q , (15)

where we used the fact that 〈ηq(t)ηq(t ′)〉 = 2δtt ′ .
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Hence,

Sq(t) = 2

A2
0

A2
q

(
1 − A

2t/
t
q

)
1 − A2

q

.

Or by substituting Aq and A0 in the previous expression we
can have the structure factor Sq(t) in terms of a:

Sq(t) = 2T̃ 
t

Kq[2 + (1 − 2a)Kq]
Fq(t) (16)

with

Fq(t) = 1 −
(

1 − aKq

1 + (1 − a)Kq

)2t/
t

, (17)

where Kq encodes the time step 
t and the Laplacian either
with the exact expression Kq = c
t[2(1 − cos q)]α or the
approximation for small values of q: Kq = c
tq2α with
α = 1

2 + ζ for any roughness exponent ζ .
The convergence of Eq. (16) in the limit t → ∞ is

guaranteed since Fq(t) given by (17) converges to 1 for
any value of a and q. In this limit the structure factor
Sq = Sq(t → ∞) takes the following form:

Sq = T̃ 
t

Kq

[
1 + (1−2a)

2 Kq

] (18)

with some particular cases corresponding to “anti-Itô,”
Stratonovich, and Itô discretizations for a = 0, 1/2, and 1,
respectively, which yield

Sq = T̃ 
t

Kq

(
1 + 1

2Kq

) , a = 0, (19)

Sq = T̃ 
t

Kq

, a = 1/2. (20)

Sq = T̃ 
t

Kq

(
1 − 1

2Kq

) , a = 1, (21)

where Kq = c
t[2(1 − cos q)]α or Kq = c
tq2α with α =
1
2 + ζ for any roughness exponent ζ . In particular, the choice
a = 1/2 given by expression (20) cancels out the correction
for 
t in the structure factor. This constitutes one of our
main results: the Stratonovich discretization (a = 1/2) is the
discretization which minimizes the influence of the time step

t on the steady state.

Notice that in Eq. (18), a wrong choice of 
t can make
the denominator equal to zero; this happens whenever 1 +
(1−2a)

2 Kq = 0, i.e., if


tc = 2

c (2a − 1)[ 2(1 − cos q)]α
(22)

for a > 1/2 and Kq = c
t[2(1 − cos q)]α . For the explicit
solution associated to the parameter a = 1 (Itô discretization)
it is known from general experience that the solution of the
EW equation is unstable if the time step is too large: this is
indeed the von Neumann stability criterion [33]. Our analysis
hence provides a detailed understanding of this stability for
any a: the relation (22) gives the critical value of 
t for which
Sq becomes apparently negative as a result of the divergence of
the geometric series (15). The expression (22) thus represents

S
π
(t

)

t
2 5 10

10−2

1010

107

104

10

FIG. 5. Stability of Sq (t) as a function of time with q = q∗ = π ,

t = 1.1 > 
tc and parameters c = 1, ζ = 1/2. Sπ (t) is stable for
all times for a � 1/2 (a = 0,0.25,0.5 in dark red, red and orange,
respectively, from bottom up), however if a becomes larger (a =
1,0.95,0.75 in blue, green and cyan, respectively, from top down)
Sπ (t) loses stability

the threshold above which the numerical procedure becomes
unstable.

The smallest value that 
tc can take corresponds to the
mode associated to q∗ = π for which


tc(q∗) = 2

(2a − 1)4αc
(23)

for a > 1/2 and α = 1
2 + ζ for any roughness exponent ζ .

This implies that the modes related to shorter distances are the
first to become unstable. Figure 5 shows the stability of Sq(t)
for different values of a and a choice of 
t = 2.1 > 
tc with
q∗ = π and c = 1, ζ = 1/2. The most important consequence
of our analysis is that the structure factor Sπ (t) is stable at all
times for any value a � 1/2 of the discretization parameter,
while for larger values of a it can lose stability for large enough
time step 
t given by expression (23).

C. Structure factor from trajectorial probabilities

By computing the stationary distribution P st[uq(t)] and
comparing it with the probability of the reversed process we
can obtain the structure factor Sq in the stationary state. The
dynamics of the process is not reversible since the normal
process uq(t) and the same process reversed in time are
described with Itô (a = 1) and anti-Itô (a = 0) discretization,
respectively. We compare the probability of the process with
the distribution of trajectories P traj[uq(t),a] and the probability
of the trajectories reversed in time P traj,R[uq(t),1 − a], whose
temporal symmetry is conserved by the transformation a 
→
1 − a. The probabilities of the process and of the trajectories
compare as follows:

P st[uq(tf )]

P st[uq(t0)]
= P traj[uq(t),a]

P traj,R[uq(t),1 − a]
. (24)

The probability of a trajectory of u will be deduced from
that of the noise as

P traj[uq(t)] ∝ exp

(
−1

2

1

2T̃ 
t

tf∑
t=0

∑
q

ηq(t)η−q(t)

)
. (25)

042118-8



DISTRIBUTION OF ZEROS IN THE ROUGH GEOMETRY . . . PHYSICAL REVIEW E 93, 042118 (2016)

In this case we focus on the implicit form of Eq. (12) with
a = 0, which is widely used when working with numerical
simulations due to its stability. This equation takes the
following form:

uq(t) = uq(t + 
t) +
√

T̃ 
tηq(t)

1 + 
tcq2
, (26)

where we use the approximation of the Laplacian for small q.
From Eqs. (25) and (26) we can express ηq(t) and ηR

q (t)
in terms of uq(t + 
t) and uq(t) to compute the right-
hand side of Eq. (24). For the forward trajectory we use
−ηq(t) = [uq(t + 
t) − uq(t) + 
tcq2uq(t)]/

√
T̃ 
t and for

the trajectory reversed in time we look at −ηR
q (t) = [uq(t +


t) − uq(t) − 
tcq2uq(t)]/
√

T̃ 
t corresponding to a = 1 in
Eq. (12). The factor in the sum on the right-hand side in Eq. (24)
is found to be[

ηq(t)η−q(t) − ηR
q (t)ηR

−q(t)
]

= 2
tc q2
(
1 + 1

2
tcq2
)
uq(t + 
t)

× u−q(t + 
t) − uq(t)u−q(t)

= 2
tc 〈u∗
q(t)uq(t)〉[uq(t ′)u−q(t ′)]t+
t

t , (27)

where we denote [uq(t ′)u−q(t ′)]t+
t
t = uq(t + 
t)u−q(t +


t) − uq(t)u−q(t). From the last expression (27) we can
identify the structure factor Sq = Sq(t → ∞) = 〈u∗

q(t)uq(t)〉.
Therefore Eq. (24) takes the form

P st[uq(tf )]

P st[uq(t0)]
= exp

⎛
⎝−1

2

tf −
t∑
t=0

∑
q

S−1
q [uq(t ′)u−q(t ′)]t+
t

t

⎞
⎠

with the structure factor in the stationary state given by

Sq = T̃

cq2
(
1 + 1

2c
tq2
) . (28)

Note that this expression for the structure factor differs
from the common expression Sq = 1/q2 since it contains a
correction term proportional to the time step 
t induced by
the time discretization. Equation (28) is in agreement with
expression (19) found in the previous section with the choice
a = 0 and Kq = c
tq2.

D. Structure factor: Numerical simulations

For the evolution of the structure factor Sq(t) (see Fig. 6) we
find a characteristic qc, such that for q < qcSq(t) saturates to a
plateau whose value depends on t , while the large q behavior is
independent of t . This can also be compared with the analytic
expression (16).

If we scale the structure factor as Sq = t−1Ŝqt1/2 all the
curves collapse in a single curve (see Fig. 6). This is in perfect
agreement with the analytic expression found in Eq. (18). It
also shows that the nonsteady relaxation of the interface is
governed by a dynamical length growing as Ldyn(t) ∼ t1/2.
In other words, we can write Sq ≡ q2S̃qLdyn(t), such that large
length scales q < 2π/Ldyn(t) are out of equilibrium and retain
memory of the flat initial condition Sq ∼ [2π/Ldyn(t)]−2,
while small length scales q > 2π/Ldyn(t) are equilibrated
and display the characteristic equilibrium roughness exponent
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/
2

q̂ = qt1/2

q

FIG. 6. Evolution of structure factor in time with discretization
parameter a = 0 in the evolution equation (12) with roughness
exponent ζ = 1/2. The bending tail of Sq (t) for q close to π is
completely understood by means of the correction term proportional
to 
t and the approximate Laplacian encoded in the variable
Kq = c
tq2 as derived in Eq. (19) (solid line). A dynamic scaling
law is found to be Sq = t−1Ŝqt1/2 (inset).

Sq ∼ q−2. Equilibration is thus expected for times t � tsat ∼
L2, as Ldyn(t) → L.

The tail of the structure factor Sq(t) for q close to π (see
Fig. 6) is controlled by the correction term proportional to 
t ,
and is strongly influenced by the choice of the parameter a in
the evolution equation (12) and of the Laplacian encoded in
the variable Kq in Eq. (18). In the simulations we used a = 0
and T̃ = 0.1 and the approximate Laplacian Kq = c
tq2 with
c = 1 and 
t = 0.1.

E. Density of zeros

Another observable is the nonstationary density ρ of
crossing zeros. The initial condition in the out-of-equilibrium
state is a flat interface. Immediately after we let the interface
evolve, we observe that a large number of zeros appear. When
the interface realizes it is finite, i.e., at a saturation time
tsat ∼ L2, the density of zeros reaches a stationary state as
shown in Fig. 7. A scaling law can be found; it scales as
ρ(L,t) = L−1/2ρ̂(t/L2) for which a perfect collapse is found
as shown in Fig. 7.

We can extract a power law from the behavior of the density
of zeros before the saturation time tsat which turns out to be
ρ(t) ∼ t−1/4. This exponent is validated from the scaling found
before since ρ(L,t) = L−1/2(t/L2)−1/4 = t−1/4. We can also
see that the regime after the saturation time behaves as ρ(L) ∼
L−1/2. This is consistent with the finite-size scaling for p(�)
shown in Fig. 2. Since 〈�〉 ≡ ∑L

�=1 p(�)� ≈ ∫ L

0 �−3/2�d� ∼
L1/2, we get that ρ(L) = 〈�〉−1 ∼ L−1/2. The density of zeros
thus vanishes in the thermodynamic limit due to the infrared
divergence of 〈�〉. This is directly related to the power-law
decay exponent of p(�) here γ = 3/2, as predicted by the
Sparre-Andersen theorem.

As discussed in relation with Sq(t), the scaling law
for ρ(L,t) is consistent with a relaxation dominated by a
single dynamical length Ldyn(t) ∼ t1/2. We can thus write
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FIG. 7. Evolution of density of zeros in time for different system
sizes: L = 2048,4096,8192 (in red, green, and blue, respectively),
averaged over 1000 realizations. There is a characteristic time tc ∼ L2

from which the density reaches a steady state. The scaling law for the
density of zeros is found to be ρ(L,t) = L−1/2ρ̂(t/L2).

ρ(L,t) = L1/2ρ̃(Ldyn(t)/L), such that ρ̃(x) ∼ x1/2 for x � 1,
corresponding to the nonsteady regime, and ρ̃(x) ∼ const
for large x  1, corresponding to the equilibrated regime.
Comparing ρ(t) ∼ Ldyn(t)−1/2 ∼ t−1/4, valid for intermediate
times, with ρ(t → ∞) ∼ L−1/2 we can see that finite-size
scaling in the steady state directly translates into the non-
stationary finite-time scaling, by replacing L → Ldyn(t). In
particular, the power-law decay exponent 1/4 in the density
of zeros is related to the dynamical exponent z = 2 in
Ldyn(t) ∼ t1/z and the Sparre-Andersen exponent γ = 3/2
as (2 − γ )/z = 1/4. Interestingly, this let us predict that the
nonstationary distribution of intervals can be expressed as
p(�,t) ∼ �−3/2p̃(�t−1/2) for t < tsat.

V. CONCLUSIONS

In this paper we have focused on fluctuating interfaces
that belong to the EW universality class, i.e., interfaces with
roughness coefficient ζ = 1/2. We investigated the spatial
first-passage probability which was obtained from the length
of the intervals generated by the crossing zeros of the
interface with respect to its average. The linearity of the
Langevin equation ensures that the symmetry ux(t) → −ux(t)
is conserved, therefore the persistence exponent for the positive
and negative intervals is exactly the same [15], i.e., θ+

s =
θ−
s . This justifies the fact that for stationary interfaces the

distribution of intervals obtained numerically was obtained
without making a distinction between the positive and the
negative intervals. Regarding the distribution of intervals,

both positive and negative, we have shown the agreement
of the Sparre-Andersen theorem for random walks which
measures the persistence in time with the spatial distribution
of intervals for which the height in an interval is positively
or negatively persistent. We also found a scaling function
for such distribution related with the finite system size L for
which intervals larger than a certain �max ∼ L/2 are rare. We
investigated the correlations between the intervals from which
we obtained a scaling function with the system size L. The
influence of periodic boundary conditions was also studied by
means of the increments correlation of the interface itself.

Concerning the nonstationary regime we have presented
a general discretization for the linear Langevin equation that
simulates the evolution of fluctuating interfaces with rough-
ness coefficient ζ . An exact expression for the evolution of the
structure factor was obtained and, surprisingly, it depends on
the time step 
t and on the discretization parameter a even
in the infinite-time limit. The correction in 
t that it implies
for the natural expression of the structure factor disappears
for Stratonovich discretization corresponding to the choice of
our parameter a = 1/2. We have also found a relation that
establishes the critical value of the time step 
tc needed as a
function of the parameter a so that stability of the simulation
is guaranteed. Finally we study numerically the evolution of
the structure factor Sq(t) and the density ρ of zeros. Regarding
Sq(t) two regimes were found; before a critical value qc ∼ t1/2

we observe a plateau for small q and for larger values of
q > qc Sq(t) presents a power-law decay which goes as ∼q2.
The stationary limit found numerically is in perfect agreement
with the analytic expression found for Sq(t → ∞). For the
density of zeros ρ two regimes were found as well. Before
a saturation time that scales as tsat ∼ L2 the density of zeros
follows a power law with a decay that goes as ∼ t−1/4, which
is in perfect agreement with the scaling of reaction diffusion
processes found in the literature [39], and for times larger than
tsat the density reaches a stationary state as expected.
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