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Rare trajectories of stochastic systems are important to understand because of their potential impact. However,
their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool
allowing their study, by means of simulating a large number of copies of the system, which are subjected to
selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time
and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach
which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the
distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size
limit of these estimators, which—as shown on the contact process—provides a significant improvement of the
large deviation function estimators compared to the standard one.
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I. INTRODUCTION

Rare events and rare trajectories can be analyzed through
a variety of numerical approaches, ranging from importance
sampling [1] and adaptive multilevel splitting [2] to transition
path sampling [3] (see, e.g., Refs. [4,5] for reviews). In
this paper, we focus on population dynamics algorithms,
as introduced in Refs. [6,7], which aims at studying rare
trajectories by exponentially biasing their probability. This
makes it possible to render typical the rare trajectories of the
original dynamics in the simulated dynamics. The idea is to
perform the numerical simulation of a large number of copies
Nc of the original dynamics, supplemented with selection rules
which favor the rare trajectories of interest.

The version of the population dynamics algorithm intro-
duced by Giardinà, Kurchan, and Peliti [6] provides a method
to evaluate the large deviation function (LDF) associated to the
distribution of a trajectory-dependent observable. The LDF is
obtained as the exponential growth rate that the population
would present if it was not kept constant [8]. Under this
approach, the corresponding LDF estimator is in fact valid
only in the limits of infinite simulation time t and infinite
population size Nc. The usual strategy that is followed in
order to obtain those limits is to increase the simulation time
and the population size until the average of the estimator over
several realizations does not depend on those two parameters,
up to numerical uncertainties. The limitations and associated
improvements of the population dynamics algorithm have been
studied in Refs. [9–12]. In this paper, following a different
approach, we propose an original and simple method that
takes into account the exact scalings of the finite-t and
finite-Nc corrections in order to provide significantly better
LDF estimators.
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In Ref. [13], we performed an analytical study of a discrete-
time version of the population dynamics algorithm. We derived
the finite-Nc and finite-t scalings of the systematic errors of the
LDF estimator, showing that these behave as 1/Nc and 1/t in
the large-Nc and large-t asymptotics respectively. In principle,
knowing the scaling a priori means that the asymptotic limit
of the estimator in the t → ∞ and Nc → ∞ limits may be
interpolated from the data at finite t and Nc. However, whether
this idea is actually useful or not is a nontrivial question, as
there is always a possibility that onset values of Nc and t

scalings are too large to use these scalings. In the present
paper, we consider a continuous-time version of the population
dynamics algorithms [14,15]. We show numerically that one
can indeed make use of these scaling properties in order to
improve the estimation of LDF, in an application to a system
with many-body interactions (a contact process). We illustrate
in Fig. 1 the improvement in the determination of the LDF
estimator. We emphasize that the two versions of the algorithm
differ on a crucial point, which makes it impossible for an
extension of the analysis developed in Ref. [13] to be done
straightforwardly in order to comprehend the continuous-time
case (see Appendix A). We thus stress that the observation of
these scalings themselves is also nontrivial.

The paper is organized as follows. In Sec. II, we introduce
the continuous-time cloning algorithm. We define the large
deviations of the additive observable of interest and we detail
how to estimate them. In Sec. III A, we study the behavior
of the LDF estimator as a function of the duration of the
observation time (for a fixed population Nc) and we see how
its infinite-time limit can be extracted for the numerical data.
In Sec. III B, we analyze the behavior of the estimator as we
increase the number of clones (for a given final simulation
time) and the infinite-size limit of the LDF estimator. Based
on these results, we present in Sec. IV, a method which
allows us to extract the infinite-time, infinite-size limit of the
large deviation function estimator from a finite-time, finite-size
scaling analysis. Our conclusions are made in Sec. V. In order
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FIG. 1. Relative systematic error [�(s) − ψ(s)]/ψ(s) between
the numerical estimators �(s) and the analytical LDF ψ(s). The

error for the standard estimator �
(Nc)
s (T ) is shown in filled circles and

for the improved one, f ∞
∞ [Eq. (23)] in empty circles. The scaling

method proposed in this paper was tested on the contact process
(see Sec. II E 2) (with L = 6, h = 0.1, and λ = 1.75) for a set of
populations �Nc = {20, . . . ,200}, a simulation time T = 100, and R =
1000 realizations. As can be seen, the errors due to finite-size and
finite-time effects can be reduced through the improved estimator.

to complement the main discussion done through the paper
we also present the following: In Appendix A, an analysis of
the difficulty of an analytical approach to the continuous-time
algorithm. Then, in Appendix B, an alternative way of defining
the LDF estimator is discussed. Finally, in Appendix C, we
study the fluctuations of the LDF estimator.

II. CONTINUOUS-TIME CLONING ALGORITHM

A. Large deviations of additive observables

We consider a general Markov process on a discrete space
of configurations {C}, with transition rates W (C → C ′). The
probability P (C,t) for the system to be in a configuration C

at time t verifies a master equation of the form ∂tP = WP ,
where the master operator W is a matrix of elements

(W )C ′C = W (C → C ′) − r(C)δCC ′ (1)

and where r(C) = ∑
C ′ W (C → C ′) is the escape rate from

configuration C. A trajectory of configurations generated in
this process is denoted by (C0, . . . ,CK ), starting from C0

and presenting K jumps occurring at times (tk)1�k�K . We
denote by C(t ′) the state of the system at time t ′: When
tk � t ′ < tk+1, C(t ′) = Ck (k = 0,1,2, . . . ,K − 1) with
t0 = 0. We are especially interested in the large deviations
of additive observables of the form

O =
K−1∑
k=1

a(Ck,Ck+1) +
∫ t

0
dt ′ b[C(t ′)], (2)

for trajectories of fixed duration t . The functions a and b

describe the elementary increments of the observables: a

accounts for quantities associated with transitions (of state),
whereas b does for static quantities. A simple example of
observables of this form is that of the activity O = K , which is
the number of configuration changes on the time interval [0,t]
(in this case one has a(C,C ′) = 1 and b ≡ 0). We denote the

joint distribution function of the state C and these observables
O at time t by P (C,O,t).

In order to analyze large deviations of these additive
observables, we follow the standard procedure as explained,
for example, in Refs. [14,15]. For this, we consider the moment
generating function

Z(s,t) = 〈e−sO〉, (3)

where 〈·〉 is the expected value with respect to trajectories of
duration t . The parameter s biases the statistical weight of
histories and fixes the average value of O, so that s 	= 0 favors
its nontypical values. Since the observable O is additive and
the system is described by a Markov process, Z(s,t) satisfies
at large times the scaling

Z(s,t) ∼ etψ(s) for t → ∞, (4)

where ψ(s) is the growth (or decay) rate of Z(s,t) with
respect to time. This exponent, known as the scaled cumulant
generating function (CGF), is the quantity of interest in
this paper. It allows ones to recover the large-time limit of
the cumulants of O as derivatives of ψ(s) in s = 0, and
more generically, the distribution of O/t from the Legendre
transform of ψ(s) [16], known as a (large deviation) rate
function. Hereafter, we use the term “large deviation function”
to refer both to the CGF and to the rate function by assuming
these two are equivalent. Note that this equivalence is at least
satisfied in systems that do not show any phase transition
(a singularity in the rate function).

B. The mutation-selection mechanism

The moment generating function Z(s,t) can be computed
numerically using the cloning algorithm [6,7]. In order to do
that, we introduce the Laplace transform of the probability
distribution P (C,O,t), defined as

P̂ (C,s,t) =
∫

dO e−sOP (C,O,t). (5)

This Laplace transform allows us to recover the moment gen-
erating function as Z(s,t) = ∑

C P̂ (C,s,t). The probability
P̂ (C,s,t) satisfies an “s-modified” master equation for its time
evolution (see, e.g., Ref. [17]),

∂t P̂ = Ws P̂ , (6)

where the “s-modified” master operator Ws is defined as

(Ws)C ′C = Ws(C → C ′) − rs(C)δCC ′ + δrs(C)δCC ′ . (7)

Here, δrs(C) = rs(C) − r(C) − sb(C),

Ws(C → C ′) = e−sa(C,C ′)W (C → C ′), (8)

and

rs(C) =
∑
C ′

Ws(C → C ′). (9)

Contrary to the original operator (1), the “s-modified” operator
(7) does not conserve probability (since δrs(C) 	= 0), implying
that there is no obvious way to simulate (6). However, this time-
evolution equation can be interpreted not as the evolution of a
single system but as a population dynamics on a large number
Nc of copies of the system which evolve in a coupled way [6,7].
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More precisely, reading the operator of the modified master
equation (6) as in (7), we find that this evolution equation can
be seen as a stochastic process of transition rates Ws(C → C ′)
and a selection mechanism of rates

δrs(C) = rs(C) − r(C) − sb(C), (10)

where a copy of the system in configuration C is copied
at rate δrs(C) (if δrs(C) > 0) or killed at rate |δrs(C)| (if
δrs(C) < 0). As detailed below, the CGF ψ(s) is recovered
from the exponential growth (or decay) rate of a population
evolving with these rules.

C. Continuous-time population dynamics
(constant-population approach)

The mutation-selection mechanism we just described can
be performed in a number of ways. One of them consists in
keeping the total number of clones constant for each pre-fixed
time interval (see Refs. [6,13] for example). Another one,
which we use throughout this paper, consists in performing
these selection mechanisms along with each evolution of the
copies [5,14,15]. A detailed description of this approach is
presented below. See also Appendix A for a brief explanation
about important differences between these two techniques.

1. The cloning algorithm

We consider Nc clones (or copies) of the system. The
dynamics is continuous in time: For each copy, the actual
changes of configuration occur at times (which we call
“evolution times”) which are separated by intervals whose
duration is distributed exponentially. At a given step of
the algorithm, we denote by t = {t (i)}i=1,...,Nc

the set of the
future evolution times of all copies and by c = {ci}i=1,...,Nc

the configurations of the copies. Their initial configurations
do not affect the resulting scaled cumulant generating function
in the large-time limit. However, for the concreteness of the
discussion, without loss of generality, we assume that these
copies have the same configuration C at t = 0. The cloning
algorithm is constituted of the repetition of the following
procedures.

1. Find the clone whose next evolution time is the smallest
among all the clones: Find j = argmini t

(i).
2. Compute yj = �Y (cj ) + ε�, where the cloning factor

Y (cj ) is defined as e�t(cj ) δrs (cj ), �t(cj ) is the time spent by the
clone j in the configuration cj since its last configuration
change, and ε is a random number uniformly distributed
on [0,1].

3. If yj = 0, remove this copy from the ensemble, and if
yj > 0, make yj − 1 new copies of this clone.

4. For each of these yj copies (if any), the state cj is
changed independently to another state c′

j , with probability
Ws(cj → c′

j )/rs(cj ).
5. Choose a waiting time �t from an exponential law of

parameter rs(c′
j ) for each of these copies. Its next change of

configuration will occur at the evolution time t (j ) + �t .
6. In order to keep the total number of copies constant, we

choose randomly and uniformly (i) a clone k, k 	= j and we
copy it (if yj = 0), or (ii) yj − 1 clones and we erase them
(if yj > 1).

D. Cumulant generating function estimator

The CGF estimator �(Nc)
s can be obtained from the

algorithm we just described from the exponential growth rate
that the population would present if it was not kept constant
[5]. More precisely, this estimator is defined as

�(Nc)
s = 1

t
log

K∏
i=1

Xi, (11)

where Xi = (Nc + yi − 1)/Nc are the “growth” factors at each
step j of the procedure described above, and K is the total
number of configuration changes in the full population up to
time t (which has not to be confused with K). It is important
to remark (as was discussed in Ref. [8] in a nonconstant
population context) that this growth rate can be also computed
from a linear fit over the reconstructed log population and
the initial transient regime, where the discreteness effects are
present, can be discarded in order to obtain a better estimation.

In practice, in order to obtain a good estimation of the CGF,
it is normal to launch the simulation several times (where we
denote by R the number of realizations of the same simulation)
and to estimate the arithmetic mean of the obtained values of
(11) over these R simulations. Strictly speaking (as discussed
in Sec. 3.2 of Ref. [8]), as the simulation does not stop
exactly at the final simulation time T but at some time tFr � T

(which is different for every r ∈ {1,...,R}), the average over R

realizations of �(Nc)
s is then correctly defined as

�
(Nc)
s = 1

R

R∑
r=1

1

tFr
log

Kr∏
i=1

Xr
i . (12)

However, we have observed that for not too short simulation

times, |�(Nc)
s (T ) − �

(Nc)
s (tFr )| is small. By assuming tFr ≈ T ,

Eq. (12) can be approximated by replacing tFr by T (which
is what we do in practice). It is important to remark that
the CGF estimator can be defined differently from Eq. (12).
This is done by using an alternative way of computing the
average over R realizations (for an example on this topic, see
Appendix B). Equation (12) allows us to estimate the CGF
using the constant-population approach of the continuous-time
cloning algorithm for a s-biased Markov process, given a fixed
number of clones Nc, a simulation time T , and R realizations
of the algorithm.

E. Example models

In order to analyze the finite-time and finite-Nc scaling of
the CGF estimator, we introduce two specific models: a simple
two-state annihilation-creation dynamics and a contact process
on a one-dimensional periodic lattice [14,18]. In both cases,
we consider the activity K as the additive observable O and
the analytical expression of the CGF ψ(s) was obtained by
solving the largest eigenvalue of the operator Ws given by (7).
Below we define these models.

1. Annihilation-creation dynamics

The dynamics occurs in one site where the only two possible
configurations C are either 0 or 1. The transition rates are

W (0 → 1) = c, W (1 → 0) = 1 − c, (13)
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where c ∈ [0,1]. The analytical expression for the CGF of the
activity in this case corresponds to

ψ(s) = − 1
2 + 1

2 [1 − 4c(1 − c)(1 − e−2s)]1/2. (14)

2. Contact process

Each position i of a L-site, one-dimensional lattice is
occupied by a spin which is either in the state ni = 0 or
ni = 1. The configuration C is then constituted by the states
of these spins, i.e., C = (ni)Li=1. The dynamics occurs on this
lattice with periodic boundary conditions with transition rates
W (ni = 1 → ni = 0) = 1 and

W (ni = 0 → ni = 1) = λ(ni−1 + ni+1) + h, (15)

where λ and h are positive constants. This model is an example
of contact processes [18], which have been studied in many
contexts especially for the spread of infections [19]. It has been
known that the corresponding CGF develops a singularity in
L → ∞, showing a dynamical phase transition [14,20].

III. FINITE-TIME AND FINITE-Nc BEHAVIOR
OF CGF ESTIMATOR

In this section, we focus on the annihilation-creation
process for a peculiar value of s (s = −0.2), which is
representative of the full range of s on which we study large
deviations.

A. Finite-time scaling

Here, we study the large-time behavior of the CGF
estimator, at fixed number of clones Nc. Figure 2 presents the

average over R = 104 realizations of the CGF estimator �
(Nc)
s

as a function of the (simulation) time for given numbers of

200 400 600 800 10000

0.094

0.093

0.091

0.090

0.089

0.092

analytical fit

* *

FIG. 2. Average over R = 104 realizations of the CGF estimator
� (Nc)

s [Eq. (12)] as a function of duration t of the observation
window, for Nc ∈ {10,100,1000} clones, for the annihilation-creation
dynamics (13) with c = 0.3. The analytical expression for the large
deviation function ψ(s) [Eq. (14)] is shown with a black dashed line
and the fitting functions f

(Nc)
t encoding the finite-t scaling [Eq. (17)]

are shown with continuous curves. The (a priori) best estimation of
the large deviation function (to which we refer as standard estimator)

is given by �
(Nc)
s (t) at the largest simulation time T = 1000, which

are shown with solid circles (at the right end of the figure). The
extracted infinite-time limits f (Nc)

∞ are shown as dotted lines and
squares (Nc = 10), diamonds (Nc = 100), and circles (Nc = 1000).

clones Nc = {10,100,1000}. It is compared with the analytical
value ψ(s) [Eq. (14)], which is shown with a black dashed line.

As can be seen in Fig. 2 for a small number of clones

(Nc = 10), the CGF estimator �
(Nc)
s is highly deviated from

the analytical value ψ(s). However, as Nc and the simulation
time t become larger, the CGF estimator get closer to the
analytical value ψ(s).

One can expect that in the t → ∞ and Nc → ∞ limits,
ψ(s) will be obtained from the estimator as

lim
Nc→∞

lim
t→∞ �

(Nc)
s (t) = ψ(s), (16)

as it was derived in Ref. [13]. However, in a practical
implementation of the algorithm, this infinite-time and infinite-
size limits are not achievable and we use large but finite
simulation time t and number of clones Nc. This fact motivates
our analysis of the actual dependence of the estimator with t

and Nc. The standard estimator of the large deviation function

is the value of �
(Nc)
s at the largest simulation time T and

for the largest number of clones Nc, (e.g., �
(Nc)
s (T ) for

Nc = 1000 and T = 1000, the black solid circle • in Fig. 2).
This value provides the (a priori) best estimation of the large
deviation function that we can obtain from the continuous-time
cloning algorithm. However encouragingly, as we detail later,
this estimation can be improved by taking into account the
convergence speed of the CGF estimator.

The result of fitting �
(Nc)
s (t) with the curve f

(Nc)
t defined as

f
(Nc)
t ≡ f (Nc)

∞ + b
(Nc)
t t−1 (17)

is shown with solid lines in Fig. 2. The fitting parameters f
(Nc)
∞

and b
(Nc)
t can be determined from the least squares method by

minimizing the deviation from �
(Nc)
s (t). The clear coincidence

between �
(Nc)
s (t) and the fitting lines indicates the existence

of a 1/t convergence of �
(Nc)
s (t) to limt→∞ �

(Nc)
s (t) (that

we call 1/t scaling). This property can be derived from the
assumption that the cloning algorithm itself is described by a
Markov process: In Ref. [13] with a different version of the
algorithm, we constructed a meta-Markov process to describe
the cloning algorithm by expressing the number of clones by
a birth-death process. Once such meta process is constructed,
the CGF estimator (11) is regarded as the time average of the
observable Xi within such meta-Markov process.1

We now recall that time-averaged quantities converge to
their infinite-time limit with an error proportional to 1/t

when the distribution function of the variable converges
exponentially (as in Markov processes). This leads to the 1/t

scaling of CGF estimator (17). We note that constructing such
meta-Markov process explicitly is not a trivial task, and for
the algorithm discussed here, such a construction remains as
an open problem.

By assuming the validity of the scaling form (17), it is
possible to extract the infinite-time limit of the CGF estimator
from finite-time simulations. We denote this infinite-time limit

1In other words, t� (Nc)
s is an additive observable of the meta process

describing the cloning algorithm, as read from (11).
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fitanalytical

FIG. 3. CGF estimator �
(Nc)
s (T ) [Eq. (12)] for given final (sim-

ulation) times T = {200,300,500,1000} as a function of the number
of clones Nc (on the range 10 � Nc � 1000). The analytical value
ψ(s) (14) is shown with a dashed line and the fits g

(T )
Nc

[Eq. (19)] with
continuous curves. A large simulation time for a small number of
clones, shown in (A), produces a better estimation compared to the one
given by the largest number of clones with a relatively short simulation
time, which is shown in (B). The best CGF estimation we can naively

obtain would be given by �
(Nc)
s (T ) at largest simulation time T and

largest number of clones Nc. However, the extracted infinite-size
limits g(T )

∞ provide a better estimation in comparison. These limits are
shown with dotted lines and circles (T = 200), crosses (T = 300),
diamonds (T = 500), and dots (T = 1000). Additionally, c = 0.3
and s = −0.2.

as f
(Nc)
∞ and it is expected to be a the better estimator of CGF

than �
(Nc)
s (T ) at finite T , provided that

f (Nc)
∞ = lim

t→∞ �
(Nc)
s (t). (18)

In Fig. 2, we show f
(Nc)
∞ with dotted lines and circles

(Nc = 10), diamonds (Nc = 100), and squares (Nc = 1000).
As can be seen, this parameter indeed provides a better

numerical estimate of ψ(s) than �
(Nc)
s (T ).

B. Finite-Nc scaling

Here, we study the behavior of the CGF estimator �
(Nc)
s (T )

as we increase the number of clones Nc, for a given final
(simulation) time T . Similar to what we did in Sec. III A, we
consider a curve in the form

g
(T )
Nc

= g(T )
∞ + b̃

(T )
Nc

N−1
c , (19)

where g
(T )
∞ and b̃

(T )
Nc

are fitting parameters which are

determined by the least squares fitting to �
(Nc)
s (T ). The

obtained g
(T )
Nc

as a function of Nc are shown in Fig. 3 as
solid lines. We considered four values of final simulation time
T = {200,300,500,1000} and population sizes in the range
10 � Nc � 1000. As can be seen, these curves describe well

the dependence in Nc of �
(Nc)
s (T ), indicating that �

(Nc)
s (T )

converges to its infinite-Nc limit with an error proportional to
1/Nc (that we call 1/Nc scaling). This scaling could be proved
under general assumptions in Ref. [13], (i) however, without
covering the continuous-time algorithm discussed here and

(ii) for the CGF estimator �
(Nc)
s (T ) considered the T → ∞

limit, instead of finite T . The generalization of the argument
presented in Ref. [13] in order to cover the general cases (i)
and (ii) is an important open direction of research.

By assuming the validity of such 1/Nc scaling, we can

evaluate the Nc → ∞ limit of �
(Nc)
s (T ) as the fitting parameter

g
(T )
∞ obtained from finite Nc simulations as

g(T )
∞ = lim

Nc→∞
�

(Nc)
s (T ). (20)

These parameters g
(T )
∞ (to which we refer as infinite-size limit)

are shown in Fig. 3 as dotted lines. As shown in the figure,
g

(T )
∞ provides better estimations of ψ(s) than the one given by

the standard estimator �
(Nc)
s (T ).

Complementary to the discussion in this section, in Ap-
pendix C we analyze the fluctuations of the CGF estimator.

IV. FINITE-TIME AND FINITE-Nc SCALING METHOD
TO ESTIMATE LARGE DEVIATION FUNCTIONS

In the previous section, we have shown how it is possible to
extract f

(Nc)
∞ and g

(T )
∞ from finite T and finite Nc simulations,

respectively. In this section, we combine both of these 1/t-
and 1/Nc-scaling methods in order to extract the infinite-time
and infinite-size limit of the CGF estimator. This limit gives
a better evaluation of the large deviation function within the
cloning algorithm than the standard estimator.

We first note that either of f
(Nc)
∞ or g

(T )
∞ is expected to

converge to ψ(s) as Nc → ∞ or as T → ∞. We checked
numerically this property by defining the distance D between

ψ(s) and its numerical estimator �
(Nc)
s ,

D
[
�

(Nc)
s ,ψ(s)

] = ∣∣�(Nc)
s − ψ(s)

∣∣. (21)

3 4 5 6 7-9

-8

-7

-6

-5

-4

FIG. 4. Distance D [Eq. (21)] between the analytical CGF ψ(s)

and its numerical estimator �
(Nc)
s , as a function of time t in log-log

scale. The distances are computed from the values in Fig. 2. This
distance behaves as a power law of exponent −1 on a time window,
where the size of the time window increases as Nc increases. This
illustrates the scaling (22). The parameters of the model are c = 0.3,
s = −0.2.
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-0.45

FIG. 5. Estimator of the large deviation function �
(Nc)
s (t) as a

function of time and the number of clones. The estimator �
(Nc)
s (T )

at final simulation time T = 100 as a function of the number of
clones (up to Nc = 200) is shown as black circles. The best CGF
estimation under this configuration given by the standard estimator,

i.e., �
(Nc=200)
s (T = 100) is shown as a yellow circle. The analytical

value of the CGF ψ(s) is obtained from the largest eigenvalue of the
operator (7) and shown as a black dashed line. The extracted limit f ∞

∞
is shown with red squares. Additionally, L = 6, s = 0.15, h = 0.1,
λ = 1.75, and R = 103.

This quantity is shown in Fig. 4 as a function of t in log-log
scale. As we can see, as Nc increases, log D behaves as straight
line with slope −1 on a time window which grows with Nc. In
other words, when Nc → ∞,

∣∣�(Nc)
s − ψ(s)

∣∣ ∼ t−1. (22)

Inspired by this observation, we assume the following scal-
ing for the fitting parameter f Nc∞ . If we consider a set of simula-
tions performed at population sizes �Nc = {N (1)

c , . . . ,N
(j )
c }, the

obtained infinite-time limit of the CGF estimator f Nc∞ behaves

as a function of Nc as

f (Nc)
∞ � f ∞

∞ + b(Nc)
∞ N−1

c , (23)

which means that f
(Nc)
∞ itself exhibits 1/Nc corrections for

large but finite Nc. By using this scaling, we detail below in
Sec. IV A the method to extract the infinite-time infinite-Nc

limit of the CGF estimator �
(Nc)
s (T ) from finite-time and finite-

Nc data. We note that this method can be used for a relatively
short simulation time and a relatively small number of clones
(see Fig. 6). In Sec. IV B, we present numerical examples of
the application of this method to the contact process.

A. The scaling method

The procedure is summarized as follows:

1. Determine the average over R realizations �
(Nc)
s (t)

[Eq. (12)] up to a final simulation time T for each Nc ∈ �Nc.
2. Determine the fitting parameter f

(Nc)
∞ defined in the form

f
(Nc)
t = f

(Nc)
∞ + b

(Nc)
t t−1 from each of the obtained �

(Nc)
s (t).

3. Determine f ∞
∞ from a fit in size f

(Nc)
∞ = f ∞

∞ + b
(Nc)
∞ N−1

c

[Eq. (23)] on f
(Nc)
∞ .

The result obtained for f ∞
∞ renders a better estimation

of ψ(s) than the standard estimator �
(Nc)
s (t) evaluated for

Nc = max �Nc and for t = T .

B. Application to the contact process

We apply the scaling method to the one-dimensional contact
process (see Sec. II E for the definition). We set L = 6,
h = 0.1, λ = 1.75, T = 100, and s = 0.15. As we detail
below, we compare the improved estimator f ∞

∞ obtained
from the application of the scaling method (for �Nc =
{20,40, . . . ,180,200}) with the standard estimator �

(Nc)
s (T )

(for Nc = max �Nc = 200).

20

200

(a)

fit

100

10 20 30 40 50 60 70 80 90 100
-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

(b)
analytical

fits

20 40 60 80 100 120 140 160 180 200
-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

FIG. 6. (a) Projection of the surface represented in Fig. 5 over the plane � − t . � (Nc)
s (t) is represented for Nc = 20 and Nc = 200 with blue

dots. The estimations �
(Nc)
s (T ) of the large deviation (at the final simulation time T = 100) are shown in large blue dots for all the values of Nc

considered. The fit in time [Eq. (17)] over �
(Nc)
s (t) is shown as black solid lines (for Nc = 20 and Nc = 200) and dotted lines (for other values

of Nc). (b) Projection at the final simulation time T = 100 on the plane � − Nc, �
(Nc)
s (T ) is shown in large blue dots. The infinite-time limit

f (Nc )
∞ as a function of Nc [see Eq. (17)] is represented in red circles. The results of fitting �

(Nc)
s (T ) [Eq. (19)] and f (Nc)

∞ [Eq. (23)] are shown
with blue and red solid curves respectively. The infinite-Nc limit g(T )

∞ is shown with blue dashed line and diamonds meanwhile the infinite-size
and infinite-time limit f ∞

∞ is shown with a red dotted line in both panels (a) and (b). The extracted limit f ∞
∞ renders a better estimate of the

large deviation function than �
(Nc=200)
s (T = 100) (and also than g(T )

∞ ), demonstrating the efficacy of the method proposed.
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Figure 5 represents the behavior of the estimator �
(Nc)
s (t) as

a function of the simulation time t and of the number of clones
Nc. The values of the estimator at the final simulation time T

are represented with black circles for each Nc ∈ �Nc and with a
yellow circle for Nc = max �Nc. The analytical expression for
the large deviation function ψ(s) is shown in a black dashed
line.

In Fig. 6(a), we show the projection of the surface of Fig. 5

on the plane � − t . The behavior in t of the estimator �
(Nc)
s (t)

is shown for Nc = 20 and Nc = 200, in blue dots in Fig. 6(a).

The standard CGF estimators, �
(Nc)
s (T ), are shown in large

blue dots in Fig. 6(a) (on the axis for T = 100). The fitting
curves f

(Nc)
t [Eq. (17)] are shown in black continuous lines

(for Nc = 20 and Nc = 200) and black dotted lines (for other
intermediate values of Nc). Next, we show in Fig. 6(b) the
projection of the surface of Fig. 5 on the plane � − Nc where
the time has been set to the largest t = T . The standard CGF

estimators, �
(Nc)
s (T ) are plotted as blue filled circles, and the

fitting curve g
(T )
Nc

[Eq. (19)] on �
(Nc)
s (T ) is shown as a blue solid

line. From these curves, we determine g
(T )
∞ (see Sec. III B),

which is shown as a blue dashed line and diamonds. Finally, the

parameter f
(Nc)
∞ extracted from the fitting on �

(Nc)
s (t) (for each

value of Nc) is shown as red circles in Fig. 6(b). These values
also scale as 1/Nc [Eq. (23)] and their fit is shown as a red solid
curve. The scaling parameter f ∞

∞ obtained from this last step
provides a better estimation of the large deviation function than

the standard estimator �
(Nc=200)
s (T = 100) that is widely used

in the application of cloning algorithms. This improvement is
valid on a wide range of values of the parameter s as can
be visualized in Fig. 1, where we represented the relative
systematic error [�(s) − ψ(s)]/ψ(s) between the standard and
improved estimators �(s) and the analytical LDF ψ(s).

V. CONCLUSION

Direct sampling of the distribution of rare trajectories is a
rather difficult numerical issue (see, for instance, Ref. [21])
because of the scarcity of the nontypical trajectories. We
have shown how to increase the efficiency of a commonly
used numerical method (the so-called cloning algorithm) in
order to improve the evaluation of large deviation functions
which quantify the distribution of such rare trajectories, in
the large time limit. We used the finite-size and finite-time
scaling behavior of CGF estimators in order to propose an
improved version of the continuous-time cloning algorithm,
which provides more reliable results, less affected by finite-
time and finite-size effects. We verified the results observed for
the discrete-time version of the cloning algorithm [13] and we
showed their validity also for the continuous case. Importantly,
we showed how these results can be applied to more complex
systems.

We note that the scalings which rule the convergence to the
infinite-size and infinite-time limits (with corrections in 1/Nc

and in 1/t) have to be taken into account properly: Indeed, as
power laws, they present no characteristic size and time above
which the corrections would be negligible. The situation is very
similar to the study of the critical depinning force in driven

random manifolds: The critical force presents corrections in
one over the system size [22], which has to be considered
properly in order to extract its actual value. Generically, such
scalings also provide a convergence criterion to the asymptotic
regimes of the algorithm: One has to confirm that the CGF
estimator does present corrections (first) in 1/t and (second)
in 1/Nc with respect to an asymptotic value in order to ensure
that such value does represent a correct evaluation of the LDF.

It would be interesting to extend our study of these scalings
to systems presenting dynamical phase transitions (in the form
of a nonanalyticity of the CGF), where it is known that the
finite-time and finite-size scalings of the CGF estimator can
be very hard to overcome [14]. In particular, in this context,
it would be useful to understand how the dynamical phase
transition of the original system translates into anomalous
features of the distribution of the CGF estimator in the cloning
algorithm. These phase transitions are normally accompanied
with an infinite system-size limit (although there was a report
of dynamical phase transitions without taking a such limit
[23]). To overcome these difficulties (caused by a large system
size and/or by the presence of a phase transition), it may be
useful to use the adaptive version of the cloning algorithm
[24], which has been recently developed to study such phase
transitions, with the scaling method presented in this paper.
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APPENDIX A: ISSUES ON AN ANALYTICAL APPROACH

In a previous analytical study [13], we considered a
discrete-time version of the population dynamics algorithm,
where a cloning procedure is performed every small time
interval �t . We have proved the convergence of the algorithm
in the large-Nc, large-t limits, and we also derived that the
systematic error of the LDF estimator (i.e., the deviation of
the estimator from the desired LDF) decayed proportionally
to 1/Nc and 1/t . From a practical point of view, however,
the formulation used there had one problem. In order to
prove the result, we took the large frequency limit of cloning
procedure or, in other words, we took the �t → 0 limit. A
rough estimate of the error due to noninfinitesimal �t proves
to be O(�t). For a faster algorithm, it is better to take this value
to be larger, and indeed empirically, we expect that this error to
be very small (or rather disappearing in the large-t,Nc limits).
However, the detailed analytical estimation of this error is still
an open problem.

In the main part of this current paper, from a different
point of view, we consider the continuous-time version of the
population dynamics algorithm [14,15]. Here, the cloning is
performed at each change of state of a copy. The time intervals
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�t which separate those changes of state are noninfinitesimal,
which means that the formulation we used in Ref. [13]
cannot be applied to understand its convergence. Furthermore,
because these time intervals are of nonconstant duration and
stochastically distributed, the continuous-time algorithm is
more difficult to handle analytically than the discrete-time
version. Instead of pursuing the analytical study within the
continuous-time algorithm, we perform a numerical study, and
we show that the 1/Nc and 1/t scalings are also observed for
the continuous-time algorithm. Although the proof of these
scalings are beyond the scope of the current paper, these
numerical observations support a conjecture that such scaling
in large t and in large Nc limits are generally valid in cloning
algorithms to calculate large deviation functions.

APPENDIX B: A DIFFERENT CGF ESTIMATOR

Normally, CGF estimator is defined as an arithmetic mean
over many realizations, as seen in (12). Here we show that
another definition of the CGF estimator can be used, which
indeed provides better results than the ones from the standard
estimator (in some parameter ranges). We define a new
estimator as

	(Nc)
s = 1

T
log

Kr∏
i=1

Xr
i , (B1)

where we note that the average with respect to realizations are
taken inside the logarithm. As we discussed in Sec. IV C of
[13], this estimator provides a correct value of CGF ψ(s) in
the infinite-time, infinite-Nc limits. This is thanks to the fact
that the distribution of �(Nc)

s concentrates around ψ(s) in those
limits (the so-called “self-averaging” property). At any finite
population, one can rewrite 	(Nc)

s using the large-time LDF
principle (C4) as follows:

	(Nc)
s = 1

T
log eT �

(Nc )
s (B2)

= 1

T
log

∫
d� e−T [INc (�)+�], (B3)

which proves that in the large-T limit,

	(Nc)
s = min

�

[
INc

(�) + �
]
, (B4)

to be compared to

�
(Nc)
s = argmin

�

INc
(�). (B5)

On one hand, the definition (B1) amounts to estimate ψ

from the exponential growth rate of the average of the final-T
population of many small (noninteracting) “islands,” where
the cloning algorithm would be operated. On the other hand,
the estimator (12) amounts to estimate ψ from growth rate of a
large island gathering the full set of the R populations. The later
is thus expected to be a better estimator of ψ(s) than the former
because it corresponds to a large population, where finite-size
effects are less important. As a consequence, the estimator

	(Nc)
s appears a priori to be a worse estimator than �

(Nc)
s of

ψ(s). However, as shown in Sec. IV C of Ref. [13], at small |s|
and finite Nc, a supplementary bias introduced by taking (B1)

0 100 200 300 400 500

0.80

0.81

0.82

0.83

0.84

-0.085

-0.08

-0.075

-0.07

-0.065

-0.090.79

FIG. 7. Comparison between two different estimators of the

large deviation function, �
(Nc)
s [Eq. (12)] shown in dots and 	(Nc)

s

[Eq. (B1)] in circles, for the annihilation-creation dynamics (13). The
analytical value ψ(s) [Eq. (14)] is shown with a dashed line. Here we
have also compared two different values of parameter s = 0.2 (blue
upper curves) and s = −1 (black). Additionally, Nc = 100, c = 0.4,
T = 500, and R = 500. The estimator 	(Nc)

s provides a better
numerical evaluation of the CGF at small s.

in fact compensates for the finite-Nc systematic error presented
by (12), for a simple two-state model. Namely, the error is
O(sN−1

c ) for (12) while it is O(s2N−1
c ) for (B1). This fact

is illustrated on Fig. 7, where we show that at small s = 0.2,

	(Nc)
s provides a better estimation of ψ(s) than �

(Nc)
s , while

at larger |s| (s = −1) the two estimators yield a comparable
error.

APPENDIX C: FLUCTUATIONS OF CGF ESTIMATOR

1. Central limit theorem

From relation (12), one can infer that the dispersion of the
distribution of �(Nc)

s depends on the simulation time t . This
determines whether or not a large number of realizations R is
required in order to minimize the statistical error. In fact, as
seen in Fig. 8, the dispersion of �(Nc)

s is concentrated around
its mean value, which approaches the analytical value ψ(s) as
the simulation time and the number of clones increase.

We numerically confirm that these distributions are well
approximated by a Gaussian distribution

P
(
�(Nc)

s

) ∼ Ae
− 1

C2 (�(Nc )
s −B)2

, (C1)

where the parameter B is equal to �
(Nc)
s (T ) and the parameters

A and 1/C2 are respectively of the order of N
1/2
c and Nc.

A mathematical argument to explain this obtained Gaussian
distribution is given as follows: At any given time (not
necessarily at T ), let us perform the following rescaling:

�̂(Nc)
s = �(Nc)

s − �
(Nc)
s

σ
�

(Nc )
s

, (C2)

where σ 2
�

(Nc )
s

is the variance of the R realizations of �(Nc)
s .

Then, it produces a collapse of the distributions P (�̂(Nc)
s ),

for any t and any Nc (Fig. 9). We remark then that the CGF
estimator (12) is an additive observable of the history of the
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FIG. 8. Distribution P (� (Nc)
s ) of the CGF estimator � (Nc)

s for (a) Nc = 10, (b) Nc = 100, and (c) Nc = 1000 and for simulation times
t ∈ [10,1000]. Each realization (R = 104 for each simulation time) is shown with gray dots; meanwhile its respective Gaussian fit [Eq. (C1)]
is shown with a dotted or a continuous curve. The dispersion of � (Nc)

s is wider for shorter simulation times and small Nc. The mean value of
the distribution converges to the theoretical value as the simulation time and the number of clones increase.

population, which follows a Markov dynamics. Hence, the
rescaled estimator �̂(Nc)

s follows a standard normal distri-
bution in the large time limit, according to the central limit
theorem (CLT):

P
(
�̂(Nc)

s

) = 1√
2π

e− 1
2 (�̂(Nc )

s )2
. (C3)

We note that this check of the CLT allows us to ensure if
the steady state of the population dynamics has been reached
(note that in general the typical convergence time to the steady
state is larger than the inverse of the spectral gap of the biased
evolution operator [8]).

By considering the scaling (C2), we focus only on the

small fluctuations of �(Nc)
s around �

(Nc)
s . But in general, the

distribution function is not Gaussian, and in that case we need
to consider a large deviation principle as below.

2. Logarithmic distribution of CGF estimator

Since �(Nc)
s is itself an additive observable of the dynamics

of the ensemble of clones [13], the distribution of the CGF

Standard Normal 
    Distribution

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

FIG. 9. The distribution function of the rescaled variable �̂ (Nc)
s

[Eq. (C2)]. Compatible with the central limit theorem, a collapse
of the distribution function into a standard normal distribution for
different number of clones is observed.

estimator �(Nc)
s satisfies itself a large deviation principle

P
(
�(Nc)

s

) ∼ e−t INc (�(Nc )
s ), (C4)

where INc
(�(Nc)

s ) is the rate function. This rate function
could be evaluated in principle from the empirical distribution
P (�(Nc)

s ) as

INc

(
�(Nc)

s

) ≈ −1

t
log P

(
�(Nc)

s

)
(C5)

for a large t . Here we try to estimate the rate function from
this equation. The numerical estimation of the right-hand side
of the last expression at final simulation time T is shown in
Fig. 10(a), where we have defined

ÎNc

(
�(Nc)

s

) ≡ −1

t
log P

(
�(Nc)

s

) + 1

t
log P

(
�

(Nc)
s

)
(C6)

so that ÎNc
(�(Nc)

s ) = 0. In the same figure, we also show

�
(Nc)
s (T ) as vertical dotted lines which correspond to the

minima of the logarithmic distribution ÎNc
(�(Nc)

s ). As can
be seen, these minima are displaced towards the analytical
value ψ(s) (shown with a dashed line) as Nc → ∞. The
logarithmic distribution ÎNc

also becomes more concentrated
as Nc increases.

Next, in order to study this decreasing of the width, we show
a rescaled logarithmic distribution function (1/Nc)ÎNc

(�(Nc)
s )

in Fig. 10(b). The minimum converges to the analytical value
ψ(s) (black dashed line) as Nc → ∞. In the infinite-time,
infinite-size limit of �(Nc)

s , it would be thus compatible with a
logarithmic distribution function given by

I
(
�(Nc)

s

) = − lim
Nc→∞

1

Nc

lim
t→∞

1

t
log P (�(Nc)

s (t)), (C7)

which is shown (rescaled) with black dots in Fig. 10(b). By

performing the shift �̌(Nc)
s = (�(Nc)

s − �
(Nc)
s ) we can see in

the inset of Fig. 10(b) the superposition of quadratic devia-
tions of the numerical estimator �(Nc)

s around the minimum
of ˆINc

(especially for Nc = 100,1000). This indicates the
decreasing of the fluctuation of CGF estimator proportional
with both of T and Nc (see Ref. [13] for more detailed
explanation).
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(a) (b)

FIG. 10. (a) Logarithmic distribution ÎNc
(� (Nc)

s ) [Eq. (C6)]. Numerical evaluations were made for three fixed population sizes Nc ∈
{10,100,1000} with a fixed simulation time T = 1000. The logarithmic distribution presents a smaller width as Nc increases. The average over

R realizations of the CGF estimator �
(Nc)
s (T ) corresponds to the minimum of ÎNc

(� (Nc)
s ) (dotted lines) and converges to the analytical value ψ(s)

(dashed lines) as Nc → ∞. (b) Rescaled logarithmic distribution 1
Nc

ÎNc
(� (Nc)

s ) as a function of � (Nc )
s and as a function of �̌ (Nc )

s = (� (Nc)
s − �

(Nc)
s )

(inset) for a final simulation time T = 1000.

The obtained logarithmic distribution is well approxi-
mated by a quadratic form, although these large devia-
tions are in general not quadratic [13]. This means that
the direct observation discussed here cannot capture the
large deviations of the CGF estimator (see also Ref. [21]
for more detailed study of the direct estimation of rate

functions). However, we note that, for practical usage of
the algorithm, we only consider small fluctuations described
by the central limit theorem, although these large fluctu-
ations might play an important role in more complicated
systems, such as the ones presenting dynamical phase
transitions.
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