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We study the probability distribution of a current flowing through a diffusive system connected to a pair
of reservoirs at its two ends. Sufficient conditions for the occurrence of a host of possible phase transitions
both in and out of equilibrium are derived. These transitions manifest themselves as singularities in the
large deviation function, resulting in enhanced current fluctuations. Microscopic models which implement
each of the scenarios are presented, with possible experimental realizations. Depending on the model,
the singularity is associated either with a particle-hole symmetry breaking, which leads to a continuous
transition, or in the absence of the symmetry with a first-order phase transition. An exact Landau theory
which captures the different singular behaviors is derived.
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In recent years there has been much activity focused on
understanding probability distributions in systems which
are far from thermal equilibrium. Specifically, the proba-
bility of observing a current flowing between two reser-
voirs, through an interacting channel, was studied in many
works for both quantum [1–5] (in the context of “full
counting statistics”) and classical systems [6–35]. The
properties of the distribution encode much information
about the interactions in the channel.
One of the most dramatic consequences of such inter-

actions is the occurrence of dynamical phase transitions
(DPTs) [10,11,13,35–41], which are the focus of this
Letter [42]. They imply an enhanced probability of observ-
ing certain current fluctuations. Beyond certain current
thresholds, the mode of transport through the channel
changes abruptly. These DPTs manifest themselves as
singularities in a large deviation function (LDF) that
characterizes the probability distribution of the time-
averaged current J in the limit of a large observation time.
The function plays, for time-integrated observables like J,
the same role as the equilibrium free energy for static
observables [43]. For classical interacting particle systems,
it can be computed using exact microscopic solutions
[6–8,14,17,21,22,24,26,32] or macroscopic approaches
(see Ref. [44] for a review).
To date, for current large deviations in driven diffusive

systems, only one class of DPTs with concrete micro-
scopic models has been observed; these occur solely for
periodic systems which are not connected to reservoirs
[10,11,13,15,41]. There one finds that, for currents close to
the mean value, the fluctuation manifests itself through a
time-independent density profile. The DPT occurs at a
critical value of the current beyond which the fluctuation is
realized through a time-dependent density profile. Such

transitions are referred to as resulting from a failure of the
“additivity principle” [9]. Another scenario which involves
a “first-order” transition between two distinct time-
independent density profiles was suggested in Ref. [12].
However, lacking any concrete microscopic models, the
scenario remains speculative.
In this Letter we study current large deviations in one-

dimensional diffusive systems coupled to two reservoirs.
Based on an exact Landau theory for the DPTs derived using
the macroscopic fluctuation theory [44,45], we obtain the
following new results: first, we identify DPTs between time-
independent density profiles, alongwith sufficient conditions
for their existence in terms of transport coefficients; second,
we describe a new type of “second-order” DPTs associated
with a symmetry breaking in the density profiles which
realize the current fluctuations; third, we show that well-
studied microscopic models—namely, the Katz-Lebowitz-
Spohn (KLS) [46] model and the weakly asymmetric simple
exclusion process (WASEP) [47,48]—implement both
the first- and second-order DPTs described above; finally,
possible experimental realizations are discussed.
Settings.—We consider a one-dimensional driven diffu-

sive system connecting two particle reservoirs using the
standard approach of fluctuating hydrodynamics
[4,44,49,50]. The particle density profile ρðx; tÞ evolves
according to a continuity equation,

∂tρðx; tÞ þ ∂xjðx; tÞ ¼ 0; ð1Þ

where the spatial coordinate x is rescaled by the system size
L so that x ∈ ½0; 1�, t denotes the time measured in units
of L2, and jðx; tÞ is the fluctuating current given by

jðx; tÞ ¼ −DðρÞ∂xρþ σðρÞEþ
ffiffiffiffiffiffiffiffiffi
σðρÞ

p
ηðx; tÞ: ð2Þ
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The current consists of contributions from Fick’s law, the
response to a bulk field E, and a noise term. The diffusivity
DðρÞ and the mobility σðρÞ are, in general, density
dependent and are connected by the Einstein relation,
2DðρÞ=σðρÞ ¼ ∂2

ρfðρÞ, with fðρÞ being the free energy
density of the system at equilibrium. The noise ηðx; tÞ
satisfies hηðx; tÞi ¼ 0 and

hηðx; tÞηðx0; t0Þi ¼ L−1δðx − x0Þδðt − t0Þ; ð3Þ

where h·i denotes an average over all realizations of the
noise. The spatial boundary conditions are fixed as
ρð0; tÞ ¼ ρ̄a and ρð1; tÞ ¼ ρ̄b, where ρ̄a and ρ̄b are time-
independent densities imposed by the reservoirs. We are
interested in phase transitions [10,11,13] associated with
the time-averaged current

J ≡ 1

T

Z
T

0

dt
Z

1

0

dxjðx; tÞ; ð4Þ

whose statistics obey a large deviation principle [44]

PðJÞ ∼ exp ½−TLΦðJÞ� ð5Þ

for T ≫ 1. A singularity in the LDF ΦðJÞ marks a DPT. It
proves to be convenient to change ensembles and work
with the scaled cumulant generating function (CGF)

ΨðλÞ≡ lim
T→∞

1

TL
lnheTLλJi: ð6Þ

Standard saddle-point arguments [43] show that the scaled
CGF is related to the LDF by a Legendre transform
ΨðλÞ ¼ supJ½λJ − ΦðJÞ�. To calculate ΨðλÞ, we rewrite
Eq. (6) in a path integral form using the Martin-Siggia-Rose
formalism [51], which gives

ΨðλÞ¼ lim
T→∞

1

TL
ln
Z

DρDρ̂e−L
R

T

0
dt
R

1

0
dx½ρ̂∂tρ−Hðρ;ρ̂Þ�; ð7Þ

with the Hamiltonian density Hðρ; ρ̂Þ defined as

Hðρ; ρ̂Þ≡ −DðρÞð∂xρÞð∂xρ̂Þ þ
σðρÞ
2

ð∂xρ̂Þð2Eþ ∂xρ̂Þ:
ð8Þ

The “momentum” variable ρ̂ satisfies the boundary con-
ditions (see the Supplemental Material [52]) ρ̂ð0Þ ¼ 0 and
ρ̂ð1Þ ¼ λ. The scaled CGFΨðλÞ can then be obtained using
a saddle-point method. For our cases of interest, we argue
that the saddle-point solutions are time independent before
and after the transition. The calculations are detailed in the
Supplemental Material [52] and yield profiles ρ�ðxÞ and
ρ̂�ðxÞ, which minimize the action

R
T
0 dt

R
1
0 dx½ρ̂∂tρ −

Hðρ; ρ̂Þ�. These profiles, which are called the optimal
profiles, represent the dominant realizations of current

fluctuations at a given value of λ. As we will see, phase
transitions are associated with abrupt changes in the shape
of the optimal profile as λ is varied.
Results.—In what follows, we first consider systems with

the equal boundary densities ρ̄a ¼ ρ̄b ¼ ρ̄, with ρ̄ very
close to an extremum of σðρÞ. Already in this case,
depending on DðρÞ and σðρÞ, all of the singular behaviors
described above are observed. Interestingly, this
includes systems which are in equilibrium. Then, for more
general boundary conditions given by ρ̄a ¼ ρ̄ − δρ and
ρ̄b ¼ ρ̄þ δρ, we argue perturbatively to the leading order
in δρ that the behaviors are unchanged up to a shift of the
transition point.
As shown in the Supplemental Material [52], the

problem of minimizing over profiles can be reexpressed as

ΨðλÞ ¼ σ̄

2
λðλþ 2EÞ − inf

m
LðmÞ; ð9Þ

where the Landau-like function LðmÞ of the parameter
m ∈ R, which captures the singular behaviors of ΨðλÞ, can
be written in a truncated form,

LðmÞ≃ −
2πD̄2

σ̄σ̄00
σ̄0m −

ðλc þ EÞσ̄00
4

ðλ − λcÞm2

−
2πD̄ðD̄σ̄ð3Þ − 3D̄0σ̄00Þ

9σ̄σ̄00
m3

þ
�
π2D̄ð4D̄00σ̄00 − D̄σ̄ð4ÞÞ

64σ̄σ̄00
þ σ̄002E2

64σ̄

�
m4: ð10Þ

Here, λc is equal to one of the two values [56]

λ�c ≡ −E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 2π2D̄2

σ̄σ̄00

r
; ð11Þ

and we use the shorthand notations ḡ≡ gðρ̄Þ, ḡ0 ≡ g0ðρ̄Þ,
ḡ00 ≡ g00ðρ̄Þ, and ḡðnÞ ≡ gðnÞðρ̄Þ for derivatives of any func-
tion gðρÞ evaluated at ρ ¼ ρ̄. The optimal value of the order
parameter m in Eq. (9), which we denote by m�, measures
the deviation of the optimal profile from the flat reference
profile of density ρ̄ (similar to the zero magnetization in the
Landau theory for the Ising model):

ρ�ðxÞ ¼ ρ̄þm� sinðπxÞ þO½ðm�Þ2�: ð12Þ

The scaled CGFΨðλÞ has a singularity whenm� changes in
a singular manner as λ is varied [57].
Clearly, LðmÞ can be truncated as in Eq. (10) only if the

coefficient of m4 is positive. For the microscopic models
we study below, this is always the case. While there could
be other models for which higher-order terms in m need to
be considered, these are beyond the scope of this Letter.
Moreover, for a transition to occur as λ is varied, we need
σ̄0 ¼ 0, and the λc defined in Eq. (11) has to be real valued.
This is the case if σðρÞ has a local minimum at ρ ¼ ρ̄, so
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that σ̄00 > 0; otherwise, if σ̄00 < 0, the bulk field has to be
sufficiently strong so that

E2 >
2π2D̄2

σ̄jσ̄00j : ð13Þ

We observe different transition behaviors depending on the
sign of σ̄00, each of which we discuss in the following.
Case 1a: σ̄00 > 0, symmetry breaking.—Consider a

particle-hole symmetric system whose Hamiltonian den-
sity, shown in Eq. (8), is invariant under the transformation
defined by x → 1 − x, ρðx; tÞ → 2ρ̄ − ρð1 − x; tÞ, and
ρ̂ðx; tÞ → λ − ρ̂ð1 − x; tÞ. Assuming that DðρÞ and σðρÞ
are analytic, their odd-order derivatives vanish at ρ ¼ ρ̄,
i.e., D̄ð2nþ1Þ ¼ σ̄ð2nþ1Þ ¼ 0 for n ¼ 0; 1;…. Then only the
m2 and m4 terms survive in Eq. (10), turning LðmÞ into the
form of a Landau free energy of Ising-like systems. For
λ−c < λ < λþc ,LðmÞ is minimized atm� ¼ 0, andΨðλÞ has a
quadratic form corresponding to Gaussian fluctuations. For
λ > λþc or λ < λ−c , we have m� ∼�jλ − λcj1=2, correspond-
ing to a pair of symmetry-breaking profiles given by
Eq. (12) which are mutually related by a particle-hole
transformation defined above. This implies that, for each
instance of a current fluctuation J in this regime, there is a
symmetry breaking so that one of the two optimal profiles
is observed with equal probability (see Fig. 1). Near the
transition points, the scaled CGF ΨðλÞ has singularities
which behave as limλ↓λcΨðλÞ − limλ↑λcΨðλÞ ∼ jλ − λcj2,
implying second-order transitions. Clearly, the same critical
scaling behavior is observed if D̄ð3Þ, σ̄ð5Þ or higher-order
derivatives are nonzero, although in such cases only one of
the two density profiles is optimal.
Case 1b: σ̄00 > 0, first-order transition.—Now consider

the case where D̄0 and σ̄ð3Þ have nonzero values. For a
consistent Landau theory, we assume that D̄0 and σ̄ð3Þ scale
as m�. Then the m3 term induces a weak first-order
singularity of the scaled CGF [58]. On general grounds,

similar results will be obtained even if D̄0 and σ̄ð3Þ are
larger. The transition shows up as jumps of m� at transition
points λ�d , which are slightly shifted from λ�c , respectively
(see the Supplemental Material [52]). In a manner similar to
case 1a, the fluctuations are Gaussian for λ−d < λ < λþd , and
non-Gaussian otherwise (see Fig. 1). This behavior corre-
sponds to a scenario discussed in Ref. [12]: when a current
fluctuation J occurs within the intervals ½J�1 ; J�2 � defined by
J�1 ≡ limλ↑λ�d

Ψ0ðλÞ and J�2 ≡ limλ↓λ�d
Ψ0ðλÞ, we observe

J�1 and J�2 , with probabilities p�
1 and 1 − p�

1 , respectively,
such that J ¼ p�

1 J
�
1 þ ð1 − p�

1 ÞJ�2 . This is a direct analog
of phase coexistence in equilibrium first-order transitions.
Case 2: σ̄00 < 0.—For case 1, the bulk field E is not

essential for the existence of a DPT: it only shifts the
location of the transition point according to Eq. (11). By
contrast, for case 2, phase transitions occur only when the
bulk field E is strong enough to satisfy Eq. (13). Since the
form of LðmÞ remains the same, the system again exhibits
symmetry-breaking transitions for fully particle-hole sym-
metric systems, and first-order transitions in the absence of
symmetry due to nonzero D̄0 and σ̄ð3Þ. Note that, while the
regions of non-Gaussian fluctuations were unbounded in
case 1, here they are bounded. This is because, for σ̄00 < 0,
both transition points λ�c have the same sign, as implied by
Eq. (11) (see Fig. 1).
Generalization to ρa ≠ ρb.—We now turn to the case of

unequal boundary densities given by ρ̄a ¼ ρ̄ − δρ and
ρ̄b ¼ ρ̄þ δρ. Treating δρ as a perturbation, we find, to
linear order in δρ, that (see the Supplemental Material [52])

ΨðλÞ ¼ σ̄

2
λðλþ 2EÞ − 2 δρ D̄λ − inf

m
LðmÞ; ð14Þ

with only the quadratic term in LðmÞ modified as

ðλ − λcÞm2 →

�
λ − λc −

2D̄
σ̄

δρ

�
m2; ð15Þ

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

FIG. 1. Schematic illustrations of the singularities and the optimal profiles for different types of phase transitions. The dashed
(blue) lines represent behaviors of the functions if the Gaussian fluctuations persist for any λ and J. Case 1. (a) The scaled
CGF showing second-order singularities and (b) the corresponding LDF. (c) The shapes of optimal profiles as J is varied. (d) The scaled
CGF showing first-order singularities and (e) the corresponding LDF. (f) The optimal profiles as J is varied. Case 2. (g) The scaled CGF
showing second-order singularities and (h) the corresponding LDF. (i) The optimal profiles as J is varied.
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which implies that the transition point is shifted but the
other properties of the phase transitions are unchanged. If
ρ̄a − ρ̄ ≠ ρ̄ − ρ̄b, we can use ðρ̄a þ ρ̄bÞ=2 as the new value
of ρ̄. Provided that the odd-order derivatives of DðρÞ and
σðρÞ evaluated at the new ρ̄ remain small, all of the results
presented above are still valid.
Microscopic models.—We now present two lattice gas

models, each of which exhibits one of the two cases of
phase transitions described above.
Case 1: σ̄00 > 0.—We consider a KLS [46] model with

zero bulk bias, which features on-site exclusion and
nearest-neighbor interactions. It is defined on a one-
dimensional lattice, each site of which can be either
occupied (1) or empty (0). The model is characterized
by the two parameters δ and ε, which govern the hopping
dynamics according to the following transition rates (in
arbitrary units):

0100⟶
1þδ

0010; 1101⟶
1−δ

1011;

1100⟶
1þε

1010; 1010⟶
1−ε

0110:

Spatially inverted versions of these transitions occur with
identical rates. Using the methods of Refs. [50,59,60],DðρÞ
and σðρÞ of the model can be derived exactly as functions of
ρ ∈ ½0; 1� (see the Supplemental Material [52] for their
explicit forms). If δ ¼ 0, the model possesses a particle-
hole symmetry, so that all odd-order derivatives of DðρÞ
and σðρÞ with respect to ρ vanish at ρ ¼ 1=2. More
interestingly, for ϵ > 4=5, one finds that σð1=2Þ becomes
a local minimum. Thus, all results of case 1a can be applied
to this model by setting ρ̄ ¼ 1=2. On the other hand, if
δ ≠ 0, the system does not have a particle-hole symmetry.
Then, for ϵ greater than some δ-dependent threshold, σðρÞ
has a local minimum at some δ-dependent ρ̄. All of the
results of case 1b are then applicable to this system.
Case 2: σ̄00 < 0.—Consider a WASEP on a one-

dimensional lattice of L sites whose hopping rates

(in arbitrary units) are given by 10→
1þδ

01, 01→
1−δ

10. If
δ ¼ E=L, it is well known [47,48] that the system is
characterized by DðρÞ ¼ 1 and σðρÞ ¼ 2ρð1 − ρÞ, so
σ00ðρÞ < 0 for any ρ ∈ ½0; 1�, with the maximum of σðρÞ
located at ρ ¼ 1=2. Applying the results of case 2, Eq. (13)
implies that the system exhibits singularities of LDFs
when jEj > π.
Mechanism for symmetry breaking.—To gain more

intuition into the origin of the DPT, it is helpful to examine
the Lagrangian formulation of the LDF [44]

ΦðJÞ ¼ inf
ρ

Z
1

0

dx
½J þDðρÞ∂xρ − σðρÞE�2

2σðρÞ : ð16Þ

Close to the transition point, ΦðJÞ is minimized by an
optimal profile of the form ρðxÞ ¼ ρ̄þm sinðπxÞ. Keeping
the leading-order corrections in m, we obtain

ΦðJÞ≃ δJ2

2σ̄
þ inf

m

��
D̄2

2
−
σ̄00E δJ

2
−
σ̄00δJ2

4σ̄

�
m2 þOðm4Þ

�
;

ð17Þ

where δJ ≡ J − σ̄E. The occurrence of symmetry breaking
is controlled by the sign of the coefficient in front of m2,
whose three terms represent contributions from diffusion,
the bulk field E, and the noise amplitude. The first two
originate from the numerator of Eq. (16) and the last one
comes from the denominator. The competition between
these factors dictates whether it is beneficial to break the
symmetry by density modulations. Depending on the sign
of σ̄00, there are two possible scenarios.
If σ̄00 > 0, the coefficient of m2 is positive for a δJ

close to zero and becomes negative for a sufficiently large
δJ, signaling the symmetry-breaking transition—for a large
enough δJ, the gain in action from the denominator
overwhelms the cost of density modulations in the
numerator.
On the other hand, if σ̄00 < 0, both the diffusion and the

noise lead to a positive cost for density modulations.
Negative contributions arise only from the field term.
A large enough E can make density modulations favorable
for an intermediate range of δJ, inducing a transition.
The origins of DPTs in these two cases are different. For

σ̄00 > 0, the transitions are due to the competition between
the diffusion, which favors a flat profile, and the noise,
which favors modulations. By contrast, for σ̄00 < 0, the
transitions are ruled by the contribution of the bulk field,
which favors modulations, competing against the diffusion
and the noise, both of which favor a flat profile. Similar
arguments also apply to first-order transitions.
Comparisons with previous studies are in order. A recent

study [33] proposed a criterion which forbids the DPTs
of case 2; however, our results explicitly show that the
WASEP is a counterexample to this criterion [61]. We note
that the asymmetric simple exclusion process (ASEP),
which is nondiffusive, also exhibits DPTs in current
fluctuations [26,32,62,63]. While these DPTs are remnants
of the well-known boundary-induced transitions in mean
behaviors, the DPTs of diffusive systems discussed above
are very different.
There remains the question of how the DPTs discussed

so far can be experimentally observed. Recently, the LDF
for heat current in an RC circuit was empirically measured
in Ref. [64], where the fast electronic dynamics allows the
current LDF to be measured over a wide range [65]. To
observe the DPTs discussed here in a similar experiment,
one has to look at diffusive electronic transport with an
extremum in σðρÞ. These are common, resulting from
nonmonotonic changes in the electronic density of states.
For example, minima of σðρÞ were observed in graphene
transport [66], and maxima in fullerene peapods [67].
Using these systems, both cases of DPTs discussed above
can, in principle, be observed.
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In summary, we have studied a general one-dimensional
diffusive transport through a channel connecting two
reservoirs. Using a perturbative approach for a general
DðρÞ and σðρÞ, we have found a large class of new DPTs
which are not associated with the breaking of the additivity
principle, in the sense that the optimal profiles remain time
independent before and after the transition. For some of
these DPTs we can explicitly prove the validity of the
additivity principle, which we expect to hold for all cases
(see Ref. [52]). It would be interesting to check on whether
other kinds of DPTs occur at larger values of J or δρ, and
how the results can be generalized to higher dimensions.
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