
ELSEVIER Physica C 254 (1995) 63-68 

PHYSICA 

Creep in one dimension and phenomenological theory 
of glass dynamics 

Pierre Le Doussal a,c,*,l, Valerii M. Vinokur b,c 

a CNRS-Laboratoire de Physique Th~orique de l'Ecole Normale Sup~rieure, 24 rue Lhomond, F-75231 Paris, France 
b . . . . . .  Matertals Sctence Dwtston, Argonne Nattonal Laboratory, Argonne IL 60439, USA 

c ITP, University of California, Santa Barbara CA 93106, USA 

Received 30 August 1995 

Abstract 

The dynamics of a glass transition is discussed in terms of the motion of a particle in a one-dimensional correlated 
random potential. An exact calculation of the velocity V under an applied force jr demonstrates a variety of dynamic regimes 
depending on the range of correlations. In a gaussian potential with correlator C(x)  = x ~, we find a transition from ohmic 
behavior (), < 0) to creep motion V ~ exp( -  const /f  ~) (0 < "y < 1). This provides a generic picture of the glass transition in 
systems where long-range correlations in the effective disorder develop due to elasticity such as elastic manifolds subject to 
quenched disorder and the vortex-glass transition in superconductors. 

The driven dynamics of  physical systems which 
can be modelled as elastic manifolds in quenched 
random media has received a lot of  attention re- 
cently. Prominent examples of  such systems are the 
roughening of domain walls [1], directed polymer 
growth [2], motion of dislocations in disordered me- 
dia [3], dynamics of  charge density waves [4], and 
surface growth in a random environment [5]. This 
recent interest was partly motivated by extensive 
studies of  vortex dynamics in high-T c superconduc- 
tors. It was shown that this problem is related to the 
dynamics of  an elastic manifold subject to quenched 
disorder [6-9], and a significant progress in qualita- 

tive understanding was achieved. The motion is 
viewed as a sequence of thermally activated jumps 
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of  the optimal " c e l l "  of  the manifold from one 
metastable state to the next as favored by the applied 
force. In most of  these systems the activation barriers 
for such a motion, which we will refer to as creep 
motion, depends on the applied force f and diverges 
as f ~ 0, giving rise to a strongly non-linear velocity 
versus applied force dependence. The unlimited 
growth of the creep barriers is taken now as the 
characteristic feature and operational definition of 
glassy dynamics. Usually [8] the barriers grow as 
U B ( f )  ~ f - ~  leading to a typical velocity versus 
applied force dependence (or I - V  curve) of  the form 
V = e-1 / (r f~)  in the creep regime. 

While there is now a consistent qualitative picture 
of  the low-temperature creep motion [10,6], it is 
based mostly on scaling arguments and numerical 
simulations, and a rigorous analysis is still lacking. 
Although interesting new results have been obtained 
recently for the non-equilibrium dynamics of  mean- 
field models of  glasses [11] and for particle dynam- 

0921-4534/95/$09.50 © 1995 Elsevier Science B.V. All fights reserved 
SSD! 0921-4534(95)00545-5 



64 P.L. Doussal, V.M. Vinokur / Physica C 254 (1995) 63-68 

ics in an infinite-dimensional random potential 
[12,13], a general analytical derivation in physical 
models remains an unsolved problem. In the absence 
of a rigorous analysis of realistic physical situations 
one is seeking for models which are simple enough 
to be treated analytically and yet are able to mimic 
the large diversity of dynamics of real glassy sys- 
tems. A well known example is the problem of a 
single particle driven by an external force f and 
subject to a one-dimensional random force field with 
gaussian short-range correlations. The term random 
force means that the correlator of the random poten- 

tial U(x) is (U(x) - U ( y ) )  2-,, AI x - y l  where A 
characterizes the strength of the random potential. 
This model is known as Sinai's model and has long 
been a subject of extensive studies [15-21,3] The 
remarkable result obtained for this model is that even 
at finite temperature the mobility vanishes below a 
threshold force fth ~ A/2T. Moreover this system 
was found to exhibit anomalous diffusion, and aging 
phenomena [20] very much like what is observed in 
spin glasses [22,11]. 

In this letter we study a wider class of one-dimen- 
sional random potentials with arbitrary correlations 
and find that our model can reproduce most of the 
existing regimes of glassy dynamics. The letter is 
organized as follows. First we derive an exact for- 
mula for the velocity in a one-dimensional medium. 
The result is physically transparent and simple 
enough to allow for analytical treatment of very 
general potentials. Then we study gaussian random 
potentials with a general correlator such that at large 
distances I x - y I >> a: 

( U ( x ) - U ( y ) ) 2 - K ( x - y ) ~ A l x - y l  v, (1) 

and in Fourier space I ( ( q ) = U ( q ) U ( - q )  
~tql q-O+v)  with K(z)=2fA_A(dq/E'tr) 

~--°COS qz) I((q). We find that there are several 
regimes depending on how correlated the potential 
is. If correlations are short range (T < 0), we recover 
a "viscous flow" (ohmic) regime where a linear 
response V ~ f  holds for small f. If correlations 
grow with 0 < T < 1 we find a new creep regime, 
V ~ e x p ( -  1/fg). The case 3' -- 0 corresponds to the 
transition between these two regimes and we find a 
critical power-law V versus f dependence, reminis- 
cent of the vortex-glass transition behavior [7]. Fi- 

nally y = 1 corresponds to Sinai's case where V = 0 
below a threshold force. 

This suggests a deep connection with the motion 
of elastic manifold in a random medium (such as 
vortex systems in type-II superconductors). In these 
systems creep behavior arises from the interplay of 
the elasticity and pinning potential [6] which both 
determine the creep barriers U b. The bare pinning 
potential is uncorrelated but the elasticity of the 
manifold generates long-range correlations in the 
effective potential U b that determines the motion of 
the manifold. The role of elasticity as a tuning 
mechanism for correlations becomes transparent upon 
noticing that the formation of the vortex glass is 
caused by a drastic change in elastic properties. 
Namely, the onset of shear modulus at the freezing 
point develops long-range correlations in the vortex 
system [6]. A phenomenological approach to de- 
scribe a generic glass transition is to introduce a 
correlation length ~o characterizing the spatial range 
of critical correlations, which diverges at the transi- 
tion. The choice of K(x) on both sides of the 
transition is dictated by physical considerations. In 
the correlated phase (i.e. glass phase) the natural 
choice is a gaussian random potential with correlator 
of the form 

x y 

The first term which dominates at large distance 
describes long-range correlations in the random po- 
tential and generalizes Sinai's model. The second 
term describes the behavior at the critical point 
~G = oo. Indeed one has y =  0 and /~ (q )~  1/q at 
the transition and thus K(x) ~ A In x. The form (2) 
is an interpolation resulting from the crossover be- 
tween the critical fixed point and the fixed point 
describing the glass phase. In the uncorrelated phase 
correlations are short range and one chooses a corre- 
lator as /('(q) = 1 / ( q  2 + (~6) -2)  1/2, i.e. K(x) = 
Ko(x/~), so as to reproduce the critical behavior for 
a <<x << ~G" An identical scenario was demon- 
strated using RG for the correlations in the free-en- 
ergy landscape at the glass transition in surface 
growth models, such as the directed polymer in 
d >/2 + 1 [14] 



P.L. Doussal, KM. Vinokur / Physica C 254 (1995) 63-68 65 

On a mathematical level the present model is the 
d = 0, n = 1 version of the problem of the dynamics 
of manifolds of internal dimension d, in a n dimen- 
sional space. Remarkably, the case d = 0 and n --* oo 
was recently studied by completely different tech- 
niques and seems to exhibit similar regimes [12]. 

We consider the Langevin diffusion in the one-di- 
mensional quenched random potential U(x) in the 
presence of a global bias f and thermal white noise 
~/(t): 

dx(/) 
dt -- - VU( x( t)) + f + ~( t), (3) 

with (7/(t)7/(t')) = 2TS(t - t') and T is the tempera- 
ture. The probability density P(x ,  t) and the current 
J(x,  t) satisfy 

OP( x, t) 
at = - VJ( x, t), (4) 

with J(x ,  t) = - T V P ( x ,  t) + ( f  - VU(x))  
×P(x,  t). 

To derive the analytic expression for the velocity 
V we generalize to continuum models the method 
introduced by Derrida [18] for discrete hopping prob- 
lems. We consider an infinite periodic environment, 
i.e. a periodic random force VU(x), of period L.  
The limit L ~ is taken at the end [23]. One 
defines the periodized probability/5(x) = ~.kP(x + 
kL) which obeys the same equation (4) as P, and 
corresponds to diffusion on a periodic ring of size L. 
Using Eq. (4) the velocity for the particle on the 
infinite line can be expressed as 

d ( x ( t ) )  
-~  = - f / ?  dxxWJ = f / )  d , d ( x ,  t) 

-- fo L dxJ (x ,  t) ,  (5) 

where J(x,  t) = -1V15(x,  t) + ( f -  VU(x)) 
×fi(x, t). At long time J(x ,  t) goes to a constant f 
and the asymptotic velocity V is exactly given by 
V = JL. To find f for a fixed L and disorder config- 
uration one must solve the stationarity equation: 

a~(x) 
T Ox + ( V U ( x ) - f ) f i ( x ) = - f ,  (6) 

with the two additional conditions P (0 )= /5 (L)  and 
[Ldxfi(x) = 1. The stationary solution with zero 

current J =  0, i.e. the Gibbs distribution Po(x)= 
exp((1/T)(-U(x)+fx)) does not, in general, sat- 
isfy the periodic boundary conditions: Thus V can be 
found from the solution with non-zero current: 

15( x) = ~ (  foL dy e (v(y)-v(x)+/(x-y))/r 
1 - e (v(L)- v(o)-fL)/T 

) - f 0  d y e  (v(y)-v(x)+f(x-y))/r ; (7) 

f and thus V follow from the normalization condi- 
tion for/5. In the limit L ~ ~, imposing the restric- 
tion U(O)= U(L), unimportant for f >  0, Eq. (7) 
simplifies to 

15(x) = T fo dz e (v(x+z)-v(x)-fz)/r (8) 

and one gets the general formula for V: 

1 1 +~o 
--V = --T fJo dz e-fZ/r(e(V(x+z)-V(x))/r)x (9) 

valid for an arbitrary potential U(x). (A)x denotes 
the translational average (A)x=l imr_~=L -1 
×f~dxA(x).  The average in Eq. (9) exists quite 
generally and is independent of the configuration of 
the random potential, i.e. the velocity is self-averag- 
ing. The physical interpretation of Eq. (9) in terms of 
an Arrhenius waiting time is transparent. The aver- 
age waiting time 1/V  is a sum of Boltzmann weights 
associated with the barriers the particle must over- 
come to move in the direction of the driving force. 
The highest barriers U(x + z) - U(x) with z > 0, 
produce the largest waiting times. 

The expression (9) reveals immediately several 
general features. At large f one has V--f.  At small 
force f ~ 0, the response will be linear only if the 
barriers saturate, i.e do not grow at large distance. If 
the potential is uncorrelated at large distances such 
that (e w(x+z)-t:(x))/r) ~ (eV/r)(e - v / r )  when z 
--, 0% then 

D £ 
Vcc '~o f =  (eV / r ) (e_V/r ) ,  (10) 

where D and D o are the diffusion coefficients in the 
presence and in absence of disorder, respectively and 
the Einstein relation holds. When D << D o the V-f  
curve will show strong nonlinearity at intermediate 
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scales where the transition between the low-force 
and high-force regime of motion occurs. 

We now turn to a detailed study of gaussian 
disorder with correlator K(x). Upon averaging over 
disorder Eq. (9) yields 

-V1 1 oo ( fx 
= "Tfo dx  exp + . (11) 

The choice of K(x) as in Eq. (2) gives rise to 
several regimes of particle dynamics depending on 
the range of the correlations of the random potential. 

First we consider Sinai's case, y = 1. For y > 1 
the integral in Eq. (11) diverges and the velocity is 
zero. Sinai's model corresponds to y = 1 and appears 
as a marginal case where the integral (11) diverges 
for f< f th  = A/(2TGG) and V=  0 while V = f - f t  h 
exactly for f > fth, in agreement with previous results 
[15-17,19,20]. The system with y = 1 exhibits alge- 
braic distributions of waiting times which gives rise 
to aging phenomena [20]. Therefore Sinai's model 
mimics essential aspects of the spin-glass behavior. 
Interestingly, this V versus f dependence mimics 
also the dry-friction phenomenon. 

Next we consider creep motion, 0 < Y < 1. In the 
intermediate case 0 < y < 1 one finds the "creep"  
dynamics regime. Defining the dynamical exponent 
z = 2 + ( A / 2 T  2) and the characteristic force fc = 
( A/2T2) 1/~ T/Go one arrives at 

T 1 

--~ = fc_a H ( f / f c )  

o~ 

H(y ) - -  fo dvvZ-2 exp(-yv+vY)" (12) 

Note that f~ reduces to the threshold force fth when 
y ~ 1. At y < 1 the sharp threshold disappears but at 
f << fe the V versus f dependence shows a strongly 
nonlinear behavior with an essential singularity at 
small f. Using the steepest-descent method at f << fc 
one finds 

V=ATf z-1 -~¢ exp - ( 1  - y )  , 

Y 
= - - ,  ( 1 3 )  

~" 1 - y  

with A ~ {y(1  - y ) /2" r r .  The exponential factor 
holds for any correlator behaving as a power law ~ x ~ 

at large distances. The preexponential factor depends 
on details of the crossover of the correlator to the 
logarithmic regime (x << GG). In this creep regime 
the linear response at f ~ 0 is absent and the charac- 
teristic barriers which control the dynamics diverge 
as l / i f ' .  

Further, the critical case. Critical behavior, which 
generically corresponds to y = 0, can equivalently be 
achieved by taking Go = oo in Eq. (2). The V versus 
f characteristics becomes a power law at small force. 
In that case we have K(x) ~ A log I x l at large x 
and Eq. (11) gives 

f z - -  1 

V= F ( z -  1)T2 +z' (14) 

with z = 2 + (A/2T2) ,  resembling the power-law 
critical behavior proposed at the vortex-glass transi- 
tion. This transition separates the creep dynamics 
V ~ e x p ( - c o n s t / f f ' )  in the vortex-glass state from 
the ohmic behavior V o t f  above the transition. In- 
deed one finds that the scaling function H ( y )  of Eq. 
(12) reproduces the correct scaling behavior H ( y ) ~  
yl-Z in the critical region y >> 1 which leads to Eq. 
(14) for T/a 2 >>f>>fc- Using Eq. (10) we find the 
critical behavior D at G 2 -  z. Since in the vortex sys- 
tem the voltage is proportional to the vortex velocity 
and force is proportional to applied current, the 
obtained behavior of D reproduces the critical be- 
havior of the resistivity p at the transition, Go play- 
ing the role of the vortex-glass critical length. 

Last, we have ohmic behavior, 7 ~< 0. For short- 

range correlations 7 < 0, U ( x )  2 is finite and one 
recovers the Einstein relation (10) with D > 0 and 
the linear response. Let us analyze in detail the 
regime of ohmic motion, corresponding to a finite 
correlation length. We denote U(x)U(O) = AC(x), 
with C(0)=  1 and C(x) decays to zero on a length 
scale G. 

1 1 ~ fz+ 
= 7 dz  exp - ~-~(1 o 

(15) 
Two ohmic regimes, one at small force with Vct 
e-Z/rZf and one at large force with Votf, appear. 
At a high temperature these two regimes match 
smoothly. At low temperature there is a sharp 
crossover. A depinning temperature Tp = ~ sepa- 
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rates these two different behaviors which we call 
"unpinned" and "p inned"  respectively. For T >> Tp 
the particle motion is mostly unpinned and the smooth 
crossover occurs at f~ ~ T/¢ .  For T << Tp a new 
characteristic force f ,  arises which marks the 

P - -  2 

crossover between V ote a / r f for f << fp and V ¢t f 
for f > > f p .  To estimate fp we use C ( z ) =  
e x p ( - ( z / ¢ )  2) which leads to fp ~ ( T / ¢ ) v ~ / T  2 
~ vrA-/¢. Note that fp does not depend on tempera- 
ture and has thus a limit when T ~ 0. At T ~ 0 the 
curve V versus f becomes V =  O ( f - f p ) ( f - f p ) .  It 
is interesting to mention that this behavior can be 
obtained correctly using the perturbation theory anal- 
ogous to that used for calculation of critical currents 
in type-II superconductors [6]. Disorder-induced cor- 
rections to the velocity are given by ~ v / v =  
A ~ v T - 3 ( ( T / ~  V) -- arctan(T/~v)).  Equating ~v /v  
= 1 we recover the above result for fp at low 
temperature T << Tp while for T >> Tp, ~v /v  never 
reaches 1 and thus fp does not exist. This analysis 
assume a finite mean squared force <(~TU) 2> ~f2 
< % i.e. that the random potential is smooth. If we 
choose instead C(z)  = e x p ( -  [ z / ~  [) an exact cal- 
culation from Eq. (15) gives 

V =  /~3"(f~/T, 1) " ~ ]  e x p ( - A / 2 T ) ,  

where 3' is the incomplete Gamma function. In that 
case the average force is infinite and at T = 0 the 
particle remains pinned at any applied force. 

The above model may apply directly to a string 
(directed polymer) of length L in d dimensions 
driven by its tip at z = 0 over point-like impurities. 
An example is a flux line in a superconductor in the 
presence of an external current J.  Because of screen- 
ing at small fields the external Lorentz force of 
modulus f c t  J is exerted only on the end of the line, 
over a length of order A. Let F ( r )  be the free energy 
corresponding to equilibrium positions r of the tip at 
z =  0 with the other end z =  - L  fixed 
at r =  0 for large L. One can view the tip as a 
particle driven in the rough potential F(r )  with 

( F ( r )  - F ( 0 ) )  2 ~  r ~' and [1,2] 3"= 20/~' .  Moving 
the tip by r provokes a reorganization of the string 
up to length z = r 1/~ away from the tip. It thus leads 
to correlated barriers and to the V - f  characteristics 

found above. Since ~ =  6 / (8  + d) and 0 = 2 i f -  1 
one has 3, = (4 - d) /3 .  Thus 3/= 1 in d = 1 + 1, an 

2 exact result, and 3' = ~ in d = 2 + 1. If this picture is 
qualitatively correct a flux line driven by its tip in 
d = 1 + 1 would experience a threshold. Below f¢ 
the motion of the tip would be as r ~ t  f /L  and 
V = 0. By analogy with Sinai's model [20], we also 
predict aging effects in this system. One has V ~  
e x p ( -  1 / f  2) in d = 2 + 1. Of course the true motion 
is more complicated and the string might not be 
assumed to be in equilibrium. 

Note that in one-dimensional motion the velocity 
can be dominated by rare large barriers, as is the 
case for the exponent /x in Eq. (13), whereas diffu- 
sion at zero force f =  0, given [24,25] by x ~ 
(log t) 2/~, is dictated by typical barrier E b ~ x ~/2. 
In higher-dimensional space, such as the configura- 
tional space of a string, there are many paths in 
parallel from one point to another which may allow 
the avoidance of atypically high barriers. This could 
effectively cut the tails of the distribution of barriers, 
and the gaussian assumption may not be justified. 
This effect can be accounted for within our one-di- 
mensional model by allowing for more general dis- 
tributions for barriers. Averaging Eq. (9) over disor- 
der, one can write 

1 1 oo 
-~ = -f £ dzf dEbP(E b, z)exp((Eb-fz)/T ), 

(16) 

where P (E  b, z)  is the probability of a barrier E b = 
U(x + z)  - U(x)  corresponding to separation z. The 
previous calculation corresponds to a gaussian 
P ( E  b, z) ~ e x p ( - E ~ / 2 K ( z ) ) .  A more general form 
is 

P ( E  b, z )  = z - r / 2 Q ( E J z ~ / 2 ) .  (17) 

The behavior at small f is governed by the 
large barriers. Thus we suppose that Q(u) ~ 
e x p ( - u ~ / 2 A )  at large u. Then using the saddle- 
point method one obtains 

V ~  e x p ( - C T  - 0 +  ~)f-~'), 

2( 8 - 1) 
/ x - '  -- - -  1, ( 1 8 )  

3"8 

wi th  v = 1 / ( 8 -  1 -  3"8/2)  and C = 
v- l (2 /3"8) l+"(2A)  -1/v. This is the most general 
case containing the gaussian case for 8 = 2. For 
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~ 0% i.e. when the distribution has no tails, the 
typical barriers dominate and /x =/Zty p = y / ( 2  - y) .  
This calculation shows, however,  that even for 
rapidly falling tails, 8 large but finite, the exponent 
/x can be different from the value /Xty p obtained by 
considering typical barriers. 

In conclusion, we found stretched exponential  
velocity versus force characteristics, V ~ exp- 
( -  const / f~ ' ) ,  in a simple model  of  a particle diffus- 
ing in a 1D random potential with correlated barriers. 
There is a transition between this creep motion and 
ohmic motion, characterized by a power- law critical 
behavior at the transition. This transition occurs as 
the correlations in the random potential change from 
short range to long range. We stressed the physical  
analogies with the creep motion of  driven flux lines 
in a glassy state, also characterized by correlated 
barriers. The transition found here is similar to the 
vortex-glass transition which can thus be viewed as a 
transition from the short-range (in the liquid) to the 
long-range correlated behavior  (in a glassy state) of  
the effective potential seen by a vortex configuration. 
The above results also establish a connection be- 
tween spin and vortex glasses. Our model  exhibits 
both creep behavior  specific to vortex glasses and 
aging, which is recognized as the essential character- 
istic of  spin glass dynamics,  upon tuning the degree 
of  correlation of  random field. 

Note added in proof 

After  complet ion of  this work we received a 
preprint by S. Scheidl where Eq. (9) is also derived 
in a different context. 
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