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Semiclassical treatment of spin system by means of coherent states 
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(Received 4 November 1985; accepted for publication 7 January 1987) 

The semiclassical time-dependent propagator is studied in terms of the SU (2) coherent states 
for spin systems. The first- and second-order terms are obtained by means of a detailed 
calculation. While the first-order term was established in the earlier days of coherent states the 
second-order one is a subject of contradiction. The present approach is developed through a 
polygonal expansion of the discontinuous paths that enter the path integral. The results here 
presented are in agreement with only one of the previous approaches, i.e., the one developed on 
Glauber's coherent states by means of a direct WKB approximation. It is shown that the 
present approach gives the exact result in a simple case where it is also possible to observe 
differences with previous works. 

I. INTRODUCTION 

The formulation of semiclassical approaches to quan­
tum problems has received a renewed interest following the 
popularity of the so-called coherent states (CS's) ,1,2 which 
are in some sense the most classical states. Since the pioneer­
ing work by Klauder,3 where the path integral formulation 
was established, it was apparent that a so-called complexifi­
cation of the (real) classical variables (essentially position 
and impulse) was necessary.3 This complexification ob­
scured the derivation of the semiclassical time propagator 
(SP) especially when the second-order term, i.e., the re­
duced propagator (RP), ought to be considered. Attempts 
to avoid this procedure4

,5 have resulted in a heuristic formu­
lation of the SP in aP-form6 (P- and Q-forms associated with 
CS's were introduced from the beginning by Glauber7). Lat­
er work on Glauber's coherent states has shown8 that the RP 
in the P-form has a more complicated structure than the one 
first assumed. 

The reduced propagator has also been a subject of con­
troversy in the path integral approach. The imposition of 
continuity conditions9- 11 to the paths considered has forced 
the application of the path expansion procedure l2 for the 
evaluation of the RP, and as a result of this procedure, the 
second-order term has been formally expressed in terms of 
the eigenvalues of a Sturm-Liouville problem.9,l0 This pro­
cedure has received some criticism13 because it produces in­
correct behavior of the SP at the starting time, among other 
problems. 13 Other attempts to find the semiclassical propa­
gator present problems in the identification of the correct 
classical Hamiltonian. 14,15 

In the present work, we study the semiclassical propaga­
tor for spin and quasispin systems using the following steps. 

(i ) We decompose the propagator by means of the Trot­
ter product formulas and slip-in identities between the prod­
uct terms as done in Refs. 3-6, 9-11, and 16, but, taking 
advantage of the coherent states' overcompleteness,I,2.7 the 
identities are taken in a more general form than in the pre­
vious works. This generality is not really a necessary tool, 
but it makes the following steps clearer. 

a) Fellow of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, 
Argentina. 

(ii ) We evaluate all the integrals by the Lap lace method. 
This method requires the complexification of the variables, 
but, by virtue of the generality introduced in (i), this reduces 
to fixing the free complex parameter (which labels the equiv­
alent identities) to a different value for each time. 

(iii) The second-order term is evaluated directly from 
the Laplace method working out a second-order differential 
equation for the reduced propagator. 

(iv) Finally, the equation for the reduced propagator is 
integrated. 

The steps (i) and (ii) are developed in Sec. II; Sec. III is 
reserved for a detailed calculation of the reduced propagator 
[steps (iii) and (iv)] while Sec. IV is devoted to an almost 
trivial example which already shows the differences between 
this work and the previous ones. The conclusions and per­
spectives are presented in Sec. V. 

II. SU(2) PATH-INTEGRAL-LiKE FORMULATION 

A. The formulation 

The path integral formulation can be easily found using 
the slip-in identities decomposed as addition of coherent 
states3-5.9-ll between the terms in the Trotter product for­
mulas 

U = exp( - iHt) = lim (1 - iHt /N)N. (2.1) 
N~oo 

The standard identity in terms of CS's is written 1.2 as 

1= 21+ 1 f Iz)(zl dz/\dz , 
1211' Jc (1 + ZZ*)2 

(2.2) 

where 

Iz) = exp(z'J + - z'*J _) IJ, - J), (2.3a) 

z'=e- it/>()/2, z=e- it/>tan«()/2), (2.3b) 

(J + ,J _ ,Jz ) are the three generators of the SU (2) group, and 
IJ, - J) is the extremal state (Jz IJ, - J) = - J IJ, - J» of 
the J-irreducible representation of SU (2), while the domain 
of integration C is the complex plane. 

The coherent state (2.3) may also be written taking ad­
vantage of the BCH theoremsl in the form 
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Iz) = exp(zJ + )exp(ln(1 + zz*)Jzlexp( - z*J _) IJ, - J), 
(2.4a) 

Iz) = exp(zJ +) IJ, - J) (1 + zz*) - J, 

Iz) = Iz)(1 +zz*) -J. 

(2.4b) 

(2.4c) 

This last formula [(2.4c)] defines the unnormalized coher­
ent state (curved brackets) which allows us to rewrite the 
identity (2.2) in the form 

1= 2J+.l ( Iz)(zl[(1 +zz*)2(zlz)]-ldzAdz*. (2.5) 
2m Jc 

As the CS's form an overcomplete set of states there are 
many different ways of writing the identity; for instance, 
multiplying (2.5) by 

1 = exp(8J + )exp( - oJ +), 

we obtain 

1 = II = exp(8J + )exp( - oJ +)1 

=exp(oJ+)1exp( -8J+), 

2J+ 11 1 = --.- exp(8J +) Iz)(zlexp( - 8J +) 
2m c 

X [(zlz) (1 + ZZ*)2] -I dz Adz*, 

which may be put in the form (applying again the disentan­
gling theorems 1 ) 

1 = 2J +.1 ( Iy)(xi [(xly) (1 + YX*)2] -I dy Adx*, 
2m JD 

(2.6a) 

where x* and y depend on z and z* in the following specific 
form: 

y=z+o, 

x* =z*/(1-z*O). 

(2.6b) 

(2.6c) 

The domain of integration C in (2.5) transforms into 

D = {(y,x*) such that 

(y-o)* =x*/(1 +x*y)} in (2.6). 

The identity (2.6) is valid for any arbitrary complex number 
0, just because it does not depend on it. 

Following the standard procedure4.5.9.10.16 we obtain the 
following expression for the matrix elements of the propaga­
tor between CS's: 

(c,6lUltft) = ~~ ( ... ( IT dYn Adx~ 
JDo JDNn=o 

x{(2J + 1) (21Ti(l + ynx~)2] -1}exp(F), 
(2.7) 

where F has the form 

F= i In [ (xn IYn -I) ] - ~ JY'(Yn -I ,x~) 
n~1 (xnIYn) N 

(2.8) 

and where the classical Hamiltonian JY'(Yn _ 1 ,x~) reads 

JY'(Yn _ i'x~) = (xn IH IYn - 1 )/(xn IYn -I ). (2.9) 

At this point we note that there is no reason for requir­
ing continuity of the paths just because we are dealing with 
non orthogonal states. In this respect we recall that in earlier 
works on the subjece·9,11 only almost-everywhere contin­
uous paths were considered, The contribution of the discon­
tinuous paths can be determined by the following argument: 
considering the evaluation of the matrix elements of the 
identity (2.6), 

(c,6ltft) = 2J + 1 ( (c,6ly)(xltft) dyAdx*, (2.10) 
21Ti JD (xly) (1 + X*y)2 

we observe that as long as the integrand is a nonsingular c­
number all the allowed values of (y,x*) contribute to the 
integral and not only justy = tft, x* = c,6* (it is even not nec­
essarily in the domain of integration for an arbitrary o!). 
Further, the integrand can never become singular, as is easi­
ly seen by inspection of (2.2). 

The evolution operator has been decomposed, in our 
case, in an infinite product of infinitesimal steps (21). Each 
of the terms in the product is very like the identity but be­
cause of the argument concerning the matrix elements of the 
identity [cf. (2.10)] no notion of continuity of the paths 
follows from this observation. In fact the opposite is true. On 
the other hand, ifthe identities inserted between the terms of 
(2.1) were expressed in terms of o-orthogonal states, an in­
tuitive notion of continuity of the paths would follow. 

In the following, we shall include discontinuous paths 
(as suggested in Ref. 13), with the understanding that the 
state IYn) in (2.7) is not supposed to be IYn) = IYn-1 
+ O( 1/ N) ). At this time we will not formulate a formal 

path integral which would call for the time derivatives of 
discontinuous paths. A discussion of the subject may be 
found in Ref. 16. In the semiclassical evaluation of (2.7) we 
follow a method which closely resembles the polygonal for­
mulation of the path integral. 13 We left the large N limit as 
the last step to be taken. 

B. Classical evaluation of the integrals 

The evaluation of integrals, which depends on complex 
arguments (but real variables) by the Laplace or saddle 
point methods, requires that the integration path be ex­
tended to the complex plane l7

; this procedure was called 
complexification by Klauder.3 In the present situation such 
a deformation of the integration path has already been done 
in (2.6) and the extremal points are identified by maximiz­
ing F [ (2.8) ] in all the variables, leading to the following set 
of equations: 

JF = 0 = J{ln[ (xn IYn - 1 )/(xn IYn)] - it /NJY'(Yn _ 1 ,x~)} 
Jx~ Jx~ , 

n = 1, ... ,N, (2.1Ia) 

JF =O=Jln{(xoltft)/(xoIYo)} 
Jxt Jxt' 

i.e., tft = Yo, (2.11b) 
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aF = ° = a{ln [(Xn + llYn )/(xn IYn )] - it INYr(Yn ,X~ + 1 )} 

~n ~n ' 

n =O, ... ,N -1, (2.l1c) 

aF =0= aln[(¢IYN)/(xNIYN)], i.e., ¢* = xx.. 
aYN aYN 

These equations fix bothYn andx~ in (2.7) [or Zn andDn, see 
(2.6) ]. 

We recall here that the large parameter in which the 
asymptotic expansion is carried out is just 2J and that 

(xly) = (1 + yx*)2J. 

It is easy to realize that the classical equations (2.11) 
point out the continuous path as the most important one in 
the saddle point approximation. They also include the natu­
ral boundary conditions. 

In what follows we are going to consider that only isolat­
,ed classical paths contribute to the SP. If there is more than 
one path, a sum over classical paths will be understood. 

Developing the integrands in (2.7) up to second order 
around the classical path (y n ,x~) we obtain the following 
expression for the SP: 

(¢IU I¢) = lim exp(iS(¢,¢*,t,N») 
N-oo 

xJ IT {dSn Ad;: [ 2J + 1 ]} 
n=O (21Ti)(1+Ynx~)2 

(2.12) 

with x: = x: + S ~,Yn = Yn + ;n' We here define the clas­
sical (discrete) action, S ( ¢,¢ * ,t ,N), in terms of the classical 
path expressed by (2.11), as follows: 

S(¢,</J*,t,N) = f (- i)ln [ (X~IYn __ l ) ] 
n=O (xnIYn) 

="(- -*) t '1 (- 1--cfl Yn'Xn --I n XNYN)' 
N 

(2.13 ) 

The secondary action appearing throughout the tridiagonal 
matrix 82 and the vector S are defined, respectively, by 

An Cn 
Cn Bn Dn_ 1 

8 2 = Dn_ 1 An_ 1 Cn_ 1 

(2.14a) 

and 

(2.14b) 

The matrix elements An' Bn, Cn, and Dn are the various 
second derivatives of F evaluated at the extreme points, i.e., 

(2.ISa) 

1099 J. Math. Phys., Vol. 28, No.5, May 1987 

(2.l1d) 

Bn =-- , a
2FI 

ax~2 Y,x. 
(2.ISb) 

Cn = , a
2

F I 
aYn ax~ Y,x. 

(2.ISc) 

Dn = , a
2

E I 
aYn _ 1 ax~ Y,x. 

(2.ISd) 

and the 0 ( 1/2J) symbol means order of 1/ (2J) as J goes to 
00 • 

III. EVALUATION OF THE REDUCED PROPAGATOR 

The evaluation of the SP represented by (2.12) simply 
involves the Gaussian integrations; we obtain 

(¢IUI¢) = exp(iS(¢,</J*,t») 2~n;, {(C _)N det(82»)-1/2 

X nUo [(1 + Ynx~)-2(2J + 1)]}, (3.1) 

where 

S(¢,¢*,t) = lim S(¢,</J*,t,N) 
N-oo 

-it [.aln(xIY). ="( *)] d - / Y - eft y,X S 
o ay 

- iln(</Jly(t)) (3.2) 

and 

x~-+x*(s), Yn -+y(s) 

is the (continuous) classical path. [The dot in (3.2) means 
time derivative.] 

We are going to follow a number of steps in the evalua­
tion of the second-order term. First we factorize out of82 the 
Cn elements and a factor - i of each row, defining M:N as 

and taking into account that 
N 

det 8 2 = det M:N ( - )N II C~ 
n=O 

the reduced propagator, K, turns out to be 

K = lim ( - )N det(82 ) -1/2 
N-oo 

Hernan G. Solari 
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K = lim (det IWN ) -1/2 
N-oo 

N 

X IT [(1 + YnX~)-2C ,;-1(21 + 1)] . (3.5) 
n=O 

An explicit evaluation of Cn [(2.15c)] shows that 
N 

K= lim (detIWN )-1/2 IT (1+(21)-2). (3.6) 
N-oo n=O 

The term ( 1 + 1121) N has to be taken as unity as long as it is 
unity plus the error in the evaluation of the integrals by the 
Laplace or saddle point method-this procedure lets us 
write the expression 

K= lim det(IWN )-1/2. (3.7) 
N- 00 

The matrix IWN is a tridiagonal one and has the following 
explicit form: 

iAn/Cn i-

IWN = i iBn/Cn 

iDn_I/Cn_ 1 

The det(IWN ) can be evaluated by recursion, using the sub­
matrices IWn and IW~; the relations are 

Mn = det IWn, M~ = det IW~, (3.9a) 

Mn =iAn/CnM~ +Mn_ l , Mo= 1, (3.9b) 

M~ =iBn/CnMn_ 1 + (Dn_l)2/(CnCn_I)M~_i' 
Mh =0. (3.9c) 

In the limit N -+ 00 it is easy to realize from (2.15) and (2.11 ) 
that the different coefficients behave in the following way: 

~ = _ a~* I ~ + 0 ((~)2) , 
Cn oy x" N N 

(3.1Oa) 

~- aY I ~+ O((~)2) 
Cn - ax* y N N' 

(3.1Ob) 

D n
_

1 =1_aYl ~+O((~)2), 
Cn _ 1 oy x" N N 

(3.1Oc) 

~ = 1 + a~* I ~ + 0 ((~)2) . 
Cn ax* y N N 

(3.1Od) 

This behavior allows us to transform the recursion formulas 
(3.9) into a set of coupled first-order differential equations 

AI = - i a~* 1 M ', (3.11a) 
oy x" 

AI' = i aY I M + (aYl - a~* I ) M', (3.11b) 
ax* y oy x" ax* y 

with the boundary conditions 

M(O) = 1, 

M'(O) = O. 

(3.11c) 

( 3.11d) 

The final step in the evaluation of the RP is to integrate 
Eq. (3.11 ).It may be checked that the solution we are look­
ing for is the following one: 

1100 J. Math. Phys., Vol. 28, No.5, May 1987 

[ 
ax*(t) I oy(t) I ]112 M(t) = --
ax*(O) yeO) oy(O) x"(I) 

Xexp {J... (' (aYl _ a~* I ) dS}, (3.12a) 
2)0 oy x" ax* y 

M'(t) = iM(t) oy(t) I . 
ax*(t) yeO) 

( 3.12b) 

These expressions can in turn be put in terms of the second 
derivative of the action S [ (3.2) ], taking into account that 

i as(y(O),x*(t),t) = (21) x*(O) , (3.13a) 
oy 1 + ji(O)x*(O) 

i as(ji(O),x*(t),t) = (21) yet) 
ax*(t) 1 + y(t)x*(t) 

(3.13b) 

and 

as - JV(ji(t),x*(t»), (3.13c) -= 
at 

the determinant M [(3.12)] then equals 

M(t) = (1 + y(0)x*(0»)2(1 + y(t)X*(t»)2 

( 
a2s )-1 

X i ax(t)* oy(O) 

Xexp - ~-~ ds . {lit (at a':"* ) } 
2 0 oy ax* 

(3.14 ) 

The final expression for the matrix elements of the semi­
classical propagator (2.12) reads 

[ 
a2s ]112 (¢IUIt/!) = exp{iS(t/!,¢*,t)} i--

at/!a¢* 

X [(1 + t/!x*(O»)(l + ji(t)¢*)1(21)] 

Xexp -- ~-~ ds , { 
1 it (cTv a':"* ) } 
4 0 oy ax* 

(3.15 ) 

where y and x* are the classical (complex) coordinate and 
impulse, which start atji(O) = t/! and end at x* (t) = ¢* fol­
lowing the equation of motion (2.11) in the N -+ 00 limit 

.a 2ln(xIY).:.. aJV(y,x*) 
I Y - -----==--'---'-

ax* oy - ax* ' 
(3.16a) 

. a 2ln (xIY).:..* aJV(y,x*) 
-I X = . 

ax* oy oy 
(3.16b) 

The semiclassical expression (3.15) can be interpreted 
as the contribution of several factors: first of all, the classical 
contribution, i.e., the exponential of the action S; and sec­
ond, the square root of the term 

(21) -1(1 + t/!x*(0»)(1 + y(t)¢*) i a
2
S(t/!,¢*,t) 
at/!a¢* 

= 1 + y(t)¢* oy(t) I = 1 + #*(0) ax(O) I ' 
1 + #*(0) a¢* '" 1 + y(t)¢* at/! "'" 

(3.17 ) 

which accounts for the change in the density of the paths due 
both to the Hamiltonian flow and the curvature of the phase 
space. 

We call the last factor 

exp -- ~-~ ds { lit (at a':"* ) } 
4 0 oy ax* 

(3.18 ) 
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the "extra-phase" term because it provides an extra phase 
term in the simplest examples, although it is not necessarily 
of modulo one in general. We do not have at present a phys­
ical interpretation for this term, but we observe that it is like 
a signature of the coherent states, in the sense that the 
expression (3.15) looks like the expression of the semiclassi­
cal propagator in term of space coordinates 13 except for the 
presence of this term, (3.18), and the ratio of the metric at 
the initial and final points in (3.17). An equivalent term to 
(3.18) is also present in the P-propagator of Ref. 8. 

IV. EXAMPLE 

The simplest example we may look for is theJz Hamilto­
nian: 

H=Jz ' (4.1 ) 

The classical Hamiltonian (2.9) is now 

JY(y,x*) = (xIJzly)/(xly) = -J(l-yx*)/(l +yx*) 
(4.2) 

and the classical motion (3.16) is 

iy =y, yeO) = ¢, ( 4.3a) 

ijc* = -x*, x*(t) =¢*. (4.3b) 

These equations have straightforward integrals that al­
low the evaluation of the action in the form given by (3.2): 

S(¢,¢*,t) = Jt - i21ln( 1 + ¢¢*e- it). (4.4) 

Taking the second derivative of S (4.4) we obtain 

JZS i21e- it 
--= - (4.5) 
J¢J¢* (1 + ¢¢*e-it)z 

The evaluation of the SP (3.15) from (4.3)-(4.5) gives 

(¢IUI¢) = eiJt(l + ¢¢*e- it )2J. (4.6) 

This last formula [( 4.6)] is in fact exact for the matrix ele­
ments of the SP. The result (4.6) in this example is more 
accurate than the previous results where the same matrix 
elements were calculated in the form [Eqs. (3.7) and (3.49), 
Ref. 9] 

(¢IUI¢) = exp(iS(¢,¢*,t))(2i1rsin(t))-1Iz. (4.7) 

Before attempting a comparison between the present re­
sults and the corresponding ones of Refs. 8, 14, and 15, we 
have to go from SU (2) coherent states to Np4 coherent 
states (Gaussian wave packets in the space or momentum 
basis). The procedure consists of contracting the SU(2) al­
gebra into the Np4 algebra and simultaneously mapping the 
coherent states. The details of the method are explained in 
detail in Refs. 1 and 18. We recall here the main results. 

Under the limit J -> 00 the operators and coherent states 
associated with SU(2) go into operators and coherent states 
of Np4 in the form 

1101 

SU(2) ..... Np4, 

Jz + J -+N = a+ a (number operator), 

J+/(21)1/2-+a+ (creation operator), 

J _1(21) I/Z-+a (destruction operator), 

J. Math. Phys., Vol. 28, No.5, May 1987 

IJ, - J) -+ 10) (N 10) = 010» • 

(21) 1 IZy -+ Y (coherent states map). ( 4.8) 

The contraction can be seen in essence as the linear ex­
pansion of the phase space {y,x*} around the point {O,O}. 

With these identifications, we obtain, from (4.6), the 
matrix elements of F = exp ( - itN) expressed as 

(¢IP I¢) = lim (¢IU I¢)e - iJt = exp( ¢¢*e - it), (4.9) 
J_ 00 

where the limit will be understood as the contraction proce­
dure previously outlined. 

This latest expression (4.9) is exact and is the one ob­
tained in Ref. 8, while it appears in Refs. 14 and 15 multi­
plied by eit 

12. This factor is irrelevant in the present trivial 
example but it accounts for a missing term in the general 
semiclassical expression of Ref. 14. (In Ref. 15 the factor 
was compensated by an ad hoc identification of the classical 
Hamiltonian. ) 

The contraction procedure applied here is not limited to 
the Hamiltonian of the example and is valid in general. 

v. CONCLUSIONS 

We have developed the semiclassical propagator in 
terms of SU (2) coherent states in an almost closed form. 
The resulting formula is well behaved for short times and in 
addition it matches the exact result for Hamiltonians which 
are linear combinations of the SU (2) generators. It also 
agrees with the results obtained in Ref. 8 using Glauber's 
coherent states in a direct WKB approximation to the SP in 
the P-form. 

Looking for possible generalizations, we recall here that 
the present approach is fully based on the existence of an 
algebraic classical limit, 19 expressed by the large (21) ap­
proximation. While it does not appear that it could be diffi­
cult to generalize these results to other systems from a techni­
cal point of view, it is worth keeping in mind that the existence 
of an algebraic limit is a requisite from both physical and 
mathematical points of view. (It may express the existence of 
a large number of particles or quasi particles or to have other 
meaning depending upon the problem.) 

In order to make sense the evaluation of the integrals by 
the Laplace or saddle point methods it is required that the 
overlap between two unnormalized coherent states behaves 
as C't, where C is a complex number and.iL is the order pa­
rameter that is expected to be linked with physical situa­
tions. The nonexistence of a parameter in which the asymp­
totic expansion is carried out makes the application of the 
Laplace method uncertain and does not make room for nec­
essary operations like the one performed while going from 
(3.6) to (3.7). As a major mention of the importance of this 
fact we recall that the standard time-dependent Hartree­
Fock equations, which have been formally derived in the 
classicallimit,4.11 do not have an identified large parameter 
associated. 20 This fact raises important questions about the 
justification of these derivations. 

As a physical situation that may be treated by the pres­
ent approach we may mention the Coulomb excitation of a 
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nucleus as the result of scattering if the nucleus is described 
by an IBM model. 20 Another point of possible physical inter­
est is the requantification of the solutions applying Gutz­
willer's method22 adapted to CS's. In this context, the lowest 
lying state in this approximation is the one predicted by the 
random phase approximation as it may be easily realized 
shifting the real time to an imaginary one (i[J) and looking 
for the P' --+ 00 limit (i.e., the zero temperature limit). 

Our last point about the present approach is that it does 
respect dynamical symmetries if they can be expressed by the 
exponential of a linear combination of the SU(2) genera­
tors. 8 This point brings up several questions as to the correct 
way of taking mean values of operators in the semiclassical 
approximation because SU(2)-TDHF expressions are sym­
metry breaking (see, for example, Refs. 23 and 24). Further 
work on this subject is in progress. 
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