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Abstract

Systems with conserved currents driven by reservoirs at the boundaries offer an
opportunity for a general analytic study that is unparalleled in more general out-
of-equilibrium systems. The evolution of coarse-grained variables is governed
by stochastic hydrodynamic equations in the limit of small noise. As such it is
amenable to a treatment formally equal to the semiclassical limit of quantum
mechanics, which reduces the problem of finding the full distribution functions
to the solution of a set of Hamiltonian equations. It is in general not possible to
solve such equations explicitly, but for an interesting set of problems (the driven
symmetric exclusion process and the Kipnis–Marchioro–Presutti model) it can
be done by a sequence of remarkable changes of variables. We show that at the
bottom of this ‘miracle’ is the surprising fact that these models can be taken
through a non-local transformation into isolated systems satisfying detailed
balance, with probability distribution given by the Gibbs–Boltzmann measure.
This procedure can in fact also be used to obtain an elegant solution of the much
simpler problem of non-interacting particles diffusing in a one-dimensional
potential, again using a transformation that maps the driven problem into an
undriven one.

PACS numbers: 05.70.Ln, 02.70.−c, 05.20.−y, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Transport models are systems with conserved currents. In certain cases, they are such that
their evolution leads to equilibrium when they are isolated or in contact with a thermal bath.
The probability distribution is then of the Gibbs–Boltzmann form. Coupling the boundaries
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to several external sources may induce currents across the bulk, driving the system out of
equilibrium. In that case we do not have any general explicit formula for the distribution of
probability of configurations, even in the stationary regime reached after long times.

In order to make progress, one strategy has been to study systems that, due to their specific
symmetries, admit a complete solution. Thus, in recent years a number of remarkable analytic
results have been found for simple transport models (see [11], and references therein). Two
important examples are the simple symmetric exclusion process (SSEP)—a one-dimensional
system of particles, and the Kipnis–Marchioro–Presutti model (KMP) [27], a model of
energy transport. For the former, Derrida, Lebowitz and Speer [10] (DLS) obtained an
exact expression for the large-deviation function of density using a matrix method that had
been developed previously [9].

An alternative strategy is to restrict the calculation to the probability distributions
of coarse-grained variables. If one considers conserved quantities, then the macroscopic
fluctuations obey hydrodynamic equations with noise, the latter a manifestation of the
microscopic chaos or stochasticity. Clearly, the more coarse-grained the description,
the lower the level of noise, because fluctuations tend to average away. One is thus lead,
in the macroscopic limit, to deterministic equations perturbed by stochastic terms whose
variance is of the order of the inverse of coarse-graining box size N. As usual, one can recast
the problem in terms of the evolution in time of the probability distribution. This is given
by the Fokker–Planck equation, which is closely analogous to a Schrödinger equation in
imaginary time, with the small parameter N−1 playing the role of h̄. The ‘semiclassical’
treatment of these equations [16] follows the same lines as the derivation of classical
from quantum mechanics, or geometric optics from wave dynamics. The logarithm of the
transition probability obeys a Hamilton–Jacobi equation whose characteristics are trajectories
satisfying Hamilton’s equations. Macroscopic fluctuation theory developed by Bertini, De
Sole, Gabrielli, Jona-Lasinio and Landim (BDGJL) [1, 3] is the resulting classical Hamiltonian
field theory describing coarse-grained fluctuations.

Up to this point the formalism is completely general. However, an analytic expression
for the solutions of the classical equations is not possible for every model, so that even in the
coarse-grained limit the problem has no closed solution. Remarkably, for the hydrodynamic
limit of the driven SSEP [1], BDGJL were able to integrate explicitly the corresponding
Hamilton–Jacobi equations and recover the large-deviation function. They thus followed a
path that is in principle logically independent of the one used to obtain the exact microscopic
solution. Their derivation amounts to rewriting the problem in a carefully chosen set of
variables. An analogous strategy subsequently allowed Bertini, Gabrielli and Lebowitz [3] to
do the same for the hydrodynamic limit of KMP.

One is left wondering what is the underlying reason for the existence of changes of
variable that allows one to completely solve the Hamiltonian equations, and how general
their applicability is. In this paper, we show that in the cases where this has been possible,
there exists a non-local mapping taking the hydrodynamic equations of the model in contact
with reservoirs into those of an isolated, equilibrium system. Large deviations and optimal
trajectories are easily obtained in this representation using the detailed-balance property, and
can then be mapped back to the original setting in which detailed balance was broken by the
boundary conditions. In the transformed, isolated model, spontaneous rare fluctuations are
the time reverse of relaxations to the average profile, but this symmetry is lost (as it should
be) in the mapping back to the original model. This accounts in this case for the breaking
of the Onsager–Machlup symmetry [31] between birth and death of a fluctuation, which has
received considerable interest [6, 29] over the past few years. A short account of this work
has appeared elsewhere [38].
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The layout of this paper is as follows. In section 2, we review the expression of particle
exclusion problem in terms of spin operators. We construct a (coherent-state) path integral
for the transition probability and derive from it the hydrodynamic limit. This route to the
hydrodynamic limit is conceptually simple, and in addition has the advantage that the spin
notation makes the symmetries and integrability properties of the hydrodynamic limit explicit.
Perhaps more surprisingly, the coherent-state representation yields directly a set of (Doi–Peliti)
variables in terms of which the problem can be explicitly solved.

In section 3, we take the more direct route starting directly from fluctuating
hydrodynamics, and deriving from it the coarse-grained hydrodynamic equations. The reader
may skip section 2 and start here, the only loss is that the symmetries of the hydrodynamic
equations are not explicit and the boundary conditions less straightforward.

In section 4, we review how the original stochastic dynamics for a single density field
ρ(x) leads, in the low-noise limit, to a classical Hamiltonian field theory in a phase space
with two fields ρ(x) and ρ̂(x). The large-deviation function—the logarithm of the probability
of a configuration in the stationary regime—is given by the action of a ‘classical’ trajectory
[ρ(x, t), ρ̂(x, t)] reaching the configuration at very long times. The formalism is a variant
of the low-noise Freidlin–Wentzell formalism, itself an implementation of the usual WKB
semiclassical theory.

For an undriven system with detailed balance (section 5) the dynamics has a symmetry
between ‘downhill’ relaxations and ‘uphill’ excursions. Using this symmetry one obtains the
uphill trajectories as the time reversed of the downhill ones, and this allows us to compute
explicitly the large-deviation function. In the case of driven transport models, the boundary
terms violate detailed balance, and there is no obvious symmetry playing the role of time
reversal, no general method to find the uphill trajectories, and hence no explicit solution for
the large-deviation function.

In section 6, a paraphrase of the solution of BDGJL, we show that in the particular case
of the SSEP, there is a very special set of variables that allows one to solve completely the
driven problem. The main result of this paper, in section 7, is to show that at the bottom of
this possibility is the fact that there is a non-local mapping converting the driven chain into an
isolated, undriven one. In section 8, we briefly show that one can apply the same arguments
to solve the KMP model.

To conclude, in section 9 we discuss how the method can be applied to the much simpler
case of non-interacting particles diffusing in a generic potential, driven out-of-equilibrium by
boundary terms.

1.1. Mapping a driven into an undriven problem

Let us consider here the simplest example of a mapping from out-of-equilibrium to equilibrium.
This exercise will help to fix ideas, and to see how much one gets out of such an approach.

Consider a diffusion process given by a Fokker–Planck equation driven by boundary
conditions P(0) = po and P(L) = pL,

Ṗ = d

dx

(
T

d

dx
+

dV

dx

)
P. (1)

Because of the boundary conditions, the current J = (−T d
dx

− dV
dx

)
P is in general nonzero.

Now let us introduce eβV P = P1. Equation (1) maps to the backward Fokker–Planck
equation

Ṗ1 =
(

T
d

dx
− dV

dx

)
d

dx
P1. (2)

3



J. Phys. A: Math. Theor. 41 (2008) 505001 J Tailleur et al

Defining P ′ = d
dx

P1, we get

Ṗ ′ = d

dx

(
T

d

dx
− dV

dx

)
P ′. (3)

This takes the form of a probability P ′ describing an evolution in a potential −V . The
remarkable fact is that the original boundary condition on P expresses in the new variables
just a normalization for P ′,∫ L

0
P ′ dx = eβV (L)pL − eβV (0)po. (4)

Furthermore, it also implies that the current J ′ associated with P ′ vanishes at the ends
� = (0, L), since

Ṗ (�) = 0 → d

dx

(
T

d

dx
+

dV

dx

)
P(�) = 0 →

(
T

d

dx
− dV

dx

)
P ′(�) = −J ′(�) = 0. (5)

P ′ thus evolves with a Fokker–Planck equation with potential −V and no current at the
boundaries; the integral of P ′ is conserved and the process satisfies detailed balance. The
stationary measure is thus P ′

stat(x) ∝ eβV (x),

P ′
stat ∝ eβV → Pstat(x) = p0 e−β[V (x)−V (0)] + c

∫ x

0
e−β[V (x)−V (x ′)] dx ′, (6)

where the constant c is fixed by the right boundary condition P(L) = pL. The overall
distribution then reads

Pstat(x) = p0 e−β[V (x)−V (0)]
∫ L

x
eβV (x ′) dx ′ + pL e−β[V (x)−V (L)]

∫ x

0 eβV (x ′) dx ′∫ L

0 eβV (x ′) dx ′
. (7)

This result could have been obtained from the beginning by quadratures [25]. Actually, we
have obtained much more, since we have mapped the evolution operator into the one of an
equilibrium problem and we now understand the time evolution of the primed variable as the
relaxation of an isolated system: even without calculating anything, we have an intuition of
the qualitative behavior.

To see that the transformation is non-local, we may consider the expectation value of a
function O(x),

〈O〉(t) =
∫ L

0
dx O(x)P (x) =

∫ L

0
dx O(x) e−βV (x)P1(x)

=
∫ L

0
dx O ′(x)P ′(x) − O ′(L)pL eβV (L). (8)

All the time dependence is given by the expectation value of the new operator

O ′(x) ≡ −
∫ x

0
dy O(y) e−βV (y), (9)

which is a non-local function of the original one.
In section 9, we shall show that actually one can use the same non-local transformation

to map any single-particle diffusion model in a one-dimensional potential with sources at the
ends into the same equilibrium diffusion problem with no sources.

In the rest of the paper, we shall meet an analogous situation, for models with many
interacting particles. The main difference is that we shall be making a transformation at
the level of fields, not of their probability (P here is a probability of the zero-dimensional
‘field’ x).
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2. Path-integral representations of exclusion processes

In this section we introduce the exclusion processes. We write their evolution matrix in
terms of (quantum) spin operators. This makes explicit the fact that the problem has more
symmetries than mere particle conservation. Using standard spin coherent state techniques
we present a novel derivation of the path integral and then take the hydrodynamic limit. We
also obtain a natural set of variables F, F̂ (related to the stereographic representation of the
spins) which are often implicitly used in the literature. Finally, we write the hydrodynamic
equations in terms of the average particle density ρ, and its conjugate variable ρ̂.

The main result of this section is the construction of an hydrodynamic action which gives
the logarithm of the transition probability between two smooth density profiles, together with
the associated spatio-temporal boundary conditions. It is given by equations (46)–(49). The
reader familiar with these representations of exclusion processes may skip this section, and
find the more standard approach in the next one.

2.1. Partial exclusion process

Let us consider the symmetric partial exclusion process, a generalization of simple symmetric
exclusion processes introduced in [35]. It consists of a one-dimensional lattice gas, for which
all sites can be occupied by at most 2j particles. The probability of a jump between a site
and its neighbor is proportional to both the occupation number of the starting site and the
proportion of vacancies of the target one4,

W(. . . , nk, nk+1, . . . → . . . , nk + 1, nk+1 − 1, . . .) = p

2j
(2j − nk)nk+1

W(. . . , nk, nk+1, . . . → . . . , nk − 1, nk+1 + 1, . . .) = p

2j
nk(2j − nk+1).

(10)

We fix a timescale by choosing p = 1/2. The system can be put in contact at sites 1 and L
with reservoirs of densities ρ0 and ρ1. This is usually done by introducing four rates α, δ and
γ, β which correspond to deposition and evaporation of particles at site 1 and L, respectively.
We thus have the added rates of interchange with the reservoirs

W(n1, . . . → n1 + 1, . . .) = α(2j − n1) W(. . . , nL → . . . , nL + 1) = δ(2j − nL)

W(n1, . . . → n1 − 1, . . .) = γ n1 W(. . . , nL → . . . , nL − 1) = βnL.
(11)

Though the bulk diffusion is symmetric, and the system thus satisfies a local detail balance
relation, it can be driven out-of-equilibrium by the boundaries, if the densities imposed by the
reservoirs are different,

ρ0 = α

α + γ
�= ρ1 = δ

δ + β
. (12)

These models are amongst the simplest interacting many-particle systems driven out-of-
equilibrium by the boundary sources. A schematic representation of the partial exclusion
process is shown in figure 1. For j = 1/2, we recover the usual SSEP, which is known to be
related to the 1/2 representation of the SU(2) group, whereas the partial exclusion processes
correspond to the spin j representation [35]. For the sake of completeness, we give the details
of the relations with the spin operators in the following subsections and use the SU(2) coherent
states to construct a path-integral representation afterward.

4 The prefactor 1/(2j) ensures that the rate at which a fixed number of particles jump to an empty site does not
diverge with j .
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1 L

α

γ

β

δ

Figure 1. Schematic representation of a partial exclusion process for j = 3/2. There can be at
most three particles per site. Particles are injected at site 1 and L with rate α and δ and can jump
to the corresponding reservoirs with rate δ and β.

2.2. Master equation and spin representation

The evolution of the probability P(n) of observing a configuration defined by the vector of
occupation numbers n = (n1, . . . , nL) is given by the master equation

∂P (n)

∂t
=

∑
n′ �=n

W(n′ → n)P (n′) − W(n → n′)P (n), (13)

where W(n′ → n) is the transition rate from configuration n′ to configuration n. To keep
the notation as compact as possible, we introduce n+

k = nk + 1 and n−
k = nk − 1. From (10)

and (11), the master equation reads

∂P (n)

∂t
= 1

4j

L−1∑
k=1

[(2j − n−
k )n+

k+1P(. . . , n−
k , n+

k+1, . . .) + n+
k (2j − n−

k+1)P (. . . , n+
k , n

−
k+1, . . .)

− [(2j − nk)nk+1 + nk(2j − nk+1)]P(. . . , nk, nk+1, . . .)]

+ α(2j − n−
1 )P (n−

1 , . . .) + γ n+
1P(n+

1, . . .) + δ(2j − n−
L)P (. . . , n−

L)

+ βn+
LP (. . . , n+

L) − [γ n1 + α(2j − n1) + δ(2j − nL) + βnL]P(n1, . . . , nL).

(14)

The two first lines correspond to the dynamics in the bulk whereas the last ones stand for the
interaction with the reservoirs.

Let us now introduce a non-Hermitian representation of the SU(2) group to write the
master equation in an operatorial form. A configuration of the system can be written as the
tensor product of states of each sites i: |ψ〉 = ⊗i |ψi〉, where each state |ψi〉 is given by a
2j + 1 components vector, such that an occupation number equal to n is represented by

|n〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where the 1 is on the (n+1)th line, starting from the top. One then defines the (2j +1)×(2j +1)

matrices
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S+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

2j
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

S− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 2j

0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Sz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−j 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . 0
0 · · · · · · 0 j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

whose action on the state |ni〉 are given by

S+
i |ni〉 = (2j − ni)|ni + 1〉 S−

i |ni〉 = ni |ni − 1〉 Sz
i |ni〉 = (ni − j)|ni〉

Sx
i = 1

2

[
S+

i + S−
i

]
S

y

i = 1

2i

[
S+

i − S−
i

]
.

(17)

Direct computations show that they satisfy the commutation relations

[Sz, S±] = ±S± [S+, S−] = 2Sz [Si, Sj ] = iεijkSk ∀i, j, k ∈ {x, y, z}. (18)

They thus form a (2j + 1)-dimensional representation of the SU(2) group, that is a
representation of spin j , the usual magnetic number mi being related to the occupation
number ni through mi = ni − j . This is a non-unitary representation as S+ is not the adjoint
of S−5.

The evolution operator of the partial exclusion process can now be written using these spin
operators. To make this explicit, let us introduce the vector |ψ〉 = ∑

n P(n)|n〉 where the
sum runs over all the possible configurations n = (n1, . . . , nL). Using the master equation,
the time derivative of |ψ〉 is given in terms of the spin operators by

∂|ψ〉
∂t

= −Ĥ |ψ〉; Ĥ = Ĥ 1 + Ĥ B + ĤL;

Ĥ B = 1

4j

L−1∑
k=1

[−S−
k+1S

+
k +

(
j + Sz

k+1

)(
j − Sz

k

)]
+
[−S+

k+1S
−
k +

(
j − Sz

k+1

)(
j + Sz

k

)];
Ĥ 1 = −α

[
S+

1 − (
j − Sz

1

)] − γ
[
S−

1 − (
j + Sz

1

)];
ĤL = −δ

[
S+

L − (
j − Sz

L

)] − β
[
S−

L − (
j + Sz

L

)]
,

(19)

where Ĥ B corresponds to the dynamics in the bulk, whereas Ĥ 1 and ĤL result from the
coupling with the reservoirs on the sites 1 and L. Introducing spin vectors �Sk = (

Sx
k , S

y

k , Sz
k

)
,

Ĥ B can be written in a more compact way as

Ĥ B = − 1

2j

L−1∑
i=1

( �Sk · �Sk+1 − j 2). (20)

This is the usual connexion between exclusion processes and spin chains [12, 14, 18, 35].

5 Note that a similar path could be followed with the usual unitary representation of SU(2), see appendix C. It would
however lead to additional temporal boundary terms in the path integral, which makes the analysis of the action less
straightforward.
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2.3. Path integral representation in the hydrodynamic limit

The hydrodynamic limit of lattice-gas models is usually achieved through the definition of a
coarse-grained density field ρ, averaged over macroscopic boxes, the size of which is then sent
to infinity [37]. Here, each site of the lattice already contains up to 2j particles. We can thus
obtain a hydrodynamic limit by taking the limit of j, L going to infinity. In the macroscopic
limit, all the spin representations are equivalent, j and L enter through the combination jL.
This is just the manifestation of the fact [14] that the hydrodynamic variables represent the
total spin in a box, whatever the spin of the elementary sites.

2.3.1. Coherent states. To construct a path-integral representation of Ĥ , we shall use, for
each site k of the lattice, the following right- and left-spin coherent states [33]:

|zk〉 = 1

(1 + z̄kzk)j
ezkS

+
k |0k〉 = 1

(1 + z̄kzk)j

∑
0�nk�2j

(
2j

nk

)
z
nk

k |nk〉,

〈zk| = 1

(1 + z̄kzk)j
〈0k| ez̄kS

−
k = 1

(1 + z̄kzk)j

∑
0�nk�2j

〈nk|z̄nk

k .

(21)

For an extended system of k sites, one introduces the tensor product

|z〉 =
⊗

k

|zk〉. (22)

Due to the non-Hermiticity of the representation (16), |zk〉 is not the adjoint of 〈zk|. The
construction of the path integral relies on the following representation of the identity:∫

dμ(zk)|zk〉〈zk| = 1̂ with dμ(zk) = 2j + 1

π

d2zk

(1 + zkz̄k)2
. (23)

2.3.2. Action functional in the large spin limit. The functional approach for spin operators
has some subtleties [17] (see Solari [36], Kochetov [28], Vieira and Sacramento [39] for a
derivation of the action and of the associated time boundary conditions). For the sake of
clarity, most of the technical details are presented in appendix A and we simply outline below
the main steps in the path-integral construction.

Keeping in mind that we ultimately want to describe a continuum theory, we replace
number occupations by ‘discrete’ densities,

ρk = nk

2j
. (24)

We would like to compute P(ρf , T ;ρi, 0), the probability of observing the system in state(
ρ

f

1 , . . . , ρ
f

L

)
at time T, starting from

(
ρi

1, . . . , ρ
i
L

)
at time 0, that is the propagator between

two states 〈ρf | and |ρi〉 with fixed initial and final number of particles in each site. Using 2L

representations of the identity (23), we write

P(ρf , T ;ρi, 0) = 〈ρf | e−T Ĥ |ρi〉 =
∫ ∏

k

dμ
(
z
f

k

)
dμ

(
zi
k

)〈ρf |zf 〉〈zf | e−T Ĥ |zi〉〈zi|ρi〉.

(25)

Because we are interested in the hydrodynamic limit (large jL), we may first take a large j

limit and then send L to ∞. In this ‘large spin’ limit, (25) reads (see details in appendix A)

P(ρf , T ;ρi, 0) =
∫ ∏

k

dμ
(
z
f

k

)
dμ

(
zi
k

) ∫
Dz̄ Dz

∏
e=i,f

δ

(
z̄e
kz

e
k

1 + z̄e
kz

e
k

− ρe
k

)
exp[−S], (26)
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S = 2j
∑

k

[
zkz̄k

1 + zkz̄k

log z̄k − log(1 + zkz̄k)

]f

i

+ 2j

∫
dt

[∑
k

z̄kżk

1 + z̄kzk

− H(z̄, z)

]
. (27)

The role of the Hamiltonian H(z̄,z) is played by the quantity − 1
2j

〈z|Ĥ |z〉 which is computed
using [17]

〈zk|S+
k |zk〉 = 2j

z̄k

1 + zkz̄k

; 〈zk|S−
k |zk〉 = 2j

zk

1 + zkz̄k

; 〈zk|Sz
k |zk〉 = j

zkz̄k − 1

zkz̄k + 1
.

(28)

Explicitly, this yields

H(z̄, z) = HB(z̄, z) + H0(z̄, z) + HL(z̄, z)

HB(z̄, z) = −
L−1∑
k=1

zk

1 + z̄kzk

zk+1

1 + z̄k+1zk+1

(z̄k+1 − z̄k)
2

2

+

(
zk+1

1 + zk+1z̄k+1
− zk

1 + zkz̄k

)
z̄k+1 − z̄k

2

(29)

H0(z̄1, z1) = α
z̄1 − 1

1 + z1z̄1
+ γ

z1(1 − z̄1)

1 + z1z̄1
; HL(z̄L, zL) = δ

z̄L − 1

1 + zLz̄L

+ β
zL(1 − z̄L)

1 + zLz̄L

.

(30)

Initial and final conditions on the fields z, z̄ are imposed by the delta functions in (26) and read

z̄i
kz

i
k

1 + z̄i
kz

i
k

= ρi
k

z̄
f

k z
f

k

1 + z̄
f

k z
f

k

= ρ
f

k . (31)

2.3.3. Density field. To get more insight on the physics of this field theory, we introduce a
new parametrization

zk = ρk

1 − ρk

e−ρ̂k , z̄k = eρ̂k , (32)

so that

ρk = zkz̄k

1 + zkz̄k

= 1

2j
〈zk|j + Sz

k |zk〉 (33)

plays the role of a density. The transformation (32) is such that ρ̂ is canonically conjugated to
ρ. The time boundary conditions (31) on the field can be written, as expected, as

ρk(0) = ρi
k, ρk(T ) = ρ

f

k , (34)

whereas ρ̂k(0) and ρ̂k(T ) are unconstrained (for details, see appendix A). This highlights the
correspondence between the field ρ and the actual density of the system, as do (33). From
(28) and (32), one sees the correspondence between spins and densities,

〈zk|S+
k |zk〉 = 2j (1 − ρk) eρ̂k , 〈zk|S−

k |zk〉 = 2jρk e−ρ̂k , 〈zk|Sz
k |zk〉 = j (2ρk − 1).

(35)

This yields for the Hamiltonian

H(ρ̂, ρ) = 1

2

L−1∑
k=1

{(1 − ρk)ρk+1[eρ̂k−ρ̂k+1 − 1] + ρk(1 − ρk+1)[e
ρ̂k+1−ρ̂k − 1]}

+ {α(1 − ρ1)(e
ρ̂1 − 1) + γρ1(e

−ρ̂1 − 1)

+ δ(1 − ρL)(eρ̂L − 1) + βρL(e−ρ̂L − 1)}. (36)

9
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Making the change of variables in the action gives

P(nf , T ;ni, 0) =
∫

Dρ̂Dρ exp{−S[ρ̂,ρ]} (37)

S[ρ̂,ρ] = 2j

∫ T

0
dt

[∑
k

ρ̂kρ̇k − H(ρ̂, ρ)

]
, (38)

where one integrates over fields ρ satisfying the temporal boundary conditions (34).

2.3.4. Connection with Doi–Peliti variables. In the previous subsections, we took advantage
of the SU(2) coherent states to construct the path-integral representation of the evolution
operator. A more standard approach, based on Doi–Peliti formalism, could have been followed.
Starting from the density fields ρ, ρ̂, the usual bosonic coherent states can be obtained through
a Cole–Hopf transformation [4],

ρ = φφ∗; ρ̂ = log φ∗, (39)

which in the z, z̄ variables reads

φ∗ = z̄; φ = z

1 + zz̄
. (40)

From (29) one sees that the bulk Hamiltonian HB reads in these variables

HB(φ,φ∗) = −1

2

∑
k

φkφk+1(φ
∗
k+1 − φ∗

k )
2 + (φk+1 − φk)(φ

∗
k+1 − φ∗

k ). (41)

To understand the meaning of the φ, φ∗ variables, we recall the action of the spin operators
in the coherent-state representation,

〈zk|S+
k |ψ〉 =

[
2j z̄k − z̄2

k

∂

∂z̄k

]
〈zk|ψ〉

〈zk|S−
k |ψ〉 = ∂

∂z̄k

〈zk|ψ〉

〈zk|Sz
k |ψ〉 =

[
z̄k

∂

∂z̄k

− j

]
〈zk|ψ〉.

(42)

The matrix elements used to construct the path integral (28) are given in terms of φ, φ∗ by

〈zk|S+
k |zk〉 = 2jφ∗

k − (φ∗
k )

2(2jφk); 〈zk|S−
k |zk〉 = 2jφk;

〈zk|Sz
k |zk〉 = φ∗

k (2jφk) − j,
(43)

and one sees by comparing (42) and (43) that

φ∗ = z̄; φ = 1

2j

∂

∂z̄
. (44)

φ and φ∗ satisfy the usual bosonic commutation relation. They correspond to the usual Doi–
Peliti [13, 32] representation of bosons. We thus see that one can construct a path integral in
terms of the variables φ and φ∗ either by a Cole–Hopf transformation, or by directly expressing
the spin operators in the representation (42) and then constructing the path-integral treating z̄

and 1
2j

∂

∂z̄ as conjugate bosons6. In what follows, however, it will be useful not to lose sight of
the SU(2) symmetry.

6 One must however proceed with care as states with more than 2j particles are not physical and are difficult to
handle using bosonic coherent state. See for instance [40].
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2.3.5. Hydrodynamic limit. So far, the action is still a discrete sum over the whole lattice.
We shall now take the full hydrodynamic limit to describe the evolution of smooth profiles on
diffusive timescales. We thus introduce a space parametrization xk = k

L
and rescale the time

t → L2t . At the macroscopic level, the density profiles are smooth functions and discrete
gradients can be replaced by continuous ones,

ρk+1 − ρk → ∇ρ(xk)

L
, ρ̂k+1 − ρ̂k → ∇ρ̂(xk)

L
,

1

L

L−1∑
k=1

→
∫ 1

0
dx. (45)

For a more rigorous approach, see [2, 37]. The first order in a 1
L

expansion of the action then
reads

P(ρf , tf ;ρi, 0) =
∫

Dρ̂ Dρ e−2jLS[ρ,ρ̂] (46)

S[ρ, ρ̂] =
∫ tf

0

∫ 1

0
dx dt{ρ̂∂tρ − H[ρ, ρ̂]}; H[ρ, ρ̂] = 1

2
σ(∇ρ̂)2 − 1

2
∇ρ∇ρ̂, (47)

where σ = ρ(1 − ρ).
In appendix B we show that fields ρ and ρ̂ are constrained, in the hydrodynamic limit, to

satisfy the spatio-temporal boundary conditions

∀t, ρ(0, t) = ρ0 = α

α + γ
, ρ(1, t) = ρ1 = δ

δ + β
, ρ̂(0) = ρ̂(L) = 0 (48)

ρ(x, 0) = ρi(x), ρ(x, T ) = ρf (x). (49)

If α, β, γ, δ ∼ O(1) at the microscopic level, these conditions are strict, in the sense that
the fields do not fluctuate in the borders7, whereas α, β, γ, δ ∼ O(L−1) would also allow
fluctuations of ρ and ρ̂ at the boundaries.

Due to the correspondence (20), (35) with the spin operators, the whole process described
here simply amounts to taking the classical limit of a Heisenberg spin chain with some
particular boundary conditions. One can indeed check that the Hamiltonian (47) corresponds
to

HB = −1

2

∫
dx ∇S · ∇S, (50)

where the classical spins8 are defined as Sx,y,z = limj→∞(2j)−1〈z|Sx,y,z|z〉. The spatial
boundary conditions in terms of classical spins are then given by

Sz(0) = ρ0 − 1

2
Sz(1) = ρ1 − 1

2

Sx(0) = 1

2
Sx(1) = 1

2

Sy(0) = 1 − 2ρ0

2i
Sy(1) = 1 − 2ρ1

2i
S+(0) = 1 − ρ0 S+(1) = 1 − ρ1

S−(0) = ρ0 S−(1) = ρ1.

(51)

7 The probability to observe a smooth profile such that ρ(0) �= ρ0 scales as e−jL2
.

8 Note that with this convention the spin normalization is S · S = 1
4 instead of the usual S · S = 1.
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3. Fluctuating hydrodynamics

Let us briefly review in this section the construction of the action starting from fluctuating
hydrodynamics and using the Martin–Siggia–Rose [30], DeDominicis–Janssen [7, 22]
formalism.

In terms of the instantaneous current J (x) at site x, defined by the continuity equation,
the evolution of the density is given by the stochastic equation

ρ̇ = −∇J ; J = − 1
2∇ρ − √

ση; ρ(0) = ρ0; ρ(1) = ρ1 (52)

where η is a white noise of variance 1/(2jL) and σ = ρ(1 − ρ). This is the usual formula for
the fluctuating hydrodynamics of the exclusion process [37]. We write this as a sum over paths
and noise realizations with a delta function imposing the equations of motion and a Gaussian
weight for the noise,

P(ρf , tf ;ρi , 0) =
∫

DηDρ δ[ρ̇ + ∇J ] e−2jL
∫ tf

0

∫ 1
0 dx dt 1

2 η2(x,t). (53)

Exponentiating the functional delta function with the aid of a function ρ̂(x, t),

P(ρf , tf ;ρi , 0) =
∫

DηDρ Dρ̂ e−2jL{∫ tf

0

∫ 1
0 dx dt ρ̂(ρ̇+∇J )+ 1

2 η2(x,t)}, (54)

where ρ̂ is integrated along the imaginary axis. Integrating by parts, we obtain

P(ρf , tf ;ρi , 0) =
∫

DηDρDρ̂ e−2jL{∫ tf

0

∫ 1
0 dx dt (ρ̂ρ̇+∇ρ̂( 1

2 ∇ρ+
√

ση))+ 1
2 η2(x,t)}. (55)

We can now integrate away the noise

P(ρf , tf ;ρi , 0) =
∫

DρDρ̂ e−2jL{∫ tf

0

∫ 1
0 dx dt (ρ̂ρ̇+ 1

2 ∇ρ̂∇ρ− 1
2 (∇ρ̂)2σ }, (56)

which reads

P(ρf , tf ;ρi , 0) =
∫

DρDρ̂ e−2jL{∫ tf

0

∫ 1
0 dx dt (ρ̂ρ̇−H)} (57)

to obtain

H = 1
2 [σ(∇ρ̂)2 − ∇ρ̂∇ρ], (58)

which is equivalent to (46). The paths are constrained to be ρi(x) and ρf (x) at initial and final
times, respectively. The values of ρ̂ are unconstrained, which is in agreement with the fact
that this is a Hamiltonian problem with two sets of boundary conditions. The construction
above can thus be seen as a formal Hubbard–Stratonovich transformation to introduce the ρ̂

field.
Let us finally note that from equation (52) and (56), one sees that

P(ρf , tf ;ρi , 0) =
∫

DρDρ̂ e−2jL{∫ tf

0

∫ 1
0 dx dt (J∇ρ̂+ 1

2 ∇ρ̂∇ρ− 1
2 (∇ρ̂)2σ }. (59)

Formally integrating over ∇ρ̂ gives back the usual fluctuating hydrodynamics [1, 24, 34]

P(ρf , tf ;ρi , 0) =
∫

Dρ exp

[
−2jL

∫ tf

0

∫ 1

0
dx dt

(J + ∇ρ/2)2

2σ

]
. (60)

In all this we have been very sloppy about the spatial conditions ρ̂ should satisfy; see
appendix B.2 for details.
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4. Large deviations in the coarse-grained limit

In this section, we review the steps leading from the fluctuating theory to a non-fluctuating
Hamiltonian dynamics, valid in the low-noise limit—itself arising in the large coarse-graining
limit.

4.1. Classical solutions

In order to calculate a probability we have to evaluate

P(ρf , T ) =
∫

dρiP(ρf , T ;ρi, 0)P (ρi, 0), (61)

which is true for any time T. Using the path-integral expressions of the previous sections
(cf (26)), one then gets the sum of the exponential of the action

P(ρf , T ) =
∫

dρi

∫
D[ρ, ρ̂] e−2jLS[ρ,ρ̂]P(ρi, 0) (62)

over trajectories with initial and final profiles ρi and ρf . To leading order in jL, we have that
P(ρf , T ;ρi, 0) is dominated by the trajectories extremalizing the action (46)

S =
∫

dx dt[ρ̂ρ̇ − H], (63)

i.e. satisfying Hamilton’s equations

ρ̇(x, t) = δ

δρ̂(x, t)

∫
dx ′ dt ′ H[ρ(x ′, t ′), ρ̂(x ′, t ′)] (64)

˙̂ρ(x, t) = − δ

δρ(x, t)

∫
dx ′ dt ′ H[ρ(x ′, t ′), ρ̂(x ′, t ′)]. (65)

These are completely determined (at least up to a discrete set of trajectories) by the initial
and final values of ρ(x). What we have outlined is the exact analogue of the way classical
trajectories dominate the path integral in the semi-classical limit h̄ → 0 in quantum mechanics.
Similar approaches have been used many times, as for instance to analyze the noisy Burgers
equation [15] or in reaction diffusion systems [26].

In the case of the SSEP, Hamilton’s equations read

ρ̇(x) = 1
2�ρ − ∇[σ∇ρ̂] (66)

˙̂ρ(x) = (
ρ − 1

2

)
(∇ρ̂)2 − 1

2�ρ̂. (67)

Equation (66) is a conservation equation and thus defines a current through ρ̇ = −∇Jρ , where

Jρ[ρ, ρ̂] = − 1
2∇ρ + σ∇ρ̂. (68)

To determine the probability of a transition between a profile ρi and another profile ρf in a
time T, one thus has to find the trajectory (ρ(x, t), ρ̂(x, t)) that solves (66) and satisfies the
appropriate boundary conditions. The action of this trajectory then yields the logarithm of the
probability of the transition.

We are thus led to solving a classical Hamiltonian field problem, where initial and final
positions are fixed and momenta unknown. This is in general very difficult—even numerically,
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where one has to solve a ‘shooting’ problem to reach the desired final configuration at the
right time9.

For completeness, let us write the equations of motion in terms of classical spins satisfying
the Poisson bracket algebra10,

{Sz(x), S±(y)} = ±S±(x)δ(x − y); {S+(x), S−(y)} = 2Szδ(x − y), (69)

which corresponds to the quantum commutations (18) and yields the equation of motion in
terms of spin variables through

Ṡ = {S,H } = iΔS ∧ S. (70)

4.2. Downhill trajectories

For classical equations deriving from a stochastic problem, there always exists a class of
trajectories which are easy to find: those that are overwhelmingly the most likely in the
low-noise limit. Here and in what follows, we shall call these ‘downhill’ trajectories. If one
remembers that the dynamical action corresponds to the stochastic equation (52), one obtains
these solutions by directly putting η = 0. They correspond to the following solutions of the
system (66):

ρ̇(x) = 1
2�ρ ρ̂(x, t) = 0. (71)

The solution corresponds to diffusive relaxation toward the linear stationary profile ρ̄(x) =
(1 − x)ρ0 + xρ1. The corresponding action is zero, in agreement with the fact that the
corresponding probability is 1, which simply means that an initial configuration ρ(x) almost
surely relaxes toward the stationary state. The stationary profile ρ̂ = 0, ρ = ρ̄ is a hyperbolic
fixed point of the dynamics in the full phase space, since it is missed as soon as ρ̂ �= 0 in the
initial condition.

4.3. Large deviation function from extremal trajectories

As shown by equation (61), the probability P(ρ∗) ∼ e−NF(ρ∗) to observe a profile ρ∗ is the
average probability of going from an initial profile ρi to the profile ρ∗. The logarithm of
this transition probability is given in the large-N limit by the ‘classical’ action of a trajectory
starting in ρi and arriving in a time T in the configuration ρf = ρ∗, and satisfying (66).

How can a trajectory just reach a generic configuration ρ∗ at a very large time T → ∞?
The only possibility is that it takes a hyperbolic trajectory that falls in a finite time in the vicinity
of the stationary profile, stays there almost all the time, and then goes to the profile ρ∗ in a finite
time. This is illustrated in figure 2: trajectories that matter at long times are thus near misses
of the stationary points. The first part of such a trajectory (essentially the diffusive relaxation
toward the stationary profile) has almost zero action. Thus P(ρi, 0 → ρ∗, T ) = P(ρ̄, ρ∗, T ′)
where T ′ is a time which differs from T by a finite contribution, not relevant in the T → ∞
limit: the transition probability P(ρi, 0 → ρ∗, T ) is independent of ρi in the long-time limit
and equation (61) becomes

P(ρ∗, T → ∞) =
∫

dρiP(ρi, 0)P (ρ̄, ρ∗, T ′ → ∞) = P(ρ̄, ρ∗, T ′ → ∞). (72)

9 Note that the same kind of formalism can be used to compute moment generating functions rather than large-
deviation functions. In certain cases, the shooting problem thus obtained is easier to solve as it implies nicer boundary
conditions. See [26] for an example.
10 This can be checked using expressions (35) in the continuum space limit and the Poisson bracket {A(x), B(y)} =∫

dz{ δA(x)
δρ(z)

δB(y)
δρ̂(z)

− δB(y)
δρ(z)

δA(x)
δρ̂(z)

}.
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downhill (ρ=0)^(ρ=0)^

uphill

uphill

downhill

initial

final

stationary

Figure 2. ‘Downhill’ (noiseless) trajectories have ρ̂(t) = 0. Trajectories reaching an arbitrary
point at long times are ‘near misses’ from the stationary point, and can be decomposed in the
long-time limit in a ‘downhill’, followed by an ‘uphill’ trajectory flowing into, and out of the
stationary point, respectively.

To determine the probability to observe a given profile ρ∗, one thus has to find the extremal
trajectory which starts at t = −∞ in the stationary profile and arrives at t = 0 in the desired
profile ρ∗. Its action then yields the large-deviation function F[ρ∗],

P(ρ∗) = P(ρ̄, t = −∞, ρ∗, t = 0). (73)

We have assumed here that there are no metastable states. The cases in which many such
states exist, one has to consider trajectories falling into each one of them, and also making
jumps between them before reaching the final point.

5. Detailed-balance relation, relaxation–excursion symmetry

Finding the trajectory that reaches a given density profile starting from the vicinity of the
stationary one is in general a difficult task. There is however a class of systems for which
this calculation greatly simplifies: those for which there is a detailed-balance symmetry—
playing the role of a time reversal—that relates the paths followed by the system in a rare
(noise-induced) excursion with the relaxation back to equilibrium. This Onsager–Machlup
symmetry allows one to compute the rare excursions (in general difficult) from the sole
knowledge of the relaxations (easy, as explained in the previous section). This is for instance
the case for a SSEP in contact with reservoirs of equal densities ρ0 = ρ1, as we shall see
below.

At the level of operators, detailed balance simply says that the evolution operator and its
adjoint are related by a similarity transformation. Here, we are only interested in symmetries
at the level of the action, which can be read as a canonical transformation followed by time
reversal, leaving the action invariant up to boundary terms (see appendix D).

To make this explicit in our case, we write the Hamiltonian density as

H[ρ, ρ̂] = 1

2
∇ρ̂σ∇

(
ρ̂ − log

ρ

1 − ρ

)
= 1

2
∇ρ̂σ∇

(
ρ̂ − δVρ

δρ

)
, (74)

where Vρ is the equilibrium entropy

Vρ =
∫

dx[ρ log ρ + (1 − ρ) log(1 − ρ)]. (75)
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The transformation we are looking for is given in two steps [23]: (i) the canonical
transformation

ρ̂ → ρ̂ +
δVρ

δρ
; ρ → ρ (76)

followed by (ii) a time reversal

(ρ̂, ρ, t) → (−ρ̂, ρ, T − t). (77)

In terms of the current (68), this reads

[ρ(x, t), J (x, t)] → [ρ(x,−t),−J (x,−t)] (78)

the meaning of which is transparent. The new, ‘time-reversed’ variables are

ρTR(x, t) = ρ(x,−t); ρ̂TR(x, t) = −ρ̂(x,−t) +
δVρ

δρ
(x,−t). (79)

It is easy to check that (76), (77) map the action into

S[ρ̂, ρ] → [Vρ]T0 +
∫

dt dx{ρ̂TRρ̇TR − H[ρ̂TR, ρTR]}. (80)

The space and time boundary conditions are transformed from (48) and (49) to

ρTR(x, 0) = ρ∗(x) ρTR(x, T ) = ρ̄(x) (81)

ρTR(0, t) = ρ0 ρTR(1, t) = ρ1

ρ̂TR(0, t) = log
ρ0

1 − ρ0
ρ̂TR(1, t) = log

ρ1

1 − ρ1
.

(82)

The problem is thus recast into finding a trajectory starting in ρ∗ and relaxing toward the
stationary profile. When the system is at equilibrium, in contact with two reservoirs imposing
the same density on the two boundaries (ρ0 = ρ1), the zero-noise diffusive trajectory

ρ̂TR(x, t) = Cst = log
ρ0

1 − ρ0
ρ̇TR = 1

2
�ρTR (83)

is a legitimate solution of the classical equations which satisfies the new boundary conditions
in space and time. The action of such a trajectory is∫

dt dx{ρ̂TRρ̇TR − H} = log
ρ0

1 − ρ0

∫
dx(ρ0 − ρ∗). (84)

Together with the boundary terms of (80), one gets for the large-deviation function, in terms
of the original variables,

S[ρ∗] =
∫

dx

[
(1 − ρ) log

1 − ρ

1 − ρ0
+ ρ log

ρ

ρ0

]
, (85)

which is the usual equilibrium entropy [2]. The computation of the extremal trajectory going
from ρ̄ to ρ∗ has thus been made possible by the time-reversal connection between excursion
and relaxation induced by the detailed-balance relation. Thanks to the mapping (76) and (77),
one just has to find a trajectory going from ρ∗ to ρ̄—a relaxation—and from it obtain an
excursion.
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5.1. System driven out-of-equilibrium—violation of detailed balance and loss of
Onsager–Machlup symmetry

Let us now consider why this ‘trick’ does not work when the system is driven out-of-equilibrium
by the boundaries. One can still make the transformation (76) and (77), as the bulk dynamics
satisfies detailed balance. However, if ρ1 �= ρ0, (83) is not acceptable as ρ̂ = Cst does not
satisfy the spatial boundary conditions. We conclude that the most probable excursion from
ρ̄ to ρ∗ is consequently not the time reversed of a diffusive relaxation: the Onsager–Machlup
symmetry is broken by the boundaries.

6. Driven exclusion process: remarkable changes of variables

As we have seen, in out-of-equilibrium systems detailed balance is violated—for example by
the boundary conditions—and there is no simple relation between excursions and relaxations.
One thus cannot, in general, compute easily the rare excursions away from the stationary state,
and from it the large-deviation function. Even if we have been able to reduce the computation
of large-deviation functions to the solution of a problem of classical dynamics, we are not
able to solve for its trajectories in a closed way. It may then come as a surprise that BDGJL
[1, 2] were able to uncover what amounts to a series of changes of variables, which end
up by mapping the driven problem into one where there is a simple time-reversal symmetry
between excursions and relaxations. This allowed them to compute the excursions in terms
of the relaxations in the new variables, and then work their way back to the original variables
in which the symmetry does not hold.

In this section we shall paraphrase their derivation, to emphasize how surprising it is. In
the following section, we shall argue that at the bottom of this is the (also very surprising)
fact that the SSEP driven out-of-equilibrium by the boundaries can be mapped back through
a change of variables, in the hydrodynamic limit, to an equilibrium SSEP.

Let us first note that the choice of axes we have used to write the hydrodynamic limit
Hamiltonian (50) in terms of spin variables HB = − 1

2

∫
dx∇S · ∇S is arbitrary. Only the

boundary conditions (51) break the rotation invariance.
Let us make a transformation

S ′
x = Sz S ′

z = −Sx S ′
y = −Sy; (86)

a rotation of angle π/2 around the y-axis followed by a reflexion with respect to the x ′–z′

plane. In terms of the coherent-state coordinates—the stereographic representation of classical
spins—this transformation is given by the simple homography

z̄′ = z − 1

z + 1
z′ = z̄ − 1

z̄ + 1
. (87)

In this set of variables, the action reads after a lengthy but straightforward computation

S =
∫

dx

[
ρ log

ρ
1+z′

2

+ (1 − ρ) log
(1 − ρ)

1−z′
2

]
+ S[z′, z̄′]. (88)

As this change of variable corresponds to a symmetry of the Hamiltonian, the action S[z′, z̄′]
is the same as the original one where z and z̄ have been replaced by z′ and z̄′. It is thus obtained
by taking the continuum limit of (26),

S[z′, z̄′] =
∫

dx dt

{
˙̄z
′
z′

1 + z′z̄′ +
1

2
(∇ z̄′)2

(
z′

1 + z′z̄′

)2

+
1

2
∇ z̄∇

(
z′

1 + z′z̄′

)}
. (89)
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Of course, we could have arrived at the same point by defining at the outset the coherent states
in terms of the rotated operators.

As previously, we can make a Cole–Hopf transformation to introduce Doi–Peliti-like
variables,

φ′ = z′

1 + z′z̄′ φ∗′ = z̄′. (90)

Surprisingly, as we shall show below, this change of variables greatly simplifies the problem.
To stay as close as possible to the solution introduced by BDGJL, we rather introduce a slightly
different set of variables

F = 1 + φ∗′

2
, F̂ = 2φ′ (91)

with which the same simplification occurs. In the F, F̂ variables, the action is given by

S =
∫

dx

[
ρ log

ρ

F
+ (1 − ρ) log

(1 − ρ)

1 − F

]
+ SF [F, F̂ ] (92)

SF [F, F̂ ] =
∫

dt dx

[
F̂ Ḟ +

1

2
F̂ 2∇F 2 +

1

2
∇F∇F̂

]
. (93)

The overall change of variables from ρ, ρ̂ to F, F̂ reads

F = ρ

ρ + (1 − ρ) eρ̂
; F̂ = (1 − ρ)(eρ̂ − 1) − ρ(e−ρ̂ − 1). (94)

In terms of these, the spatial boundary conditions read

F(0) = ρ0 F(1) = ρ1 F̂ (0) = 0 F̂ (1) = 0 (95)

while the equations of motion become

Ḟ = 1
2�F − F̂ (∇F)2; ˙̂F = − 1

2�F̂ − ∇[F̂
2∇F ]. (96)

In particular, by analogy with the ‘downhill’ zero-noise solutions of the previous sections,
we can try F̂ (t) = 0, which corresponds to

Ḟ = 1
2�F. (97)

In the original variables, this solution reads

ρ̂ = 0; ρ̇ = 1
2�ρ, (98)

which is nothing but the diffusive relaxation to the linearly stationary profile ρ̄. Diffusion in
F, F̂ variables thus corresponds to relaxation in ρ, ρ̂.

6.1. A second detailed-balance-like symmetry

Remarkably, the action (92) has a detailed-balance-like symmetry, which is unrelated to the
original physical one. To see this, integrate the last term of SF by parts11, so that the action
becomes

SF [F, F̂ ] =
∫

dt dx

{
F̂ Ḟ +

1

2
F̂∇F 2

[
F̂ − �F

∇F 2

]}
, (99)

11 None of the spatial integrations by parts done in this paper produce any spatial boundary terms thanks to the
boundary conditions ρ̂ = F̂ = 0.
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which can also be written as

SF [F, F̂ ] =
∫

dt dx

[
F̂ Ḟ +

1

2
F̂∇F 2

[
F̂ − δVF

δF

]}
, (100)

where we have introduced the potential

VF =
∫

dx log ∇F. (101)

The composition of the transformations

F̂ → F̂ +
δVF

δF
= F̂ +

�F

∇F 2
; (F̂ , t) → (−F̂ , T − t) (102)

is thus a symmetry of the action. Note the analogy with (76), (77). The new variables read

FTR(x, t) = F(x,−t); F̂ TR(x, t) = −F̂ (x,−t) +
�F

∇F 2
(x,−t). (103)

Once again, rather than looking for excursions in the variables F, F̂ , the problem is reduced
to searching relaxations in the variable FTR, F̂ TR.

Because the system is driven out-of-equilibrium, it would be natural to expect, as in
section 5, that this symmetry is broken. Remarkably, we shall show below that this symmetry
is not violated by the spatial boundary conditions, in spite of the system being driven.
Transformation (102) indeed maps the spatial boundary condition (95) into

FTR(0) = ρ0; FTR(1) = ρ1; F̂ TR(0) − �FTR

(∇FTR)2

∣∣∣∣
x=0

= F̂ TR(1) − �FTR

(∇FTR)2

∣∣∣∣
x=1

= 0.

(104)

Contrary to what happened in section 5, the ‘zero-noise solution’ Ḟ TR = �FTR/2; F̂ TR =
0 this time satisfies (104). From (95), one indeed sees that

Ḟ |x=0,1 = F̂ |x=0,1 = 0. (105)

Together with (96), this shows that any extremal trajectory satisfies

�F |x=0,1 = 2[Ḟ + F̂ (∇F)2]|x=0,1 = 0. (106)

Furthermore, F̂ TR = 0 reads in the initial F, F̂ variables

F̂ − �F

(∇F)2
= 0, (107)

which is indeed compatible with (105) and (106). Zero-noise diffusive relaxations in the
variables FTR, F̂ TR thus correspond to the excursion in the initial variables. The action of such
a solution is

SF = [VF ]T0 =
[∫

dx log ∇F

]T

0

(108)

and the corresponding large-deviation function is given, in the original variables, by

S[ρ∗] =
∫

dx

[
ρ log

ρ

F
+ (1 − ρ) log

(1 − ρ)

1 − F
+ log ∇F

]T

0

. (109)

F is determined from ρ by solving the equation F̂ TR = 0 which reads

ρ = F + F(1 − F)
�F

∇F 2
. (110)
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Injecting the temporal boundary conditions in (109), one gets

S[ρ∗] =
∫

dx

[
ρ∗ log

ρ∗

F
+ (1 − ρ∗) log

(1 − ρ∗)
1 − F

+ log
∇F

ρ1 − ρ0

]
. (111)

This is indeed the solution of the problem, initially found by Derrida, Lebowitz and Speer
[10] and later recovered by BDGJL [1]. Let us stress however that the existence of a potential
functional VF is a mystery, as nothing guarantees that such a function exists out-of-equilibrium.
Yet another mystery is the fact that the symmetry related to VF is unbroken by the reservoirs.
We shall show below that these surprises are deeply related to the fact that this model can be
brought back to equilibrium.

7. Non-local mapping to equilibrium

In the previous section we have shown that if one rotates the axes, and expresses everything in
terms of variables F, F̂ associated with the spin operators in the coherent-state representation
(or, in the classical limit, with the stereographic projection of the spins), a new, surprising
detailed-balance symmetry becomes explicit. It is unrelated to the original one and is not
broken by the source terms at the boundaries. In this section, we show that this sequence of
miracles can be condensed into only one: at the hydrodynamic level the chain driven out of
equilibrium can be mapped onto a free equilibrium chain with no sources at the boundaries.
The transformation that does this is, however, non-local in space, and is the analogue of the
one we discussed in the introduction for non-interacting particles in a potential.

Starting from the action SF (99), one introduces the non-local variables

F̂ ′ = ∇F ; ∇F ′ = F̂ − �F

(∇F)2
, (112)

where the second equation can also be written as

F̂ = ∇
[
F ′ − 1

F̂ ′

]
= ∇F ′ +

∇F̂ ′

F̂ ′2
. (113)

This change of variables takes the action into itself, apart from temporal boundary terms,

S =
∫

dx

[
ρ log

ρ

F
+ (1 − ρ) log

1 − ρ

1 − F
+ log F̂ ′ − F ′F̂ ′

]T

0

+
∫

dx dt

{
F̂ ′Ḟ ′ +

1

2
F̂ ′2(∇F ′)2 +

1

2
∇F ′∇F̂ ′

}
. (114)

Equation (112) thus describes a non-local symmetry of the Hamiltonian. This suggests that
we continue the succession of changes of variables done up to here

(ρ, ρ̂) → (F, F̂ ) → (F ′, F̂ ′) (115)

by a further transformation (F ′, F̂ ′) → (ρ ′, ρ̂ ′), where ρ ′ and ρ̂ ′ are related to F ′, F̂ ′ in the
same way as are the unprimed counterparts of (94)

ρ ′ = F ′ + F ′(1 − F ′)F̂ ′; ρ̂ ′ = log

(
1 +

F̂ ′

1 − F ′F̂ ′

)
. (116)

One thus ends up with

S =
∫

dx

[
ρ log

ρ

F
+ (1 − ρ) log

1 − ρ

1 − F
+ log ∇F − ρ ′ − F ′

1 − F ′

− ρ ′ log
ρ ′

F ′ − (1 − ρ ′) log
1 − ρ ′

1 − F ′

]T

0

+ S ′, (117)
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where S ′ = ∫
dt dx{ρ̂ ′ρ̇ ′ −H′} and H′ is formally equivalent to the initial Hamiltonian density

H but for the primed variables,

S ′ =
∫

dt dx

{
ρ̂ ′ρ̇ ′ − 1

2
σρ ′∇ρ̂ ′2 +

1

2
∇ρ ′∇ρ̂ ′

}
. (118)

The overall change of variables, which reads

∇
[

1

1 − eρ̂ ′

]
= (1 − ρ)(eρ̂ − 1) − ρ(e−ρ̂ − 1) (119)

∇
[

ρ

ρ + (1 − ρ) eρ̂

]
= (1 − ρ ′)(eρ̂ ′ − 1) − ρ ′(e−ρ̂ ′ − 1) (120)

thus maps the action of the hydrodynamic limit of the SSEP into another SSEP.
What we shall now prove is that this new process corresponds to an isolated chain, and

consequently possesses a detailed-balance relation, induced by its equilibrium entropy, which
is not violated by the boundaries. Last, we shall show that this detailed-balance relation,
mapped back to the original ρ, ρ̂ variables is the non-local symmetry (102).

7.1. Boundary conditions—currents

From (112) one sees that the spatial boundary conditions (95) read in the new variables

∇
[
F ′ − 1

F̂ ′

]
x=0,L

= 0;
∫ L

0
F̂ ′ = ρ1 − ρ0. (121)

In the language of spin variables, the hydrodynamic Hamiltonian (50) presents three conserved
quantities in the bulk—the components of the spins—which can be written as

Q1 = 2ρ ′ − 1 = 2S ′
z; Q2 = F̂ ′ = 2(S ′

z + iS ′
y); Q3 = F̂ ′(1 − 2F ′) = 2S ′

x − 1.

(122)

Their continuity equations read

Q̇i = −∇Ji, (123)

where the currents Ji are given by

JQ1 = −∇ρ ′ + 2σρ ′∇ρ̂ ′; JQ2 = 1

2
∇F̂ ′ + F̂

′2∇F ′

JQ3 = (1 − 2F ′)
∇F̂ ′

2
+ [F̂ ′ + F̂ ′2(1 − 2F ′)]∇F ′.

(124)

Let us show that these currents vanish at the boundaries for all extremal trajectories.
Such trajectories satisfy the equation of evolution (96) and the boundary condition (95). This
implies that �F vanishes at the boundary (lhs of (96) together with F̂ = 0). From definition
(112) one then gets that ∇F̂ ′ also vanishes, which implies, together with the lhs of (121), that
∇F ′ also vanishes. Last, from the mapping F ′, F̂ ′ → ρ ′, ρ̂ ′ one sees that if both ∇F ′ and
∇F̂ ′ vanish, so do ∇ρ ′ and ∇ρ̂ ′. All in all, one gets that at the boundaries

∇F ′ = ∇F̂ ′ = ∇ρ ′ = ∇ρ̂ ′ = 0. (125)

We then see from (124) that the three currents JQi
vanish at the boundary: the transformed

model in the primed variables is an isolated chain. This condition alone, supplemented with
the rhs of (121), encompasses all the original boundary conditions.
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7.2. Profiles and trajectories

When the dust sets, we see that all that has been used is the fact that the original variables
(ρ, ρ̂) or, more physically (ρ, J ), have been mapped by a non-local transformation into new
densities and currents

(ρ(x, t), J (x, t)) → (ρ ′(x, t), J ′(x, t)). (126)

The original detailed-balance symmetry (78) that maps a trajectory into its time reversed

(ρ(x, t), J (x, t)) → (ρ(x,−t),−J (x,−t)) (127)

is broken by the source terms driving the system out-of-equilibrium. Miraculously, the
transformed chain is isolated, so that time-reversed trajectories are related through

(ρ ′(x, t), J ′(x, t)) → (ρ ′(x,−t),−J ′(x,−t)). (128)

Coming back to the original variables via (126) mixes the density ρ ′ (symmetric in time)
with the current J ′ (antisymmetric in time), thus making the pair of transformed trajectories
expressed in ρ and J neither symmetric nor antisymmetric.

Let us now describe ‘uphill’ and ‘downhill’ trajectories. The stationary profile ρ̄ maps to
a flat profile ρ̄ ′ = Cst . The precise value of Cst is arbitrary, due to dilation invariance of the
model, contrary to F̂ ′ which is constrained by the rhs of (121).

• Relaxations. Diffusive trajectories of the initial model satisfy

ρ̇ = 1
2�ρ, ρ̂ = 0. (129)

From (119), one sees that ρ̂ = 0 implies ∇ρ̂ ′ = 0. As the primed variables also satisfy
the equations of motion (66), the resulting trajectories evolve with

ρ̇ ′ = 1
2�ρ ′. (130)

Relaxations thus map into relaxations.
• Excursions. The instanton equations (107) imply ∇F ′ = 0 (cf (112)). Using the relation

of F, F̂ (94), as applied to the primed variables, one gets

∇ρ̂ ′ − ∇ρ ′

σρ ′
= 0. (131)

Injected back in the equations of motion (66), this shows that densities evolve with

ρ̇ ′ = − 1
2�ρ ′. (132)

Excursions of the initial model, once mapped back to equilibrium through (119), are given
by time reversal of the isolated chain’s relaxations. The action S ′[ρ̂ ′, ρ ′] of such an uphill
trajectory is

∫ L

0 dx[ρ ′ log ρ ′ + (1−ρ ′) log(1−ρ ′)]T0 . As F ′ is constant along the instanton

and
∫ L

0 ρ ′ is a constant of motion, the overall action (117) reduces to the large-deviation
function (111), as it should.

7.3. Detailed-balance symmetry

Let us now show in terms of spin variables how the detailed-balance relation of the isolated
chain accounts for the miraculous transformation (102) which allowed BDGJL to compute the
large-deviation function. In the spin variables, the original detailed-balance symmetry (76)
and (77) amounts to a reflexion of all the spins with respect to the x–z plane

(Sx, Sy, Sz) → (Sx,−Sy, Sz); T → T − t. (133)
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Because the bulk Hamiltonian is also invariant with respect to any simultaneous rotation
of all the spins, any composition of (133) with a rotation gives another ‘detailed-balance-like’
symmetry. These symmetries are all broken by the boundary conditions of the original model.
Once mapped to the isolated chain, the boundary conditions (121) reduce to fixing the value
of an integral of motion

2
∫ L

0
(S ′

z + iS ′
y) =

∫ L

0
F̂ ′ = ρ1 − ρ0. (134)

Among all the ‘detailed-balance-like’ symmetries of the isolated chain, only one preserves
(134). We are thus left with the transformation

(S ′
x, S

′
y, S

′
z) → (−S ′

x, S
′
y, S

′
z); t → T − t. (135)

From the expression of Q3 in (122), one sees that STR
x

′ = −S ′
x can be written as

1 + F̂ ′
TR(1 − 2F ′

TR) = −1 − F̂ ′(1 − 2F ′). (136)

Using F̂ ′ = ∇F and looking for FTR = F , this reads

F ′ + F ′
TR = 1 +

1

∇F
. (137)

Differentiating once and using ∇F ′ = F̂ − �F
(∇F)2 , one gets

F̂ TR + F̂ = �F

(∇F)2
, (138)

which is nothing but the non-local mapping (103) between ‘downhill’ diffusive solutions and
the instantons. One thus sees that the miraculous solution of the initial model is simply induced
by the detailed-balance-like relation (135) of the isolated chain, which does not violate the
boundary conditions (121).

8. KMP

The Kipnis–Marchioro–Presutti model (KMP) was introduced in [27] as a one-dimensional
model of energy transport satisfying Fourier law. Bertini, Gabrielli and Lebowitz recently
computed the large-deviation function of the energy profile using an approach similar to the
one used previously for the SSEP [3]. We shall show below that once again a mapping back
to equilibrium explains this success.

The functional expression for the fluctuating hydrodynamics of KMP is very similar to
that of SSEP, ∫

D[ρ̂, ρ] e−NS[ρ̂,ρ] =
∫

D[ρ̂, ρ] e−N
∫

dt dx{ρ̂ρ̇−H}, (139)

where we have introduced the Hamiltonian density

H ≡ 1
2 [ρ2∇ρ̂2 − ∇ρ̂∇ρ]. (140)

To compute the large-deviation function F(ρ∗), one has to solve the corresponding Hamilton
equations

ρ̇ = 1
2�ρ − ∇[ρ2∇ρ̂]; ˙̂ρ = − 1

2�ρ̂ − ρ(∇ρ̂)2 (141)

with the boundary conditions

ρ(x, 0) = ρ̄(x) = (1 − x)ρ0 + xρ1; ρ(x, T ) = ρ∗(x) (142)

ρ(0, t) = ρ0; ρ(1, t) = ρ1; ρ̂(0, t) = ρ̂(1, t) = 0. (143)

Once again, the last equality simply says that no fluctuations are allowed at the contact with
the reservoir.
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8.1. Connection with the SU(1, 1) spin chain

KMP is related to SU(1, 1) spin chains in a rather subtle way [19, 20]. Starting from the
SU(1, 1) coherent states for spin k,

|z〉 = 1

(1 − zz̄)k
ezK+ |0〉, (144)

one gets the following expression for the pseudo-spin operators:

〈z|K+|z〉 = 2k
z̄

1 − zz̄
; 〈z|K−|z〉 = 2k

z

1 − zz̄
; 〈z|Kz|z〉 = k

1 + zz̄

1 − zz̄
(145)

of the SU(1, 1) group. By analogy with equation (40) for the SU(2) case, the Doi–Peliti
variables are defined through

φ∗ = z̄; φ = z

1 − zz̄
. (146)

The difference with the SU(2) case stems from the fact that the energy-density variables ρ, ρ̂

have to be identified directly with the Doi–Peliti variables,

ρ = φ = z

1 − zz̄
; ρ̂ = φ∗ = z̄. (147)

In particular, from (145) and (147), one sees that ρ corresponds to K− and not to the z-
component of the spins as was the case for the SSEP and the SU(2) representation12. Defining
the classical spin

Kx,y,x = 1

2k
〈z|Kx,y,z|z〉, (148)

one then checks that the Hamiltonian (140) corresponds to the continuous pseudo-spin chain

H = − 1
2 [(∇Kx)

2 + (∇Ky)
2 − (∇Kz)

2] = − 1
2 [∇K+ · ∇K− − (∇Kz)

2]. (149)

8.2. Remarkable change of variables

As we did in section 6 for the SSEP, we shall use the symmetry of the evolution operator under
simultaneous SU(1, 1) ‘rotation’ of all ‘spins’ to find a basis where a non-local mapping to
equilibrium is easily revealed. Making a reflexion with respect to the x − z plane maps Ky in
−Ky and lets (149) invariant. As expected, it is thus a symmetry of the action. In the (z, z̄)

coordinates it reads

z′ = z̄; z̄′ = z. (150)

By analogy with (146), one defines

φ′ = z′

1 − z′z̄′ ; φ∗′ = z̄′. (151)

The transformation then reads in density variables

ρ = φ∗′
(1 + φφ∗′

); ρ̂ = φ′

1 + φ′φ∗′ ; ↔ φ′ = ρ̂(1 + ρρ̂); φ∗′ = ρ

1 + ρρ̂
.

(152)

As for the SSEP, we could now work with these new ‘Doi–Peliti’ like variables, but to make
contact with the solution of BDGJL we use slightly different notations

F = φ∗′; F̂ = φ′, (153)

12 If one wants to understand Sz as a density particle in (149), one gets the dual model of KMP [3, 20], for which
there also exist a non-local mapping back to equilibrium.
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so that the overall mapping of the action reads

S[ρ, ρ̂] =
∫

dx
[ ρ

F
− log

ρ

F

]T

0
(154)

+
∫

dx dt

{
F̂ Ḟ − 1

2
F̂ 2(∇F)2 +

1

2
∇F̂∇F

}
. (155)

The fields F, F̂ are related to energy densities through

F = ρ

1 + ρρ̂
; F̂ = ρ̂(1 + ρρ̂), (156)

so that the spatial boundary conditions (142) are given by

F̂ (0) = F̂ (1) = 0; F(0) = ρ0; F(1) = ρ1. (157)

8.3. Non-local mapping back to equilibrium

Let us introduce the non-local variables

F̂ ′ = ∇F ; F̂ = ∇
[
F ′ +

1

F̂ ′

]
, (158)

which maps the action into

S[ρ, ρ̂] =
∫

dx
[ ρ

F
− log

ρ

F
− log F̂ ′ − F ′F̂ ′

]f

i
(159)

+
∫

dx dt

{
F̂ ′Ḟ ′ − 1

2
F̂ ′2(∇F ′)2 +

1

2
∇F̂ ′∇F ′

}
. (160)

Comparison of (159) and (154) reveals that (158) is a non-local symmetry of the action. The
boundary conditions (157) now reads∫ L

0
F̂ ′ = ρL − ρ0 ∇F ′ − ∇F̂ ′

F̂ ′2 = 0. (161)

As the classical trajectories in the original F, F̂ variables satisfy

Ḟ = 1
2�F + F̂∇F 2 (162)

˙̂F = − 1
2�F̂ + ∇[F̂ 2∇F ], (163)

we see that on the boundaries, Ḟ = 0 and F̂ = 0 implies �F = ∇F̂ ′ = 0. Together with the
rhs of (161), this implies

∇F ′ = ∇F̂ ′ = 0 (164)

and all the currents vanish on the boundaries. Equation (158) thus maps the chain into an
isolated one. One can continue the mapping ρ, ρ̂ → F, F̂ → F ′, F̂ ′ to introduce new energy
densities ρ ′, ρ̂ ′,

ρ ′ = F ′(1 + F ′F̂ ′); ρ̂ ′ = F̂ ′

1 + F ′F̂ ′ . (165)
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One then gets an overall action

S[ρ, ρ̂] =
∫

dx

[
ρ

F
− log

ρ

F
− log F̂ ′ − F ′F̂ ′ − ρ ′

F ′ + log
ρ ′

F ′

]f

i

(166)

+
∫

dx dt

{
ρ̂ ′ρ̇ ′ − 1

2
ρ ′2(∇ρ̂ ′)2 +

1

2
∇ρ̂ ′∇ρ ′

}
, (167)

which shows that the hydrodynamic limit of the KMP model driven out-of-equilibrium can
be mapped back to equilibrium through a non-local change of variables. This chain has a
detailed-balance symmetry, and as before its instantons are time reversal of relaxations and
are thus given by

ρ̇ ′ = − 1
2�ρ ′. (168)

From the equations of motion (141), one sees that this corresponds to

ρ2∇ρ̂ = ∇ρ. (169)

In the F ′, F̂ ′ variables, this reads

∇F ′ = 0. (170)

Mapped back to the initial variables, one gets the instanton equation

F̂ = − �F

(∇F)2
(171)

or, for the density variables,

ρ = F − F 2 �F

∇F 2
. (172)

This is the counterpart for KMP of the instanton equation (110) for the SSEP, and corresponds
to the equation found by BDGJL. The action of this trajectory is

S[ρ, ρ̂] =
∫

dx
[ ρ

F
− log

ρ

F
− log ∇̂F

]T

0
, (173)

which is precisely the large-deviation function obtained in [3]. One sees that once again a
non-local mapping back to equilibrium enables one to find the instanton equation and thus
compute the large-deviation function. This result can be extended to the whole class of systems
defined by a Hamiltonian density H(ρ, ρ̂) = σ(∇ρ̂)2/2−∇ρ∇ρ̂/2 where σ is a second-order
polynomial in ρ.

9. Non-interacting particles in an arbitrary potential driven out of equilibrium

Apart from the simple example addressed in the introduction, the mappings to equilibrium we
have presented so far only apply at the level of large deviations. We shall show below that such
a mapping can also be constructed for the full probability distribution, without coarse graining,
of a model of non-interacting particles driven out-of-equilibrium. We shall do the mapping in
two ways: at the level of probabilities in subsection 9.1, and at the level of evolution operators
in subsection 9.2.

We consider an open chain of L sites (index 1 � k � L) in contact with two reservoirs.
Each particle at site k can jump to a neighboring site k ± 1 with rates Wk→k±1. The
system is coupled to reservoirs at the two boundaries (sites 1 and L) through transition rates
W0→1,W1→0,WL→L+1,WL+1→L (see figure 3).
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W0→1

W1→0

Wk→k−1 Wk→k+1 WL→L+1

WL+1→L

1 k L

Figure 3. Open chain in contact with reservoirs: generic rates for individual particles.

A simple case for which the steady state is known is that of equilibrium systems, where
probability currents vanish. For non-interacting particles, the corresponding detailed-balance
relation is equivalent to balancing the stationary mass fluxes over each bond. Introducing the
average occupancies P

eq
k , it reads

W0→1 = P
eq
1 W1→0 P

eq
k Wk→k+1 = P

eq
k+1Wk+1→k WL→L+1P

eq
L = WL+1→L. (174)

The first two equations imply that P
eq
k takes the form

P
eq
k =

k−1∏
�=0

W�→�+1

W�+1→�

for 1 � k � L. (175)

Combining the last equation of (174) and (175), we see that this solution is consistent as
long as

W0→1W1→2 . . . WL→L+1

WL+1→L . . . W1→0
= 1. (176)

This condition can be violated in many physical situations as for instance when a current
is forced by the reservoirs. In such cases, the steady-state occupancies are not the P

eq
k ’s and

one has to resort to other methods for their determination, as has been done for instance by
Derrida in [8] for a particle hopping in a periodic potential. To our knowledge, the case of
open systems with non-vanishing steady current has not been considered in the literature and
could be interesting in the context of non-equilibrium disordered media [5].

In the following section, we show how to map our open system back to equilibrium,
allowing us to get an explicit expression for the steady-state distribution.

9.1. Transformation of probabilities

Let us consider a probability distribution obtained as a product of Poisson distribution in
each site

P(n1, . . . , nL) =
L∏

k=1

P
nk

k

nk

e−Pk . (177)

Its form is preserved by the time evolution and the Pk’s evolve with the conservation equation

∂tPk = −(Jk+1 − Jk), (178)

where one has introduced the currents

Jk = −PkWk→k−1 + Pk−1Wk−1→k (for 2 � k � L) (179)

J1 = −P1W1→0 + W0→1 JL+1 = −WL+1→L + PLWL→L+1. (180)

In general, the steady state is not given by canceling all currents Jk , as this takes us back
to the detailed-balance conditions (174). In the spirit of previous sections, our aim here is
to map our model to an isolated system, for which currents vanish at the boundaries. The
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construction of the equilibrium model follows closely the one of the Fokker–Planck equation
presented in the introduction. We introduce primed occupancies

P ′
k = (

P
eq
k+1

)−1
Pk+1 − (

P
eq
k

)−1
Pk; (for 1 � k � L − 1)

P ′
0 = (

P
eq
1

)−1
P1 − (

P
eq
0

)−1; P ′
L = (

P
eq
L+1

)−1 − (P
eq
L )−1PL,

(181)

where one has extended definition (175) of P
eq
k to P

eq
L+1 and set P

eq
0 = 1. Defining the new

rates

W ′
k→k+1 = Wk+1→k; W ′

k+1→k = Wk+1→k+2, (182)

we now have the evolution for a chain of L + 1 sites (0 � k � L),

∂tP
′
k = −(J ′

k+1 − J ′
k), (183)

where the currents are defined by

J ′
0 = J ′

L+1 = 0; and J ′
k = −P ′

kW
′
k→k−1 + P ′

k−1W
′
k−1→k; (for 1 � k � L).

(184)

Strikingly, the currents J ′
0 and J ′

L+1 vanish and the primed chain is thus isolated.
Note that although we mapped our initial open chain of L sites into an isolated chain

of L + 1 sites, there is no contradiction when counting degrees of freedom. Indeed, from
definition (181), we see that the primed occupancies satisfy

L∑
k=0

P ′
k = (

P
eq
L+1

)−1 − (
P

eq
0

)−1
, (185)

which means that there are only L independent occupancies in the isolated chain.
The (equilibrium) steady state of the primed chain is found by imposing J ′

k = 0 for
all k’s,

P ′
k ∝ P ′

eq(k) =
k−1∏
�=0

W ′
�→�+1

W ′
�+1→�

= W0→1

Wk+1→kP
eq
k+1

= W0→1

Wk→k+1P
eq
k

. (186)

Mapping back to the original variables, one obtains the expression of the steady-state
occupancies P st

k ,

P st
k = 1

ZL

[(
P

eq
0

)−1
L∑

�=k

P
eq
k

W�→�+1P
eq
�

+
(
P

eq
L+1

)−1
k−1∑
�=0

P
eq
k

W�→�+1P
eq
�

]
, (187)

where ZL is a normalization constant given by

ZL =
L∑

�=0

1

W�→�+1P
eq
�

. (188)

The result (187) is reminiscent of that obtained by Derrida in [8], the differences highlighting
the role of the reservoirs.

To highlight the connection with the case treated in introduction, let us consider explicitly
particles diffusing in a discrete potential, where the rates Wk→k±1 are given by

Wk→k±1 = β−1 e− 1
2 β(Vk±1−Vk). (189)

In the bulk, they obey detailed balance with respect to the Boltzmann weight P
eq
k ∝ e−βVk ,

but the system is driven out-of-equilibrium as soon as VL+1 �= V0 (see relation (176)). The
averaged occupancies Pk evolve with

β∂tPk = Pk+1 e− 1
2 β(Vk−Vk+1) + Pk−1 e− 1

2 β(Vk−Vk−1) − Pk

[
e− 1

2 β(Vk+1−Vk) + e− 1
2 β(Vk−1−Vk)

]
. (190)
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Taking the continuum limit (k = xL with 0 � x � 1, L � 1) and rescaling time with L2

(diffusive scaling), one recovers the Fokker–Planck equation (1) with β−1 = T , upon gradient
expansion of (190). In particular, taking the continuum limit of the microscopic steady
state (187), one recovers as expected the result (7) for the non-equilibrium Fokker–Planck
steady state. Last, with the potential Vk defined in (189), the primed equilibrium law reads
P ′

eq(k) ∝ exp
{

β

2 (Vk + Vk+1)
}
, which is analogous to the sign change of V for Fokker–Planck

(see equation (3)), but also induces a smooth averaging of the potential over two neighboring
sites.

9.2. Transformation for evolution operators

As shown above, the average occupancies Pk fully determine the steady state of non-interacting
particles and can be computed through a mapping to equilibrium. Such approach does not
apply for exclusion processes, as exclusion correlates particles. To cast the mapping to
equilibrium in a form similar in both cases, we shall now work directly with the evolution
operator of non-interacting particles. Beyond the quest for a formalism ultimately applicable
to microscopic models of interacting particles, this point of view proves to be much stronger
than the one developed in section 9.1, even for non-interacting particles. Indeed, it applies
when the initial distribution is not factorized, i.e. not in the form (177), and gives access not
only to the steady state, but also to the whole dynamics.

For the system of non-interacting particles considered in this section, the probability
P(n, t) evolves with (we refer to section 2.2 for the notation)

∂tP (n, t) =
L−1∑
k=1

{
n+

k+1Wk+1→kP
(
n−

k , n+
k+1

)
+ n+

kWk→k+1P
(
n+

k , n
−
k+1

)
− [nkWk→k+1 + nk+1Wk+1→k]P(n)

}
+ W1→0

[
n+

1P
(
n+

1

) − n1P(n)
]

+ W0→1
[
P
(
n−

1

) − P(n)
]

+ WL→L+1
[
n+

LP
(
n+

L

) − nLP (n)
]

+ WL+1→L[P(n−
L) − P(n)]. (191)

Let us introduce the usual Doi–Peliti [13, 32] creation and annihilation operators a
†
k, ak ,

defined by

a
†
k|nk〉 = |nk + 1〉; ak|nk〉 = nk|nk − 1〉. (192)

The master equation can then be written as ∂t |ψ〉 = −H|ψ〉, where |ψ〉 = ∑
n P(n)|n〉, and

the evolution operator H reads

H =
L−1∑
k=1

(
a
†
k+1 − a

†
k

){ak+1Wk+1→k − akWk→k+1}

− (
a
†
1 − 1

)
(W0→1 − W1→0a1) − (

a
†
L − 1

)
(WL+1→L − WL→L+1aL). (193)

Because of the boundary terms, this operator does not correspond to an equilibrium dynamics.
We know however that its ground state can be mapped to that of an equilibrium operator (see
section 9.1) and it is thus quite natural to investigate the question as to whether this mapping
extends to the whole operator.

For the exclusion process, the equilibrium model was constructed at macroscopic coarse-
grained level through the use of canonical transformations, which mapped the action onto
that of an equilibrium, isolated system. At the level of operators, canonical transformations
correspond to similarity transformations H

′ = Q−1
HQ (see appendix D). We will now

show that using such transformations, one can map H to an equilibrium operator. As these
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transformations do not modify the spectrum, the determination of the eigenstates reduces to
the determination of the spectrum of an equilibrium operator.

We first translate the a
†
k’s by 1, using the transformation obtained from Q0 = e−∑L

k=1 ak

(one has Q−1
0 a

†
kQ0 = a

†
k + 1). Rearranging the sum, we get for H0 = Q−1

0 HQ0

H0 = −
L−1∑
k=2

a
†
k{(Wk+1→kak+1 − Wk→k+1ak) − (Wk→k−1ak − Wk−1→kak−1)}

− a
†
1{(W2→1a2 − W1→2a1) − (W1→0a1 − W0→1)}

− a
†
L{(WL+1→L − WL→L+1aL) − (WL→L−1aL − WL−1→LaL−1)}. (194)

Then, we use the similarity transformation induced by Q1 = ∏L
k=1

(
P

eq
k

)a†
kak , which yields{

Q−1
1 akQ1 = P

eq
k ak

Q−1
1 a

†
kQ1 = (

P
eq
k

)−1
a
†
k

(195)

and thus for H1 = Q−1
1 H0Q1,

H1 = −
L−1∑
k=2

a
†
k{Wk→k+1(ak+1 − ak) − Wk→k−1(ak − ak−1)}

− a
†
1

{
W1→2(a2 − a1) − W1→0

(
a1 − (P

eq
0 )−1)}

− a
†
L

{
WL→L+1

((
P

eq
L+1

)−1 − aL

) − WL−1→L(aL − aL−1)
}
. (196)

Noting that the boundary terms (second and third lines of (196)) look like the bulk term
(first line), with

(
P

eq
0

)−1
playing the role of an operator a0, and

(
P

eq
L+1

)−1
the role of an

operator aL+1, we add two sites k = 0 and k = L + 1, with their corresponding creation
and annihilation operators a

(†)
0 , a

(†)
L+1. We also define two vectors |L〉 and |R〉, satisfying

a0|L〉 = (
P

eq
0

)−1|L〉, aL+1|R〉 = (
P

eq
L+1

)−1|R〉.13 Defining, on the extended space (of L + 2
sites)

H2 = −
L∑

k=1

a
†
k{Wk→k+1(ak+1 − ak) − Wk→k−1(ak − ak−1)}, (197)

we observe from (196) that

H2(|L〉 ⊗ |n1, . . . , nL〉 ⊗ |R〉) = |L〉 ⊗ (H1|n1, . . . , nL〉) ⊗ |R〉. (198)

In other words, the action of the extended operator H2 on states of the form |L〉⊗|n1, . . . , nL〉⊗
|R〉 reduces to that of H1 on the physical state |n1, . . . , nL〉.

A last transformation brings H2 into an equilibrium form; it is generated by the non-local
operator

Q2 = exp
∑

0�p<q�L+1

a
†
paq

q − p
, (199)

which transforms the (L + 2) creation and annihilation operators according to

Q−1
2 akQ2 =

L+1∑
p=k

ap; Q−1
2 a

†
kQ2 = a

†
k − a

†
k−1(1 − δk,0). (200)

13 |L〉 and |R〉 correspond to bosonic coherent states |z〉 = ∑∞
n=0 e−z(zn/n!)|n〉 with z = (P

eq
0 )−1 and z = (P

eq
L+1)

−1,
respectively.
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These relations are analogous to the non-local primed variables we have introduced for
exclusion processes. Moreover, the operator H3 = Q−1

2 H2Q2 reads

H3 =
L−1∑
k=0

(
a
†
k+1 − a

†
k

){W ′
k+1→kak+1 − W ′

k→k+1ak}. (201)

This expression corresponds to an isolated equilibrium process of primed rates W ′, given in
(182). We have thus shown that the evolution operator H can be mapped to an equilibrium
operator H3 acting on a larger space. We shall now explain how to use this mapping to
determine the spectrum of H from that of H3.

The operator H3 acts on a space of L + 2 sites (0 � k � L + 1) but, as seen from its
expression, it only describes hopping among the first L + 1 sites (0 � k � L), implying that
the last site (k = L + 1) is completely isolated. Its eigenstates therefore take the form

|P 3,λ〉 =
(

L⊗
k=0

∣∣P 3,λ
k

〉) ⊗ ∣∣f λ
L+1

〉
, (202)

where f λ
L+1 is arbitrary. To determine the eigenstates |P λ〉 of H, one maps back the eigenvectors

of H3 with Q2 and retains only those which satisfies

Q2|P 3,λ〉 = |L〉 ⊗ |P 2,λ〉 ⊗ |R〉. (203)

One then has

|P λ〉 = Q0Q1|P 2,λ〉. (204)

Let us illustrate this procedure to determine the steady state of H. The degenerate ground
state of the equilibrium operator H3 takes the form

|P 3,0〉 =
(

L⊗
k=0

|Pk〉
)

⊗ ∣∣f 0
L+1

〉
, (205)

where |Pk〉 is a Poisson distribution of mean density μP
eq
k

′
, with μ being an arbitrary constant,

|Pk〉 =
∑
nk

e−μP
eq
k

′
(
μP

eq
k

′)nk

nk!
|nk〉. (206)

Forcing that |P 3,0〉 satisfies (203) constrains both μ and |fL+1〉,

μ =
(
P

eq
0

)−1 − (
P

eq
L+1

)−1∑L
p=0 P

eq
k

′ ; |fL+1〉 =
∑
nL+1

e−(P
eq
L+1)

−1

(
P

eq
L+1

)−nL+1

nL+1!
|nL+1〉. (207)

One finally checks that applying further Q0Q1 to |P 2,0〉 as in (204) gives back the steady state
obtained in section 9.1.

We have thus shown in this section that the evolution operator of non-interacting particles
diffusing on a one-dimensional lattice with arbitrary rates can be mapped onto an equilibrium
operator. The determination of both steady state and excited states can be mapped to an
equilibrium problem. The new microscopic feature of the transformation (200) is that the
system has been supplemented with a site at each end, which accounts for the additional
constant of motions of the isolated system—the total mass is conserved.

Last, from the knowledge of the mapping to equilibrium for the microscopic dynamics,
one can extract its counterpart for the hydrodynamic limit. Indeed, we show in appendix D
how similarity transformations for the evolution operator can be read as canonical changes
of variables in the action. From the expressions of Q0,Q1 and Q2, one can thus construct
a mapping to equilibrium at the level of the action and then takes its continuum limit (see
section 2.3.5).
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10. Conclusions

The macroscopic fluctuation theory, as developed by BDGJL, consists of two distinct steps.
The first is the recognition that the coarse-graining level, as measured by the box size, is a
parameter playing the role of h̄ in a quantum system: the dynamics, including large deviations,
becomes in the hydrodynamic limit a Hamiltonian dynamics. This step is general, and leaves
us with a classical field theory to solve.

The second step, that has been followed in a number of systems, is to calculate explicitly
the trajectories starting from the stationary situation and ending in an given configuration at
long times (i.e., an excursion from equilibrium), and hence obtain the large-deviation function
from the action. This can be done trivially in systems satisfying detailed balance, just by
reversing the corresponding trajectory that relaxes to equilibrium. In systems driven out of
equilibrium, the obvious detailed-balance symmetry is broken. For the driven SSEP and the
KMP models, however, a hidden detailed-balance symmetry can be found explicitly, and used
to compute the large-deviation functions. In this paper we have shown that the reason for this
unexpected symmetry, and hence the solvability, is that these systems can be mapped back
into their equilibrium counterparts. This realization suggested to look back at the simpler case
of independent particles diffusing in a potential, with sources at the ends. We have found that
the same strategy can be applied in this elementary case.

The question that arises is how general this mapping is. The first problem that comes to
mind is how ‘one dimensional’ this mechanism is. One can also ask what happens with more
general one-dimensional cases. A way to start investigating the first question is to consider the
simple case of non-interacting particles, but in higher dimensions. On the other hand, more
general one-dimensional models might perhaps admit a mapping back to equilibrium if one is
prepared to pay the price of dealing with spatially non-local interactions.
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Appendix A. Coherent state path integral

The functional expression for spin operators presents a few mathematical subtleties [17].
Recently Solari [36], Kochetov [28], Vieira and Sacramento [39] derived an expression for the
action and the associated time boundary conditions. We follow here the clear presentation of
Stone, Park and Garg [17].

Usually, one seeks to calculate the ‘propagator’ between two normalized coherent states
[28],

〈zf | e−T Ĥ |zi〉. (A.1)

As usual in the construction of a path integral, the time interval [0, T ] is divided into N
segments and one inserts at each time interval L representation of the identity (23), one for
each site of the lattice. Letting N go to infinity, one ends up with the functional representation
of the propagator

〈zf | e−T Ĥ |zi〉 =
∫

Dz̄ Dz exp[−S̃] (A.2)
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S̃ = −j
∑

k

log

(
1 + z̄

f

k zk(T )
)(

1 + z̄k(0)zi
k

)
(
1 + z̄

f

k z
f

k

)(
1 + z̄i

kz
i
k

) + 2j

∫ T

0
dt

[
1

2

∑
k

z̄kżk − ˙̄zkzk

1 + z̄kzk

− H(z̄,z)

]
.

(A.3)

Note that the temporal boundary term differs slightly from those in [17, 28] as the representation
we used of the SU(2) group is not the usual unitary one (cf appendix C). The role of the
Hamiltonian is played by the quantity

H(z̄,z) = − 1

2j
〈z|Ĥ |z〉, (A.4)

which is computed using (28) or similar expressions for higher powers of the spin operators
(see [17]). z̄k(t) and zk(t) are two independent complex fields [36]. In the construction of
the path integral, one notes that zk(0) = zi

k and z̄k(T ) = z̄
f

k ,14 while zk(T ) and z̄k(0) are
unconstrained [28, 36].

Here, we rather wish to compute the physical propagator between two states 〈nf | and
|ni〉, corresponding to fixed initial and final number of particles in each site. The propagator
represents the probability P(nf , T ;ni, 0) of observing the system in state

(
n

f

1 , . . . , n
f

L

)
at

time T, starting from
(
ni

1, . . . , n
i
L

)
at time 0. Using 2L representations of identity (23), we

write

P(nf , T ;ni, 0) = 〈nf |e−T Ĥ |ni〉 =
∫ ∏

k

dμ
(
z
f

k

)
dμ

(
zi
k

)〈nf |zf 〉〈zf | e−T Ĥ |zi〉〈zi |ni〉.

(A.5)

Keeping in mind that we are aiming to describe a hydrodynamic limit, we introduce the
discrete densities

ρk = nk/2j. (A.6)

One sees by comparing equations (A.2) and (A.5) that the physical propagator is obtained by
subtracting log〈zi |ni〉 + log〈nf |zf 〉 to the action (A.3), and by integrating over zi, z̄i , zf , z̄f .
As we aim to describe the large j, L limit, we can use Stirling’s formula to obtain the
asymptotics of

(2j

n
f

k

)
, to get

P(ρf , T ;ρi , 0) =
∫ ∏

k

dμ
(
z
f

k

)
dμ

(
zi
k

) ∫
Dz̄ Dz exp[−S] (A.7)

S = −j
∑

k

log
[(

1 + z̄
f

k zk(T )
)(

1 + z̄k(0)zi
k

)]
+ 2j

∫ T

0
dt

[
1

2

∑
k

z̄kżk − ˙̄zkzk

1 + z̄kzk

− H(z̄,z)

]

+ 2j
∑

k

{−ρi
k log z̄i

k − ρ
f

k log z
f

k + ρ
f

k log ρ
f

k +
(
1 − ρ

f

k

)
log

(
1 − ρ

f

k

)
+ log

[(
1 + z̄

f

k z
f

k

)(
1 + z̄i

kz
i
k

)]}
.

The complex fields zi
k, z̄

i
k, z

f

k and z̄
f

k have now to be integrated upon, which can be done by
saddle point. First, differentiating the action (A.7) with respect to z̄i

k, z
f

k yields

1

2j

∂S

∂z̄i
k

= zi
k

1 + z̄i
kz

i
k

− ρi
k

z̄i
k

1

2j

∂S

∂z
f

k

= z̄
f

k

1 + z̄
f

k z
f

k

− ρ
f

k

z
f

k

. (A.8)

14 These fields coincide exactly, not as the result of a saddle point evaluation.
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We thus obtain the initial and final conditions

z̄i
kz

i
k

1 + z̄i
kz

i
k

= ρi
k

z̄
f

k z
f

k

1 + z̄
f

k z
f

k

= ρ
f

k . (A.9)

Extremalizing with respect to zi
k and z̄

f

k has to be done carefully as the time integral in the
action gives a nonzero contribution (see for instance equation 3.9 of [17]). Such a computation
leads to

1

2j

∂S

∂zi
k

= z̄i
k

1 + z̄i
kz

i
k

− z̄k(0)

1 + z̄k(0)zi
k

1

2j

∂S

∂z̄
f

k

= z
f

k

1 + z̄
f

k z
f

k

− zk(T )

1 + zk(T )z̄
f

k

, (A.10)

which fixes

z̄k(0) = z̄i
k zk(T ) = z

f

k . (A.11)

Putting everything together, the action reads

S[z̄,z;nf ,ni] = 2j
∑

k

[
zkz̄k

1 + zkz̄k

log z̄k − log(1 + zkz̄k)

]f

i

+ 2j

∫
dt

[∑
k

z̄kżk

1 + z̄kzk

− H(z̄, z)

]
.

HB(z̄, z) = −1

2

L−1∑
k=1

zkzk+1(z̄k+1 − z̄k)
2

(1 + z̄kzk)(1 + z̄k+1zk+1)
+

(
zk+1

1 + zk+1z̄k+1
− zk

1 + zkz̄k

)
(z̄k+1 − z̄k).

(A.12)

In the context of quantum mechanics, the coherent state (stereographic) parametrization
in terms of zk(t) and z̄k(t) is usually transformed into spherical polar coordinates through
zk = e−iφk cot θk

2 , z̄k = eiφk cot θk

2 . In our context however, it will prove more convenient to
introduce a new parametrization15

zk = ρk

1 − ρk

e−ρ̂k , z̄k = eρ̂k . (A.13)

Using z̄kzk

1+z̄kzk
= ρk , we see from (A.9) and (A.11) that the temporal boundary conditions on

the fields can be written as

ρ(0) = ρi, ρ(T ) = ρf , with ρ̂(0), ρ̂(T ) unconstrained. (A.14)

This highlights the correspondence between the field ρ and the actual density of the system.
The Hamiltonian (A.12) then reads

H = HB + H0 + HL, (A.15)

HB = 1

2

L−1∑
k=1

{(1 − ρk)ρk+1[eρ̂k−ρ̂k+1 − 1] + ρk(1 − ρk+1)[e
ρ̂k+1−ρ̂k − 1]} (A.16)

H0 = α(1 − ρ1)(e
ρ̂1 − 1) + γρ1(e

−ρ̂1 − 1) (A.17)

HL = δ(1 − ρL)(eρ̂L − 1) + βρL(e−ρ̂L − 1), (A.18)

where HB describes the interaction in the bulk whereas H0 and HL result from the coupling
to the reservoirs. Using

1

2

z̄k żk − ˙̄zkzk

1 + z̄kzk

= ρ̇kρ̂k − ∂t

[
ρ̂kρk +

1

2
log(1 − ρk)

]
, (A.19)

15 In the changes of variable z, z̄ → ρ, ρ̂, the Jacobian (1 −ρ)2 cancel exactly the prefactor of dμ(z), so that
∫

dμ(z)

is replaced by
∫ 2j+1

π
dρ dρ̂.

34



J. Phys. A: Math. Theor. 41 (2008) 505001 J Tailleur et al

we check that all boundary terms cancel so that the classical action reduces to

S[ρ̂, ρ; ρi, ρf ] = 2j

∫ T

0
dt

[∑
k

ρ̂kρ̇k − H(ρ̂, ρ)

]
. (A.20)

Appendix B. Hydrodynamic limit

B.1. Continuous limit of the action

Let us start from the microscopic Hamiltonian (A.15) for a system of size L. In the large j limit,
each site contains a large number of particles, so that the density field tends to self-average. It
is thus natural to assume the gradients to be small. Expanding the Hamiltonian up to second
order in (ρk+1 − ρk), (ρ̂k+1, ρ̂k), one gets

HB =
L−1∑
k=1

[
1

2
ρk(1 − ρk)(ρ̂k+1 − ρ̂k)

2 − 1

2
(ρ̂k+1 − ρ̂k)(ρk+1 − ρk)

]
. (B.1)

One can then introduce a rescaled space variable

xk = k

2j
, (B.2)

which goes from 1/2j to L/2j and becomes continuous in the large j limit. Assuming a
diffusive time scale and explicitly rescaling the gradients

ρk+1 − ρk → 1

2j
∇ρ, ρ̂k+1 − ρ̂k → 1

2j
∇ρ̂,

1

2j

L∑
k=1

→
∫ L/2j

0
dx, dt → (2j)2dt,

(B.3)

transforms the action into

S[ρ(x), ρ̂(x)] = (2j)2
∫

dt

{∫ L/2j

0
dx

[
ρ̂ρ̇ − 1

2
σ(∇ρ̂)2 +

1

2
∇ρ∇ρ̂

]

− 2jH0[ρ, ρ̂] − 2jH1[ρ, ρ̂]

}
H0[ρ, ρ̂] = α[1 − ρ(0)](eρ̂(0) − 1) + γρ(0)(e−ρ̂(0) − 1)

H1[ρ, ρ̂] = δ[1 − ρ(1)](eρ̂(1) − 1) + βρ(1)(e−ρ̂(1) − 1).

(B.4)

It is however more convenient to have a continuous variable x going from 0 to 1, so that the
extensivity of the action is explicit. This can be achieved by a further scaling

x → L

2j
x, t →

(
L

2j

)2

t, (B.5)

which maps the action into

S[ρ(x), ρ̂(x)] = 2jL

∫
dt

{∫ 1

0
dx

[
ρ̂ρ̇ − 1

2
σ(∇ρ̂)2 +

1

2
∇ρ∇ρ̂

]

−LH0[ρ, ρ̂] − LH1[ρ, ρ̂]

}
. (B.6)

Some comments are in order. First, the bulk integral is proportional to 2jL, which is consistent
with the scaling of a large-deviation function. Then, the boundary terms scale as 2jL2 and
deserve some further analysis.
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B.2. Spatial boundary conditions

Let us first note that if the boundary rates α, β, γ, δ are of order 1/L, then the contributions
of H0 and HL to the action are of the same order as that of the bulk term HB . This means
that trajectories with fluctuations of order 1 at the boundaries give rise to non-vanishing
contribution at the level of large deviation, i.e. their action scales as 2jL. In particular, such
rates would not lead to the spatial boundary conditions (48).

In the usual case where the rates are of order 1, we shall show below that trajectories with
fluctuations at the boundaries are forbidden at the level of large deviations. This accounts
for the claim in [1, 3] that trajectories which do not satisfy strictly the boundary condition
correspond to infinite values of the large-deviation function.

Let us analyze in details the dynamics at the boundaries. In the large j limit, the
probability is dominated by trajectories that extremalize the action (see section 4). Using
expression (A.15) for the microscopic Hamiltonian, the classical equations read

ρ̇1 = ∂(H1 + HB)

∂ρ̂1
= 1 − ρ1

2
ρ2 eρ̂1−ρ̂2 − ρ1

2
(1 − ρ2) eρ̂2−ρ̂1 + α(1 − ρ1) eρ̂1 − γρ1 e−ρ̂1

˙̂ρ1 = −∂(H1 + HB)

∂ρ1
= ρ2

2
[eρ̂1−ρ̂2 − 1] − 1 − ρ2

2
[eρ̂2−ρ̂1 − 1] + α[eρ̂1 − 1] − γ [e−ρ̂1 − 1].

(B.7)

In the large 2jL limit, one checks that ∂ρ1HB and ∂ρ̂1HB are of order 1/L. The rhs of equations
(B.7) are thus dominated by the boundary terms so that, at first order, they read

ρ̇1 = α(1 − ρ1) eρ̂1 − γρ1e−ρ̂1

(B.8)
˙̂ρ1 = α[eρ̂1 − 1] − γ [e−ρ̂1 − 1].

For the sake of clarity, we now drop the index ‘1’. Equations (B.8) can be solved and give

ρ(t) = [ρ0(1 − ρi)(1 − e−�t ) + ρi e−ρ̂i (ρ0 + (1 − ρ0) e−�t )]

× [(1 − ρ0)(1 − e�t ) + eρ̂i (ρ0 + (1 − ρ0) e�t )] (B.9)

eρ̂(t) = ρ0 eρ̂i + 1 − ρ0 + (1 − ρ0) e�t (eρ̂i − 1)

ρ0 eρ̂i + 1 − ρ0 − ρ0 e�t (eρ̂i − 1)
, (B.10)

where � = α + γ, ρ0 = α/� and ρi, ρ̂i are the initial conditions of the fields. For such a
trajectory, the contribution SL of the left boundary to the action is

SL = −2j t�(1 − e−ρ̂i )[ρ0(1 − ρi) eρ̂i − ρi(1 − ρ0)]. (B.11)

In the hydrodynamic limit, the time is rescaled by L2 so that SL ∼ 2jL2. We know from
section 4.3 that the probability to observe a given profile is obtained from the exponential of
the action. For nonzero SL, it is thus of order exp(−2jL2) and such profile is even more rare
than large deviations, whose probability scale as exp(−2jL). Quantitatively, such profile has
an infinite large-deviation function

F[ρ] = − lim
2jL→∞

1

2jL
log P [ρ] = lim

2jL→∞
1

2jL
Straj = ∞. (B.12)

In addition to an infinite large-deviation function, the trajectories (B.9) can also present a
diverging density. Indeed, for large times, one gets

ρ(t) ∼ e�tρ0(1 − ρ0)(1 − e−ρ̂i )[ρi + (1 − ρi) eρ̂i ]. (B.13)

To keep the density finite, one thus needs

ρ̂i = 0 or ρi = 1

1 − e−ρ̂i
. (B.14)
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The second solution corresponds to an action SL = 2j t� which is once again of order 2jL2

in the hydrodynamic limit. Such a trajectory is thus forbidden at the level of large deviations.
We are left with ρ̂i = 0, which corresponds to ρ(t) = ρ0 + e−�t (ρi − ρ0). The corresponding
contribution SL vanishes exactly and in a macroscopic time of order L−2 the density ρ(t) of
the first site gets equal to ρ0 = α

α+γ
.

The same analysis holds for the right boundary and we have thus shown that for boundary
rates of order 1, the fields ρ, ρ̂ have to satisfy the following boundary conditions at the level
of large deviations:

ρ̂(0, t) = ρ̂(1, t) = 0; ρ(0, t) = ρ0 = α

α + γ
; ρ(1, t) = ρ1 = δ

δ + β
, (B.15)

whereas for rates of order 1/L, fluctuations are allowed at the level of large deviations.

Appendix C. Unitary and non-unitary representations

C.1. Change of basis

We wish to make the link between the representation of SU(2) matrices we have used (16)
and the usual ‘quantum’ representation. In terms of the action of these operators, we start
from the action of the matrices (16) on the occupation kets |n〉,

S+|n〉 = (2j − n)|n + 1〉 (C.1)

S−|n〉 = n|n − 1〉 (C.2)

Sz|n〉 = (n − j)|n〉 (C.3)

and perform a similarity transformation to obtain the canonical unitary representation of
‘quantum’ operators, that we denote S±

q , Sz
q ,

Q−1S+Q|n〉 = S+
q |n〉 =

√
(n + 1)(2j − n)|n + 1〉 (C.4)

Q−1S−Q|n〉 = S−
q |n〉 =

√
n(2j − n + 1)|n − 1〉 (C.5)

Q−1SzQ|n〉 = Sz
q |n〉 = (n − j)|n〉. (C.6)

The usual magnetic number m is related to the occupation number n through m = n − j . We
first remark that only S+ and S− have to be changed. This suggests we find Q as a function of
the number operator n̂ = j + Sz,

Q = q(n̂). (C.7)

From (C.4)–(C.5) we have to solve

n
q(n)

q(n − 1)
=

√
n(2j − n + 1) (C.8)

(2j − n)
q(n)

q(n + 1)
=

√
(n + 1)(2j − n), (C.9)

which is done by choosing

Q−1 =
√(

2j

n̂

)
. (C.10)
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C.2. Terms arising from the similarity transformation

We now denote the basis |n〉 of kets for occupation numbers as |θ〉, with j cos θk = 2nk − 1
on each site. We are interested in the propagator

P(n′, t |n, 0) = 〈n′| e−tĤ |n〉, (C.11)

where Ĥ is expressed in terms of the non-unitary representation (16). However, the
field-theoretic construction of the action corresponding to (C.11) is well suited only for
‘quantum’ spin operators acting on kets as in (C.4)–(C.6). To make the bridge between these
representations, let us write

P(n′, t |n, 0) = 〈n′|Q e−tĤ q Q−1|n〉, (C.12)

where Ĥ q is now expressed in terms of ‘quantum’ spin matrices, that is to say, in terms of
the matrices S+,−,z

q , which act on |n〉 according to (C.4)–(C.6). Inserting two resolution of the
identity yields

P(n′, t |n, 0) =
∫

dξf dξ̄f dξi dξ̄i e−S(θ ′,θ), (C.13)

with

S(θ ′, θ) = −ln
〈n′|Q|ξf 〉
〈ξf |ξf 〉 − ln

〈ξi |Q−1|n〉
〈ξi |ξi〉 + S(ξi, ξ̄f ). (C.14)

But Q is diagonal and real valued on the basis |n〉 so that

S(θ ′, θ) = −ln
〈θ ′|ξf 〉
〈ξf |ξf 〉 − ln

〈ξi |θ〉
〈ξi |ξi〉 +

1

2
ln

(
2j
n

)
(

2j
n′
) + S(ξi, ξ̄f ). (C.15)

We thus conclude that using the non-unitary representation of SU(2) yields a new term in the
action (the ratio of binomials in (C.15)) that we took into account to obtain (A.3).

Appendix D. From microscopic detailed-balance relation to the symmetry

of the action in the path integral

Let us first discuss in detail the relation between similarity transformations of the evolution
operator and canonical changes of variable in the action, and then show the consequences of
the existence of symmetries for the system. We then analyze the case of the detailed-balance
relation. To remain in the context of this paper, we present below the case of the SSEP in
the hydrodynamic limit although the results only rely on the existence of the path-integral
representation and are thus much more general.

We consider the propagator between two physical states

G(ρf ,ρi; T ) = 〈ρf | e−T H |ρi〉, (D.1)

where H is the evolution operator. We know from section 2.3 that the path-integral
representation of this propagator is given by

G(ρf ,ρi; T ) =
∫

D[ρ̂,ρ] e−2jLSH ; SH =
∫

dt dx{ρ̂ρ̇ − H[ρ, ρ̂]}, (D.2)

where H[ρ, ρ̂] = − 1
2j

〈z|H |z〉 and we used the relations (32) to introduce densities. Let us
introduce the operator obtained after a similarity transformation

H̃ = Q−1HQ. (D.3)
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Equation (D.1) can then be written as

G(ρf , ρi; T ) = 〈ρf |QQ−1 e−T HQQ−1|ρi〉 = 〈ρf |Q e−T H̃Q|ρi〉. (D.4)

The path-integral representation of (D.4) leads to

G(ρf , ρi; T ) =
∫

D[ρ̂ ′, ρ ′] e−2jLSH̃ ;
(D.5)

SH̃ = − 1

2jL
[logQ]fi +

∫
dt dx{ρ̂ ′ρ̇ ′ − H̃[ρ ′, ρ̂ ′]},

where H̃[ρ ′, ρ̂ ′] = − 1
2j

〈z|H̃ |z〉 and Q = 〈z|Q|z〉. It is now simple to check that the actions
(D.2) and (D.5) are related via the canonical changes of variables induced by logQ [21],∫

dx ρ̇ ′ρ̂ ′ = 1

2jL

d

dt
logQ +

∫
dx ρ̇ρ̂. (D.6)

If Q is a symmetry of the evolution operator, we see that the commutation relation
[H,Q] = 0 can also be written H = Q−1HQ. At the level of the action, it thus means that
logQ induces a canonical transformation that leaves the action invariant up to boundary terms.

The case of detailed-balance relation is slightly different as it is not a symmetry of the
evolution operator but rather a connection between H and its adjoint H †, as we recall. Indeed,
for any configuration ρ1,ρ2 it reads

〈ρ1| e−tH |ρ2〉Peq(ρ2) = 〈ρ2| e−tH |ρ1〉Peq(ρ1). (D.7)

Taking the adjoint of the rhs, one gets

〈ρ1| e−tH Peq − Peq e−tH † |ρ2〉. (D.8)

As this holds for all ρ1,ρ2, t we see by deriving with respect to t and putting t = 0 that

H † = P −1
eq HPeq. (D.9)

At the level of the actions, it then reads∫
ρ̂ρ̇ − H[ρ, ρ̂] = − 1

2jL
[logPeq]fi +

∫
ρ̂ρ̇ − H†[ρ, ρ̂]. (D.10)

In the case of the SSEP with periodic boundary conditions, one further knows that

Peq[ρ] ∝ e−2jL
∫

dx ρ log ρ+(1−ρ) log(1−ρ) (D.11)

and

H[ρ, ρ̂] = 1
2σ∇ρ̂2 − 1

2∇ρ∇ρ̂; H†[ρ ′, ρ̂ ′] = 1
2σ∇ρ̂ ′2 + 1

2∇ρ ′∇ρ̂ ′. (D.12)

We thus see that the action of H and H † are related through the canonical changes of variable
induced by (D.6),

ρ ′ = ρ; ρ̂ ′ = ρ̂ − ρ

1 − ρ
. (D.13)

By further taking a time-reversal transformation

t → T − t; ρ̂ ′ → −ρ̂ ′, (D.14)

one maps back H† to H and thus obtain a symmetry of the action, which finally reads

ρTR(t) = ρ(T − t); ρ̂TR(t) = −ρ̂(T − t) +
ρ(T − t)

1 − ρ(T − t)
. (D.15)

We get back the transformation (79), as expected.
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[34] Pilgram S, Jordan A N, Sukhorukov E V and Büttiker M 2003 Stochastic path integral formulation of full

counting statistics Phys. Rev. Lett. 90 206801
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