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Introduction Motivations

Why studying rare events?

[Anomaly for 1-month average]

2003 heat wave, Europe [Terra MODIS]
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Introduction Motivations

Why studying rare events?

2010 heat wave in Western Russia [Dole et al., 2011]
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Introduction Motivations

Why studying rare events?

°C
tmax=40 days︷ ︸︸ ︷

1

tmax

∫ tmax

0
dt ∆T(t) > 2°C⇒ « Teleconnection patterns » [Bouchet et al.]
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Introduction Motivations

Why studying rare events?

Questions for physicists and mathematicians:
Probability and dynamics of rare events?
How to sample these in numerical modelisation?
Numerical tools and methods to understand their formation?

Evolution of the return time
of the monthly averaged temperature

1
tmax

∫ tmax
0 dt T(t)

←→ anthropogenic impact on climate?

[Otto et al., 2012]
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Outline

Outline

Introduction
Settings
Different averages
Feedback method
Finite-time and finite-population scalings
Open questions
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Tools Large deviation functions

Distribution of a time-extensive observable K on [0, t]
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Tools Changing ensemble

s-modified dynamics

K = activity = #events

Markov processes: Configs. C, jump rates W(C → C′)

∂tP(C, t) =
∑
C′

{
W(C′ → C)P(C′, t)︸ ︷︷ ︸

gain term

−W(C → C′)P(C, t)︸ ︷︷ ︸
loss term

}

More detailed dynamics for P(C,K, t):

∂tP(C,K, t) =
∑
C′

{
W(C′ → C)P(C′,K−1, t)−W(C → C′)P(C,K, t)

}
Canonical description: s conjugated to K

P̂(C, s, t) =
∑

K
e−sKP(C,K, t)

s-modified dynamics [probability non-conserving]

∂tP̂(C, s, t) =
∑
C′

{
e−sW(C′ → C)P̂(C′, s, t)−W(C → C′)P̂(C, s, t)

}
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Tools Changing ensemble

s-modified dynamics K = kC0C1 + kC1C2 + . . .

Markov processes: Configs. C, jump rates W(C → C′)

∂tP(C, t) =
∑
C′

{
W(C′ → C)P(C′, t)︸ ︷︷ ︸

gain term

−W(C → C′)P(C, t)︸ ︷︷ ︸
loss term

}
More detailed dynamics for P(C,K, t):
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Numerical method Population dynamics

Numerical method [JB Anderson; D Aldous; P Grassberger; P Del Moral; …]

Evaluation of large deviation functions [à la “Diffusion Monte-Carlo”]∑
C

P̂(C, s, t) =
⟨
e−s K⟩ ∼ etψ(s) (ψ(s)=CGF)

discrete time: Giardinà, Kurchan, Peliti [PRL 96, 120603 (2006)]
continuous time: VL, Tailleur [JSTAT P03004 (2007)]

Cloning dynamics
∂tP̂(C, s) =

∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

Ws(C′ → C) = e−sW(C′ → C)
rs(C) =

∑
C′ Ws(C → C′) r(C) =

∑
C′ W(C → C′)

δrs(C) = rs(C)− r(C)
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Population dynamics

Explicit construction

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

How to take into account loss/gain of probability?
handle a large number Nc of copies of the system
implement a selection rule: on a time interval ∆t
a copy in config C is replaced by Y = e∆t δrs(C) copies
ψ(s) = the rate of exponential growth/decay of the total population
optionally: keep population constant by non-biased pruning/cloning
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Population dynamics

Explicit construction

∂tP̂(C, s) =
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How to take into account loss/gain of probability?
handle a large number Nc of copies of the system
implement a selection rule: on a time interval ∆t
a copy in config C is replaced by Y = ⌊e∆t δrs(C) + ε⌋ copies, ε∼ [0, 1]

ψ(s) = the rate of exponential growth/decay of the total population
optionally: keep population constant by non-biased pruning/cloning

CGF estimator: ψ(s) = EΨ(s) with Ψ(s) = log
∏

t
Nc+Yt−1

Nc︸ ︷︷ ︸
reconstituted
population
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Biological interpretation
copy in configuration C ≡ organism of genome C
dynamics of rates Ws ≡ mutations
cloning at rates δrs ≡ selection rendering typical the rare histories

the CGF ψ(s) is a measure of the fitness of the population
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Population dynamics Example

An example: 4 copies, 1 degree of freedom C = x ∈ R
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Population dynamics Questions

How to perform averages? (i) [spectral analysis]

∂t|P̂⟩ = Ws|P̂⟩ Ws|R⟩ = ψ(s)|R⟩

etWs ∼
t→∞

etψ(s)|R⟩⟨L| ⟨L|Ws = ψ(s)⟨L|

[ ⟨L| = ⟨−| @ s = 0 ]

⋆ Final-time distribution: proportion of copies in C at t

⟨Nnc(t)⟩s

= ⟨−|etWs |Pi⟩N0 ∼t→∞
etψ(s)⟨L|Pi⟩N0

⟨Nnc(C, t)⟩s

= ⟨C|etWs |Pi⟩N0 ∼t→∞
etψ(s)⟨C|R⟩⟨L|Pi⟩N0

pend(C, t) =
⟨Nnc(C, t)⟩s
⟨Nnc(t)⟩s

∼
t→∞

⟨C|R⟩ ≡ pend(C)

[Nnc = number in non-constant population dynamics]

Final-time distribution governed by right eigenvector.
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Population dynamics Questions

An example: 4 copies, 1 degree of freedom C = x ∈ R
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Population dynamics Questions

How to perform averages? (ii) Intermediate times

∂t|P̂⟩ = Ws|P̂⟩ Ws|R⟩ = ψ(s)|R⟩

etWs ∼
t→∞

etψ(s)|R⟩⟨L| ⟨L|Ws = ψ(s)⟨L|

[ ⟨L| = ⟨−| @ s = 0 ]

⋆ Mid-time distribution: proportion of copies in C at t1 ≪ t

⟨Nnc(t)⟩s

= ⟨−|etWs |Pi⟩N0 ∼t→∞
etψ(s)⟨L|Pi⟩N0

⟨Nnc(t|C, t1)⟩s

= ⟨−|e(t−t1)Ws |C⟩⟨C|et1Ws |Pi⟩N0 ∼ etψ(s)⟨L|C⟩⟨C|R⟩⟨L|Pi⟩N0

p(t|C, t1) =
⟨Nnc(t|C, t1)⟩s
⟨Nnc(t)⟩s

∼
t→∞

⟨L|C⟩⟨C|R⟩ ≡ pave(C)

Mid-time distribution governed by left and right eigenvectors.
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Population dynamics Questions

An example: 4 copies, 1 degree of freedom C = x ∈ R

Huge sampling issue
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Population dynamics Questions

How to perform averages?

⋆ Mid-time ancestor distribution:
fraction of copies (at time t1) which were in configuration C, knowing that
there are in configuration Cf at final time tf:

panc(C, t1; Cf, tf) =
⟨Nnc(Cf, tf|C, t1)⟩s∑
C′⟨Nnc(Cf, tf|C′, t1)⟩s

∼
tf,1→∞

⟨L|C⟩⟨C|R⟩ = pave(C)

The “ancestor statistics” of a configuration Cf is thus
independent (far enough in the past) of the configuration Cf.
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Population dynamics Questions

Example distributions for a simple Langevin dynamics

final-time: pend(x) intermediate-time: pave(x)
(= R(x)) (= R(x)L(x))
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Population dynamics Questions

The small-noise crisis: systematic errors grow as ϵ→ 0

CGF as a function of the noise amplitude ϵ:

Cause: as ϵ→ 0, pave(x) & pend(x)→ sharply peaked at different points
i.e. the clones do not sample correctly the phase space

Vivien Lecomte (LIPhy) Population dynamics & rare events 07/06/2018 17 / 29



Feedback Method

The feedback method
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Feedback Method Description

How to make mid- and final-time distribution closer?

Driven/auxiliary dynamics: [Maes, Jack&Sollich, Touchette&Chetrite]
Probability preserving
No mismatch between pave and pend

Constructed as
Waux

s = LWsL−1 − ψ(s)1

Issue: determining L is difficult
Solution: evaluate L as Ltest on the fly [feedback] and simulate

Wtest
s = LtestWsL−1

test (induces effective forces)
Iterate. [For any Ltest, the simulation is in principle correct.]

Similar in spirit to multi-canonical (e.g. Wang–Landau) approaches in
static thermodynamics. [Here, one flattens the left-eigenvector of Wtest

s .]
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Feedback Method Results

Improvement of the small-noise crisis (i.i)
CGF as a function of the noise amplitude ϵ:

Physical insight: probability loss transformed into effective forces.
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Feedback Method Results

Improvement of the small-noise crisis (i.ii)

Without feedback With feedback

Much more efficient evaluation of the biased distribution.
Even for a very crude (polynomial) approximation of the effective force.
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Feedback Method Results

Improvement of the small-noise crisis (ii)

Interacting system in 1D.
Effective force: 1-, 2-, 3- body interactions only [also crude approx.].
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Finite-time and -population effects

Finite-time and -population effects
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Finite-time and -population effects Finite-time scaling

Finite-time scaling [fixed population Nc]

Estimator converges in 1/t to its infinite-time limit
Understanding: the estimator is an additive observable of the pop. dyn.
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Finite-time and -population effects Finite-population scaling

Finite-Nc scaling [fixed time]

Estimator converges in 1/Nc to its infinite-population limit
Understanding: large Nc expansion, small-noise description
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Finite-time and -population effects Distribution of the CGF estimator

Distribution of the CGF estimator [fixed population Nc]

In the numerics: ≈ Gaussian when finite-Nc scaling is O(1/Nc)
A way to check why one is / is not in that regime
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Conclusion

Summary and open questions (1)

Feedback method [with F Bouchet, R Jack, T Nemoto]
Sampling problem (depletion of ancestors)
On-the-fly evaluated auxiliary dynamics
Solution to the small-noise crisis
Systems with large number of degrees of freedom

Finite-population effects [with E Guevara, T Nemoto]
Quantitative finite-Nclones scaling → interpolation method
Initial transient regime due to small population
Analogy with biology: many small islands vs. few large islands?
Question: effective forces ← selection?
Question: relation to recent work of Ferré and Touchette?
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Conclusion Open questions

Open questions (2): why is the feedback working?

Improvement of the depletion-of-ancestors problem:

Dashed line: lower noise Continuous line: higher noise
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Conclusion Open questions

Open questions (3)

Finite-population and -time scalings
Anomalous fluctuations (invalid 1/Nc asymptotics)
Correct description of the meta-dynamics?
Finite-Nc and -t scaling with feedback
Phase transition in the distribution of the CGF estimator?
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Conclusion Open questions

Thanks for your attention!
References:
⋆ Population dynamics method with a multi-canonical feedback control

Takahiro Nemoto, Freddy Bouchet, Robert L. Jack and Vivien Lecomte
PRE 93 062123 (2016)

⋆ Finite-time and finite-size scalings in the evaluation of large deviation
functions: Analytical study using a birth-death process
Takahiro Nemoto, Esteban Guevara Hidalgo and Vivien Lecomte
PRE 95 012102 (2017)

⋆ Finite-size scaling of a first-order dynamical phase transition: adaptive
population dynamics and effective model
Takahiro Nemoto, Robert L. Jack and Vivien Lecomte
PRL 118 115702 (2017)

⋆ Finite-time and finite-size scalings in the evaluation of large deviation
functions: Numerical approach in continuous time
Esteban Guevara Hidalgo, Takahiro Nemoto and Vivien Lecomte
PRE 95 062134 (2017)
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Supplementary material

Supplementary material
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Supplementary material
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Prob[K] ∼ etφ(K/t) Finite-time & -size scalings matter.
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Supplementary material

[Merolle, Garrahan and Chandler, 2005]
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Supplementary material

Exponential divergence of the susceptibility
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Supplementary material Explicit construction

Explicit construction (1/3)

0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

jump probability:
1

rs(C1)
Ws(C1→C2)

Probability-preserving contribution

∂tP̂(C, t) =
∑
C′

{
Ws(C′ → C)P̂(C′, t)︸ ︷︷ ︸

gain term

−Ws(C → C′)P̂(C, t)︸ ︷︷ ︸
loss term

}
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Explicit construction (1/3)

0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

jump probability:
1

rs(C1)
Ws(C1→C2)

Which configurations will be visited?
Configurational part of the trajectory: C0 → . . .→ CK

Prob{hist} =
K−1∏
n=0

Ws(Cn → Cn+1)

rs(Cn)

where
rs(C) =

∑
C′

Ws(C → C′)
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Supplementary material Explicit construction

Explicit construction (2/3)

0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

probability density:
rs(C1)e−(t2−t1)rs(C1)

no jump probability:
e−(t−tK)rs(CK)

When shall the system jump from one configuration to the next one?
probability density for the time interval tn − tn−1

rs(Cn−1)e−(tn−tn−1)rs(Cn−1)

probability not to leave CK during the time interval t− tK

e−(t−tK)rs(CK)
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Explicit construction (2/3)
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Supplementary material Explicit construction

Explicit construction (3/3)

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

How to take into account loss/gain of probability?
handle a large number of copies of the system
implement a selection rule: on a time interval ∆t
a copy in config C is replaced by e∆t δrs(C) copies
ψ(s) = the rate of exponential growth/decay of the total population
optionally: keep population constant by non-biased pruning/cloning
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Supplementary material Explicit construction

Explicit construction (3/3)

∂tP̂(C, s) =
∑
C′

Ws(C′ → C)P̂(C′, s)− rs(C)P̂(C, s)︸ ︷︷ ︸
modified dynamics

+ δrs(C)P̂(C, s)︸ ︷︷ ︸
cloning term

Biological interpretation
copy in configuration C ≡ organism of genome C
dynamics of rates Ws ≡ mutations
cloning at rates δrs ≡ selection rendering atypical histories typical
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