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Introduction Motivations

Motivations

Boltzmann-Gibbs thermodynamics

P(C) = e−βH(C)

Before reaching equilibrium
transient regime
“glassy” dynamics

Non-equilibrium phenomena
systems with a current (of particles, energy)
dissipative dynamics (granular media)
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Motivations

Boltzmann-Gibbs thermodynamics

P(C) = e−βH(C)

Can’t be used in any situation!

Before reaching equilibrium
transient regime
“glassy” dynamics

Non-equilibrium phenomena
systems with a current (of particles, energy)
dissipative dynamics (granular media)

→ Need for a dynamical description
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Models of glass formers
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Fig.1 in Ritort and Sollich, Adv. in Phys. 52 219 (2003)
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From configurations to histories

fluctuations of configurations
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Models of glass formers Example

Example

0 1 2

Independent particles

L sites n = {ni} with

{

ni = 0 inactive site
ni = 1 active site
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Models of glass formers Example

Example

3 4 5

Independent particles

L sites n = {ni} with

{

ni = 0 inactive site
ni = 1 active site

Transition rates in each site:
activation with rate W (0i → 1i) = c
inactivation with rate W (1i → 0i ) = 1− c
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Models of glass formers Example

Example

6 7 8

Independent particles

L sites n = {ni} with

{

ni = 0 inactive site
ni = 1 active site

Transition rates in each site:
activation with rate W (0i → 1i) = c
inactivation with rate W (1i → 0i ) = 1− c

Equilibrium distribution: Peq(n) =
∏

i

cni (1− c)1−ni
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Models of glass formers Example

Example

9 : ;

Independent particles

L sites n = {ni} with

{

ni = 0 inactive site
ni = 1 active site

Transition rates in each site:
activation with rate W (0i → 1i) = c
inactivation with rate W (1i → 0i ) = 1− c

Equilibrium distribution: Peq(n) =
∏

i

cni (1− c)1−ni

Mean density of active sites: 〈n〉 =
1
L

∑

i

〈ni〉 = c

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 6 / 21



Models of glass formers Kinetically constrained models (KCM)

Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around active sites.
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Constrained dynamics: changes occur only around active sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be active to allow i to change
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Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around active sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be active to allow i to change

inactivation: F G H
1− c 1− c

activation: I J KL M N Oc c c c

same equilibrium distribution Peq(n)

same mean density 〈n〉 = c
BUT:
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Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around active sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be active to allow i to change

inactivation: P Q R
1− c 1− c

activation: S T UV W X Yc c c c

same equilibrium distribution Peq(n)

same mean density 〈n〉 = c
BUT:

AGING
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Models of glass formers Kinetically constrained models (KCM)

Trajectories

Peq(n) insufficient→ analysis of histories
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Trajectories

Peq(n) insufficient→ analysis of histories

n(t)

t0

t1 t2 t3

n(1)

n(2)

n(3)

n(t)
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Trajectories

Peq(n) insufficient→ analysis of histories

n(t)

t0

t1 t2 t3

n(1)

n(2)

n(3)

n(t)

activity K = number of configuration changes
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Models of glass formers Kinetically constrained models (KCM)

Statistics over histories

Classification of histories according to a time extensive parameter

activity K = number of configuration changes
on average:

〈K 〉 = 2c2(1− c) L t (large t)

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9 / 21



Models of glass formers Kinetically constrained models (KCM)

Statistics over histories

Classification of histories according to a time extensive parameter

activity K = number of configuration changes
on average:

〈K 〉 = 2c2(1− c) L t (large t)

K is fluctuating

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9 / 21



Models of glass formers Kinetically constrained models (KCM)

Statistics over histories

Classification of histories according to a time extensive parameter

activity K = number of configuration changes
on average:

〈K 〉 = 2c2(1− c) L t (large t)

K is fluctuating
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∣
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Statistics over histories

Classification of histories according to a time extensive parameter

activity K = number of configuration changes
on average:

〈K 〉 = 2c2(1− c) L t (large t)

K is fluctuating

ρ(K ) =

∣
∣
∣
∣
∣

time-averaged density of active sites
for histories of activity K

ρ(K ) gives information on non-typical histories
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Models of glass formers Dynamical partition function

Dynamical partition function

Fluctuations (1): the micro-canonical way
Thermodynamics of configurations

Ω(E , L) =

∣
∣
∣
∣
∣

number of configurations
with energy E

(large L)
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Dynamical partition function

Fluctuations (1): the micro-canonical way
Thermodynamics of configurations

Ω(E , L) =

∣
∣
∣
∣
∣

number of configurations
with energy E

(large L)

Thermodynamics of histories [à la Ruelle]

Ωdyn(K , t) =

∣
∣
∣
∣
∣

number of histories
with activity K between 0 et t

(grand t)
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Models of glass formers Dynamical partition function

Dynamical partition function

Fluctuations (1): the micro-canonical way
Thermodynamics of configurations

Ω(E , L) =

∣
∣
∣
∣
∣

number of configurations
with energy E

(large L)

Thermodynamics of histories [à la Ruelle]

Ωdyn(K , t) =

∣
∣
∣
∣
∣

number of histories
with activity K between 0 et t

(grand t)

micro-canonical ensemble: technically painful
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Models of glass formers Dynamical partition function

Dynamical partition function

Fluctuations (2): the canonical way
Thermodynamics of configurations

Z (β, L) =
∑

E

Ω(E , L) e−β E(n) = e−L f (β) (large L)

Thermodynamics of histories [à la Ruelle]

ZK(s, t) =
∑

K

Ωdyn(K , t) e−s K [hist] = e−t L fK(s) ( large t
large L)
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Dynamical partition function

Fluctuations (2): the canonical way
Thermodynamics of configurations

Z (β, L) =
∑

E

Ω(E , L) e−β E(n) = e−L f (β) (large L)

Thermodynamics of histories [à la Ruelle]

ZK(s, t) =
∑

K

Ωdyn(K , t) e−s K [hist] = e−t L fK(s) ( large t
large L)

(Dynamical) canonical ensemble
β conjugated to energy
s conjugated to activity K
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Models of glass formers Dynamical partition function

Dynamical partition function

Fluctuations (2): the canonical way
Thermodynamics of configurations

Z (β, L) =
∑

E

Ω(E , L) e−β E(n) = e−L f (β) (large L)

Thermodynamics of histories [à la Ruelle]

ZK(s, t) =
∑

K

Ωdyn(K , t) e−s K [hist] = e−t L fK(s) ( large t
large L)

Fluctuations of K

〈e−sK 〉 ∼ e−t L fK (s)

∣
∣
∣
∣
∣

Dynamical free energy fK (s) ↔

cumulant generating function of K .

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 11 / 21



Models of glass formers s-state

s-state

s probes dynamical features
average in the s-state of an observable O:

O(s) =

〈
O[hist] e−sK 〉

〈e−sK 〉

O[hist] is (for instance) an history-dependent observable
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〈
O[hist] e−sK 〉

〈e−sK 〉

O[hist] is (for instance) an history-dependent observable
interpretation

s < 0 : more active histories (“large” K )
s = 0 : equilibrium state
s > 0 : less active histories (“small” K )
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O[hist] is (for instance) an history-dependent observable
interpretation

s < 0 : more active histories (“large” K )
s = 0 : equilibrium state
s > 0 : less active histories (“small” K )

Ex: time-averaged density ρ[hist] = 1
Lt

∫ t
0 dτ

∑

i ni(τ)
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interpretation

s < 0 : more active histories (“large” K )
s = 0 : equilibrium state
s > 0 : less active histories (“small” K )

Ex: time-averaged density ρ[hist] = 1
Lt

∫ t
0 dτ

∑

i ni(τ)

ρK (s) =

〈
ρ[hist] e−sK 〉

〈e−sK 〉
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Models of glass formers Results

Dynamical phase transition: FA model (d=1)
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Models of glass formers Results

Dynamical phase transition: FA model (d=1)
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Models of glass formers Dynamical Landau free energy

Dynamical Landau free energy F(ρ, s)

Probability, in the s-state, to measure
a time-averaged density ρ btw. 0 and t

∣
∣
∣
∣
∣
∼ e−t L F(ρ,s)
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∣
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∣
∣
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〈

e−sK δ
(
〈n〉 − Lρ
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∣
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∣
∣
∼ e−t L F(ρ,s)

〈

e−sK δ
(
〈n〉 − Lρ

)〉∣
∣
∣ ∼ e−t L F(ρ,s)

Extremalization procedure

fK(s) = min
ρ
F(ρ, s)
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Models of glass formers Dynamical Landau free energy

Dynamical Landau free energy F(ρ, s)

Probability, in the s-state, to measure
a time-averaged density ρ btw. 0 and t

∣
∣
∣
∣
∣
∼ e−t L F(ρ,s)

〈

e−sK δ
(
〈n〉 − Lρ

)〉∣
∣
∣ ∼ e−t L F(ρ,s)

Extremalization procedure

fK(s) = min
ρ
F(ρ, s)

Minimum reached at ρ = ρK (s):

fK(s) = F(ρK (s), s)
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Models of glass formers Dynamical Landau free energy

Dynamical Landau free-energy landscape
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Models of glass formers Dynamical Landau free energy

Dynamical Landau free-energy landscape
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Models of glass formers Dynamical Landau free energy

Dynamical Landau free-energy landscape
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Perspective Summary

Thermodynamics of histories: summary

Results
s-states ≡ tools to study dynamics
Description of dynamical phase coexistence
→ Dynamical Landau free energy F(ρ, s)←

Dynamical phase transition
Criticality in a (dynamical) “hidden” dimension
Dynamical heterogeneity
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Perspective Summary

Perspective

Perspective
Anomalous relaxation in the FA model.

References
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Perspective Summary

Perspective

Perspective
Anomalous relaxation in the FA model.
Link with the (χ4 related) growing lenght.
Other glassy systems

p-spin models
structural glasses (Lennard-Jones)

Experimental realisation of s(' 0)-states

References
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Perspective Summary

s-modified dynamics

Markov processes:

∂t P(C, t) =
∑

C′

{

W (C′ → C)P(C′, t)
︸ ︷︷ ︸

gain term

−W (C → C′)P(C, t)
︸ ︷︷ ︸

loss term

}
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P(C, s, t) =
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K

e−sK P(C, K , t)

s-modified dynamics [probability non-conserving]

∂t P(C, s, t) =
∑

C′

{

e−sK W (C′ → C)P(C′, s, t)−W (C → C ′)P(C, s, t)
}
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Perspective Summary

Numerical method (with J. Tailleur)

Evaluation of large deviation functions

Z (s, t) =
∑

C

P(C, s, t) =
〈

e−s K
〉

∼ e−t fK (s)

discrete time: Giardinà, Kurchan, Peliti [PRL 96, 120603 (2006)]

continuous time: Lecomte, Tailleur [JSTAT P03004 (2007)]

Cloning dynamics

∂tP(C, s) =
∑

C′

Ws(C
′ → C)P(C′, s)− rs(C)P(C, s)

︸ ︷︷ ︸

modified dynamics

+ δrs(C)P(C, s)

︸ ︷︷ ︸

cloning term

Ws(C
′ → C) = e−sW (C′ → C)

rs(C) =
∑

C′ 6=C Ws(C → C
′)

δrs(C) = rs(C)− r(C)
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