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Boltzmann-Gibbs thermodynamics
P(C) = e BH(C)
Can’t be used in any situation!
Before reaching equilibrium

@ transient regime
@ “glassy” dynamics

Non-equilibrium phenomena
@ systems with a current (of particles, energy)

@ dissipative dynamics (granular media)
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Motivations
Boltzmann-Gibbs thermodynamics
P(C) = e BH(C)
Can’t be used in any situation!
Before reaching equilibrium

@ transient regime
@ “glassy” dynamics

Non-equilibrium phenomena
@ systems with a current (of particles, energy)

@ dissipative dynamics (granular media)

— Need for a dynamical description
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Glasses

Fig.1 in Ritort and Sollich, Adv. in Phys. 52 219 (2003)
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Models of glass formers Thermodynamics of histories

From configurations to histories
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Models of glass formers Example

Example

Independent particles
0 inactive site

nj =
active site

@ [ sites n = {n;} with
ni = 1
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Models of glass formers Example

Example
— e L e e
Independent particles
. ) n; =0 inactive site
@ L sites n = {n;} with , ,
n;=1 active site
@ Transition rates in each site:

@ activation with rate W(0; — 1;) =c¢
@ inactivation with rate W(1, - 0;) =1—c¢
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Example
Example

Independent particles

. . n; = 0 inactive site
@ [ sites n = {n;} with .
ni = active site
@ Transition rates in each site:
@ activation with rate W(0; — 1;) =c¢
@ inactivation with rate W(1, - 0;) =1—c¢

Equilibrium distribution:  Peq(n ch, —c)tn
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Example
Example

Independent particles
n; =0 inactive site
o Lsites n= {n;} with { " o
n;=1 active site

@ Transition rates in each site:
@ activation with rate W(0; — 1;) =c¢
@ inactivation with rate W(1, - 0;) =1—c¢

Equilibrium distribution:  Peq(n ch' —c)tn

Mean density of active sites:  (n) = I Z(n,-) =cC
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Constrained dynamics: changes occur only around active sites.
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Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around active sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be active to allow i to change

inactivation:

activation:

+e 0O
+e 0O

-
.
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Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around active sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be active to allow i to change

inactivation:
c
$

activation: ., |

@ same equilibrium distribution Peq(n)

@ same mean density (n) = ¢
BUT:
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Kinetically constrained models (KCM)
Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around active sites.

Fredrickson Andersen model in 1D
at least one neighbor of i must be active to allow i to change

inactivation: ~ , , , ., ¢ ., . | >KN)(

activation:

@ same equilibrium distribution Peq(n)
@ same mean density (n) =c¢

BUT:
@ AGING
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Trajectories

Peq(n) insufficient — analysis of histories

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 8/21



Models of glass formers Kinetically constrained models (KCM)

Trajectories

Peq(n) insufficient — analysis of histories
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Szl e i iz nE e )
Trajectories

Peq(n) insufficient — analysis of histories

n(t)

n®

n(t)

n®

4 b )
activity K = number of configuration changes
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Kinetically constrained models (KCM)
Statistics over histories

Classification of histories according to a time extensive parameter
@ activity K = number of configuration changes

@ on average.
(K)y = 2c?(1 —¢) Lt (large 1)
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Kinetically constrained models (KCM)
Statistics over histories

Classification of histories according to a time extensive parameter
@ activity K = number of configuration changes

@ on average.
(K)y = 2c?(1 —¢) Lt (large 1)

@ K is fluctuating

time-averaged density of active sites

p(K) = for histories of activity K

p(K) gives information on non-typical histories

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9/21



2y DD e
Dynamical partition function

Fluctuations (1): the micro-canonical way
@ Thermodynamics of configurations
number of configurations
QEL) = | d (large L)
with energy E
V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 10/21



2y DD e
Dynamical partition function

Fluctuations (1): the micro-canonical way
@ Thermodynamics of configurations

number of configurations
QEL) = | : (large L)
with energy E
@ Thermodynamics of histories [a /a Ruelle]
Qun(K. 1) = number of histories G
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2y DD e
Dynamical partition function

Fluctuations (1): the micro-canonical way
@ Thermodynamics of configurations

number of configurations
QEL) = | : (large L)
with energy E
@ Thermodynamics of histories [a /a Ruelle]
Qun(K. 1) = number of histories G
I with activity K between 0 et ¢ 2

micro-canonical ensemble: technically painful
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2y DD e
Dynamical partition function

Fluctuations (2): the canonical way
@ Thermodynamics of configurations

Z(B,L) = > _Q(E,L)e PEM = ¢=tA) (large L)
E
@ Thermodynamics of histories [a /a Ruelle]

Zi(s,1) = > Quyn(K, 1) e sKIST — g=tLi(s)  (arge h
K

<
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Dynamical partition function

Fluctuations (2): the canonical way
@ Thermodynamics of configurations

Z(B,L) = > _Q(E,L)e PEM = ¢=tA) (large L)
E
@ Thermodynamics of histories [a /a Ruelle]

Zi(s.1) = > Quyn(K, ) e~sKINS — g=tLi(s)  (arge f)
K

(Dynamical) canonical ensemble
@ [ conjugated to energy
@ s conjugated to activity K
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2y DD e
Dynamical partition function

Fluctuations (2): the canonical way
@ Thermodynamics of configurations

Z(B,L) = > _Q(E,L)e PEM = ¢=tA) (large L)
E
@ Thermodynamics of histories [a /a Ruelle]

Zi(s.1) = > Quyn(K, ) e~sKINS — g=tLi(s)  (arge f)
K

Fluctuations of K
Dynamical free energy fx(s) <«

<e—sK> ~ e—thK(s)
cumulant generating function of K.
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s-State

s probes dynamical features
@ average in the s-state of an observable O:
{Olhist] e~5K)

O(S) - (e—sK>

Olhist] is (for instance) an history-dependent observable
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Models of glass formers s-state

s-state

s probes dynamical features
@ average in the s-state of an observable O:
{Olhist] e~5K)

O(S) - (e—sK>

Olhist] is (for instance) an history-dependent observable

@ interpretation

s < 0 : more active histories (“large” K)
s =0: equilibrium state

s> 0: less active histories (“small” K)
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s-state

s probes dynamical features
@ average in the s-state of an observable O:
{Olhist] e~5K)

O(s) = (e—sK)

Olhist] is (for instance) an history-dependent observable

@ interpretation
s < 0 : more active histories (“large” K)
s =0: equilibrium state
s> 0: less active histories (“small” K)

Ex: time-averaged density  plhist] = % [ d7 3", ni(7)
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Models of glass formers s-state

s-state

s probes dynamical features
@ average in the s-state of an observable O:
{Olhist] e~5K)

O(s) = (e—sK)

Olhist] is (for instance) an history-dependent observable

@ interpretation
s < 0 : more active histories (“large” K)
s =0: equilibrium state
s> 0: less active histories (“small” K)

Ex: time-averaged density  plhist] = % [ d7 3", ni(7)

{ plhist] e=K)
pk(8) = (e——SK>
17/5/2007 12/21
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Dynamical phase transition: FA model (d=1)
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Dynamical phase transition: FA model (d=1)
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V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 14/21



Gzl
Dynamical phase transition: FA model (d=1)
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Gzl
Dynamical phase transition: FA model (d=1)

constrained

unconstrained

more active less active

Comparison between constrained and unconstrained dynamics
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Dynamical Landau free energy F(p, S)

Probability, in the s-state, to measure o~ ILF(p9)

a time-averaged density p btw. 0 and t
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BynamIcal et ea enerey
Dynamical Landau free energy F(p, S)

Probability, in the s-state, to measure o~ ILF(p9)

a time-averaged density p btw. 0 and t

(=5 ((n) - Lp)>‘ ~ e~ tLF(p9)
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Dynamical Landau free energy F(p, S)

Probability, in the s-state, to measure o~ ILF(p9)

a time-averaged density p btw. 0 and t

(=5 ((n) - Lp)>‘ ~ e~ tLF(p9)

Extremalization procedure

ik(s) = min F(p, 5)
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BynamIcal et ea enerey
Dynamical Landau free energy F(p, S)

Probability, in the s-state, to measure o~ ILF(p9)

a time-averaged density p btw. 0 and t
<e—sK5(<n> _ Lp)>‘ ~ e~ tLF(ps)

Extremalization procedure

ik(s) = min F(p, 5)

Minimum reached at p = pk(S):
fk(s) = F(pk(s),s)

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 16/21



BynamIcal et ea enerey
Dynamical Landau free-energy landscape

unconstrained

PI’Ob[oJ](p) ~ e‘“f(p’s)
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BynamIcal et ea enerey
Dynamical Landau free-energy landscape

F(p,s=0)

unconstrained

1 .
onstraine

0.2 0.4 0.6 0.8 1%

PI’Ob[oJ](p) ~ e‘“f(p’s)
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BynamIcal et ea enerey
Dynamical Landau free-energy landscape

F(p,s)

-0.05

f(s) = min F(p, 8) = F(pk(s), 8)
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BynamIcal et ea enerey
Dynamical Landau free-energy landscape

F(p,s=0)
equilibrium (s = 0)
0.2 displays
0.15 phase coexistence
0.1
0.05
0.2 0.4 0.6 0.8 p
-0.05

PrOb[oyt](p) ~ e_th(p’s)
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Sy
Thermodynamics of histories: summary

Results
@ s-states = tools to study dynamics

@ Description of dynamical phase coexistence
— Dynamical Landau free energy F(p, s) <

Dynamical phase transition
@ Criticality in a (dynamical) “hidden” dimension
@ Dynamical heterogeneity
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Perspective

Perspective

@ Anomalous relaxation in the FA model.

References
@ PRL95 010601 (2005)
@ J. Stat. Phys. 127 51 (2007)
@ PRL 98 195702 (2007)
@ JSTAT P03004 (2007)
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Perspective
@ Anomalous relaxation in the FA model.
@ Link with the (x4 related) growing lenght.
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Perspective

Perspective
@ Anomalous relaxation in the FA model.

@ Link with the (x4 related) growing lenght.
@ Other glassy systems

@ p-spin models

@ structural glasses (Lennard-Jones)

References
@ PRL 95 010601 (2005)
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S
Perspective

Perspective
@ Anomalous relaxation in the FA model.

@ Link with the (x4 related) growing lenght.
@ Other glassy systems

@ p-spin models

@ structural glasses (Lennard-Jones)

@ Experimental realisation of s(~ 0)-states

References
@ PRL 95 010601 (2005)
@ J. Stat. Phys. 127 51 (2007)
@ PRL 98 195702 (2007)
@ JSTAT P03004 (2007)
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S
s-modified dynamics

@ Markov processes:

OP(C.t) = { W(C' — C)P(C',t) — W(C — C')P(C, 1) }
%

gain term loss term
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@ Markov processes:

OP(C.t) = { W(C' — C)P(C',t) — W(C — C')P(C, 1) }
%

gain term loss term

@ More detailed dynamics for P(C, K, t):

HP(C.K ) =Y { W(C' — C)P(C', K—1,1)—W(C — C')P(C, K, t)}
=

V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 20/ 21



S
s-modified dynamics

@ Markov processes:

OP(C.t) = { W(C' — C)P(C',t) — W(C — C')P(C, 1) }
%
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@ More detailed dynamics for P(C, K, t):

HP(C.K ) =Y { W(C' — C)P(C', K—1,1)—W(C — C')P(C, K, t)}
=

@ Canonical description: s conjugated to K
P(C,s,t)=> e P(C,K.1)
K
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s-modified dynamics

@ Markov processes:

OP(C.t) = { W(C' — C)P(C',t) — W(C — C')P(C, 1) }
%

gain term loss term

@ More detailed dynamics for P(C, K, t):

HP(C.K ) =Y { W(C' — C)P(C', K—1,1)—W(C — C')P(C, K, t)}
=

@ Canonical description: s conjugated to K
P(C,s,t)=> e P(C,K.1)
K

@ s-modified dynamics [probability non-conserving]

HP(C. s t) = {e—sK W(C' — C)P(C', s, t)-W(C — C')P(C,s, t)}
Cl
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S
Numerical method (with J. Tailleur)

Evaluation of large deviation functions
Z(s,t)=> P(C,s.t) = <e‘SK> ~ e~ tk(s)
c

@ discrete time: Giardina, Kurchan, Peliti [PRL 96, 120603 (2006)]
@ continuous time: Lecomte, Tailleur [JSTAT P03004 (2007)]
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S
Numerical method (with J. Tailleur)

Evaluation of large deviation functions
Z(s,t)=> P(C,s.t) = <e‘SK> ~ e~ tik(s)
c

@ discrete time: Giardina, Kurchan, Peliti [PRL 96, 120603 (2006)]
@ continuous time: Lecomte, Tailleur [JSTAT P03004 (2007)]

Cloning dynamics

0tP(C, s) = Z Ws(C" — C)P(C',s) — rs(C)P(C,s) + drs(C)P(C, s)
cr

modified dynamics cloning term
® Ws(C' —C)=eSW({C' — ()
0 15(C) =D crze Ws(C — (')
@ irs(C) = rs(C) — r(C)
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