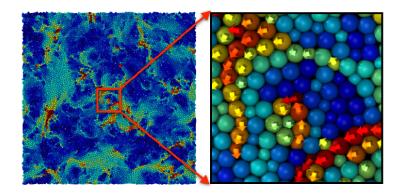
Finite-size effects in a mean-field kinetically constrained model

Takahiro Nemoto¹, Shin-ichi Sasa¹, Frédéric van Wijland²

 1 Kyoto University 2 MSC, Paris 7 University

Tel-Aviv - 22th October 2014

Dynamical excitations in glass-forming liquids

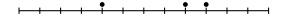


From: Keys et. al PRX 1 021013 (2011)

Can we model this simply?

Example 0:

(in 1D for simplicity)

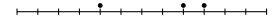


Independent sites

- L sites $\mathbf{n} = \{n_i\}$ with $\begin{cases} n_i = 0 & \text{unexcited site} \\ n_i = 1 & \text{excited site} \end{cases}$
- Transition rates in each site:
 - excitation with rate $W(0_i \rightarrow 1_i) = c$
 - unexcitation with rate $W(1_i \rightarrow 0_i) = 1 c$

Example 0:

(in 1D for simplicity)



Independent sites

Unconstrained model

- L sites $\mathbf{n} = \{n_i\}$ with $\begin{cases} n_i = 0 & \text{unexcited site} \\ n_i = 1 & \text{excited site} \end{cases}$
- Transition rates in each site:
 - excitation with rate $W(0_i \rightarrow 1_i) = c$
 - unexcitation with rate $W(1_i \rightarrow 0_i) = 1 c$

Equilibrium distribution:
$$P_{eq}(\mathbf{n}) = \prod c^{n_i} (1-c)^{1-n_i}$$

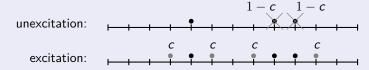
Mean density of excited sites:
$$\langle n \rangle = \frac{1}{L} \sum_{i} \langle n_i \rangle = c$$

Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around excited sites.

Fredrickson Andersen model in 1D

at least one neighbor of i must be excited to allow i to change

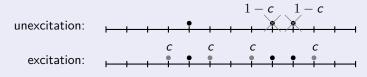


Kinetically constrained models (KCM)

Constrained dynamics: changes occur only around excited sites.

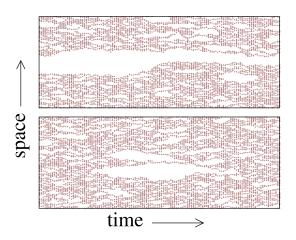
Fredrickson Andersen model in 1D

at least one neighbor of *i* must be excited to allow *i* to change



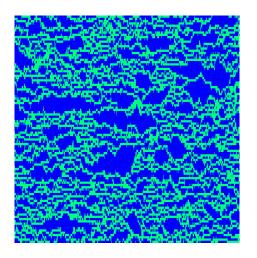
- same equilibrium distribution $P_{eq}(\mathbf{n})$ with&without the constraint
- BUT [for some KCMs]: ageing, super-Arrhenius slowing down, dynamical heterogeneity
 - → static free-energy landscape not useful here
 - \longrightarrow need for a genuinely dynamical description

Space-time "bubbles" of inactivity



From: Merolle, Garrahan and Chandler, PNAS 102, 10837 (2005)

Space-time "bubbles" of inactivity



[Fig. by A. Leos Zamorategui]

Questions

Active and inactive histories having a probability of the same order Coexistence of dynamical phases?

Need for tools

- How to describe a dynamical 1st order phase transition?
- Dynamical Landau free-energy landscape?
 (i.e. competition between different optima)

Questions

Active and inactive histories having a probability of the same order

Coexistence of dynamical phases?

Need for tools

- How to describe a dynamical 1st order phase transition?
- Dynamical Landau free-energy landscape?
 (i.e. competition between different optima)

[Juan P. Garrahan, Robert L. Jack, VL, Estelle Pitard, Kristina van Duijvendijk and Frédéric van Wijland, J. Phys. A 42 075007 (2009)]

Activity of histories: order parameter

Activity K = number of events = (# excitations) + (# unexcitations)

(Dynamical) canonical ensemble

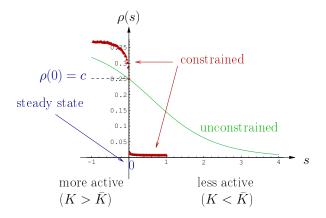
- \bullet β conjugated to energy
- s conjugated to activity K

(statics) (dynamics)

$$\begin{split} \langle \mathcal{O} \rangle_s &= \frac{\left\langle \mathcal{O} e^{-sK} \right\rangle}{\left\langle e^{-sK} \right\rangle} \quad \left\langle e^{-sK} \right\rangle \sim e^{t\psi(s)} \\ P(K \simeq kt, t) \sim e^{t\pi(k)} \quad \psi(s) &= \max_k \left\{ \pi(k) - sk \right\} \end{split}$$

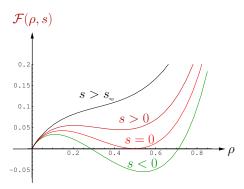
Dynamical phase transition: FA model (d=1)

Density of excitations $\rho(s)$ depending on histories.



Comparison between constrained and unconstrained dynamics

Dynamical Landau free-energy landscape $\mathcal{F}(ho,s)$



Dynamical free energy:

$$\psi(\mathbf{s}) = \underbrace{-\min_{\rho}}_{\text{reached at }\rho = \rho(\mathbf{s})} \mathcal{F}(\rho, \mathbf{s})$$

"Mean-field" version of the FA model:

$$A + A \stackrel{c}{\rightleftharpoons} A$$

"Mean-field" version of the FA model:

(on a complete graph)

$$A + A \stackrel{c}{\rightleftharpoons} A$$

Rates for number n of excitations (with L sites):

$$W_{+}(n) \equiv W(n \rightarrow n+1) = c(L-n)\frac{n}{L}$$

$$W_{-}(n) \equiv W(n \rightarrow n-1) = (1-c)n\frac{n-1}{L}$$

Kinetic constraint ∝ number of excited neighbours

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{\text{sym}}(s)|P\rangle}{\langle P|P\rangle}$$

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Thermodynamic limit (finite density $\rho = \frac{n}{L}$):

$$P(n) \sim e^{-Lf(n/L)}$$

$$egin{aligned} rac{1}{L} oldsymbol{\psi(s)} &= -\min_{
ho} \left\{ -2 \mathbf{e^{-s}} \sqrt{W_+ W_-} + W_+ + W_-
ight\} \ &= -\min_{
ho} \mathcal{F}(
ho, s) \end{aligned}$$

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Thermodynamic limit (finite density $\rho = \frac{n}{L}$):

$$P(n) \sim e^{-Lf(n/L)}$$

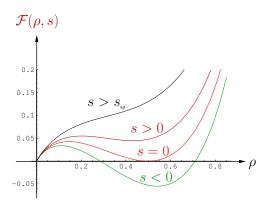
$$egin{aligned} & rac{1}{L} oldsymbol{\psi(s)} = -\min_{
ho} \left\{ -2 e^{-s} \sqrt{W_+ W_-} + W_+ + W_-
ight\} \ & = -\min_{
ho} \mathcal{F}(
ho, s) \end{aligned}$$

One can also use Donsker-Varadhan

$$\left\langle \mathrm{e}^{-sK}\delta\!\left(\frac{1}{Lt}\int_0^t dt'\; \mathit{n}(t') = \rho \right) \right\rangle \sim \mathrm{e}^{-t\mathcal{LF}(\rho,s)}$$

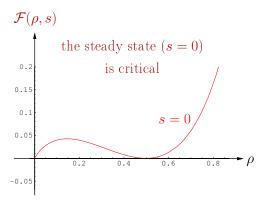
Mean-field version of the FA model:

$$f_{\mathsf{K}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$
$$= \mathcal{F}(\rho(s), s)$$



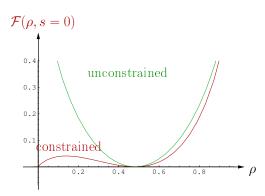
Mean-field version of the FA model:

$$f_{\mathsf{K}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$
$$= \mathcal{F}(\rho(s), s)$$



Mean-field version of the FA model:

$$f_{\mathsf{K}}(s) = \min_{\rho} \mathcal{F}(\rho, s)$$
$$= \mathcal{F}(\rho(s), s)$$



Rounding of the first-order transition

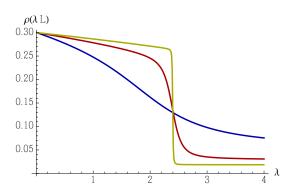
Finite-size effects: required to understand P(K,t)Scale of fluctuations: $s = \frac{\lambda}{L}$ [same picture for $-\frac{1}{L}\psi'(\lambda/L) = \frac{1}{Lt}\langle K \rangle_{s=\lambda/L}$]

(transition at $\lambda_c > 0$)

Rounding of the first-order transition

Finite-size effects: required to understand P(K, t)Scale of fluctuations: $s = \frac{\lambda}{L}$

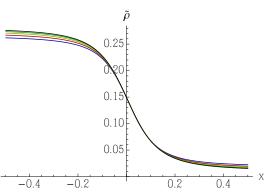
(transition at $\lambda_c > 0$)



[same picture for
$$-\frac{1}{L}\psi'(\lambda/L) = \frac{1}{Lt}\langle K \rangle_{s=\lambda/L}$$
]

Rounding of the first-order transition

Finite-size effects: required to understand P(K,t) Scale of fluctuations: $s=\frac{\lambda}{L}$ (transition at $\lambda_c>0$)



Fine finite-size scaling: $\frac{\lambda}{L} = \frac{\lambda_c}{L} + e^{-\alpha L} x$ [same picture for $-\frac{1}{L} \psi'(\lambda/L) = \frac{1}{L} \langle K \rangle_{s=\lambda/L}$]

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Large-deviation form for the eigenvector: $P(n) \sim e^{-Lf(n/L)}$

- \star infinite-size limit: one only needs $\rho = \operatorname{argmin} f$
- \star in a window around λ_c : one needs more

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Large-deviation form for the eigenvector: $P(n) \sim e^{-Lf(n/L)}$

- \star infinite-size limit: one only needs $\rho = \operatorname{argmin} f$
- \star in a window around λ_c : one needs more

Equation for $f(\rho)$ (from extremalization)

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Large-deviation form for the eigenvector: $P(n) \sim e^{-Lf(n/L)}$

- \star infinite-size limit: one only needs $\rho = \operatorname{argmin} f$
- \star in a window around λ_c : one needs more

Equation for $f(\rho)$ (from extremalization)

Exactly at coexistence $(\lambda = \lambda_c)$: non-analyticity of $f(\rho)$

$$P(n) = P_{\text{inactive}}^{n < n_c}(n) + P_{\text{active}}^{n \ge n_c}(n)$$

Around coexistence ($\lambda \simeq \lambda_c$):

$$P(n) = (1 + a(s)) P_{\text{inactive}}^{n < n_c}(n) + (1 - a(s)) P_{\text{active}}^{n \ge n_c}(n)$$

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Large-deviation form for the eigenvector: $P(n) \sim e^{-Lf(n/L)}$

- \star infinite-size limit: one only needs $\rho = \operatorname{argmin} f$
- \star in a window around λ_c : one needs more

Equation for $f(\rho)$ (from extremalization)

Exactly at coexistence $(\lambda = \lambda_c)$: non-analyticity of $f(\rho)$

$$P(n) = P_{\text{inactive}}^{n < n_c}(n) + P_{\text{active}}^{n \ge n_c}(n)$$

Around coexistence $(\lambda \simeq \lambda_c)$: [in a good basis]

$$P(n) = (1 + a(s)) P_{\text{inactive}}^{n < n_c}(n) + (1 - a(s)) P_{\text{active}}^{n \ge n_c}(n)$$

Extremalization principle:

$$\psi(s) = -\min_{P \neq 0} \frac{\langle P| - \mathbb{W}_{K}^{sym}(s)|P\rangle}{\langle P|P\rangle}$$

Large-deviation form for the eigenvector: $P(n) \sim e^{-Lf(n/L)}$

- \star infinite-size limit: one only needs $\rho = \operatorname{argmin} f$
- \star in a window around λ_c : one needs more

Equation for $f(\rho)$ (from extremalization)

Exactly at coexistence ($\lambda = \lambda_c$): non-analyticity of $f(\rho)$

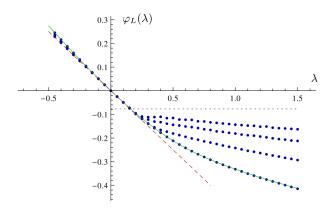
$$P(n) = P_{\text{inactive}}^{n < n_c}(n) + P_{\text{active}}^{n \ge n_c}(n)$$

Around coexistence ($\lambda \simeq \lambda_c$): [in a good basis] [sub-finite-size effects]

$$P(n) = (1 + a(s)) P_{\text{inactive}}^{n < n_c}(n) + (1 - a(s)) P_{\text{active}}^{n \ge n_c}(n)$$

Finite size: comparison to 1D

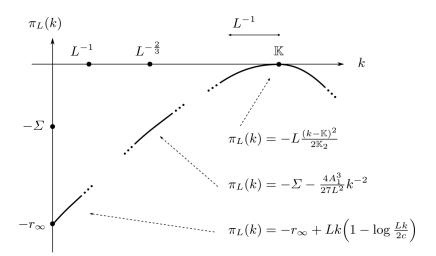
[T Bodineau, VL, C Toninelli]



$$\psi(\lambda/L) = \varphi(\lambda) = -\Sigma + C\left(\frac{\lambda}{L}\right)^{2/3} + \dots$$

Finite size: comparison to 1D

[T Bodineau, VL, C Toninelli]



Summary

First-order dynamical phase transition

- * competition between active and inactive region in space-time
- * dynamical heterogeneities

"Mean-field" model (complete graph)

- * Dynamical Landau free-energy landscape
- * Finite-size effects and geometrical features

Perspectives:

- ★ Finite dimension? [T Bodineau, VL, C Toninelli, JSP 2012]
- * Finite time? (Gap, spectal density)
- * Other models?

Questions for you

Finite time / finite-size

- * Cut-off phenomenon in time $\longleftrightarrow s_c \to 0$? [Fabio Martinelli]
- \star Structure of the left/right eigenvector @ s > 0 (i.e. $\nu < 0$)? [Peter Sollich, Rob Jack]

Closeness to critical point

- * Mixed-order phase transition also varying s, boundary conditions? [Giulio Biroli]
- ★ Spectral density ←→ finite-time moments of K?[JuanP Garrahan]

Relation to quantum models:

- ★ Link to 1st order quantum phase transition [Guilhem Semerjian]
 What is the classical ←→ quantum dictionnary?
- * Dynamical Landau approach for MBL? [JuanP Garrahan]

Thank you for your attention!

* Takahiro Nemoto, VL, Shin-ichi Sasa, Frédéric van Wijland arxiv:1405.1658 (2014)
J. Stat. Mech. P10001(2014)

We assume detailed balance: $P_{\text{eq}}(\mathcal{C})W(\mathcal{C} \to \mathcal{C}') = P_{\text{eq}}(\mathcal{C}')W(\mathcal{C}' \to \mathcal{C})$ Maximization principle:

$$\psi(s) = \max_{P} rac{\langle P | \mathbb{W}_{K}^{ ext{sym}}(s) | P \rangle}{\langle P | P \rangle}$$

We assume detailed balance: $P_{\text{eq}}(\mathcal{C})W(\mathcal{C} \to \mathcal{C}') = P_{\text{eq}}(\mathcal{C}')W(\mathcal{C}' \to \mathcal{C})$ Maximization principle:

$$\psi(s) = \max_{P} rac{\langle P | \mathbb{W}_{K}^{ ext{sym}}(s) | P \rangle}{\langle P | P \rangle}$$

What is ^{™sym}?

$$\mathbb{W}_{\mathcal{C}'\mathcal{C}} = W(\mathcal{C} \to \mathcal{C}') - r(\mathcal{C})\delta_{\mathcal{C}\mathcal{C}'}$$

Symmetrization by
$$R = P_{\rm eq}^{\frac{1}{2}}(\mathcal{C})\delta_{\mathcal{CC}'}$$
 : $\mathbb{W}^{\rm sym} = R^{-1}\mathbb{W}R$

We assume detailed balance: $P_{\text{eq}}(\mathcal{C})W(\mathcal{C} \to \mathcal{C}') = P_{\text{eq}}(\mathcal{C}')W(\mathcal{C}' \to \mathcal{C})$ Maximization principle:

$$\psi(s) = \max_{P} rac{\langle P | \mathbb{W}_{K}^{ ext{sym}}(s) | P \rangle}{\langle P | P \rangle}$$

What is W^{sym}?

$$\mathbb{W}_{\mathcal{C}'\mathcal{C}} = W(\mathcal{C} \to \mathcal{C}') - r(\mathcal{C})\delta_{\mathcal{C}\mathcal{C}'}$$

Symetrization by $R = P_{\mathrm{eq}}^{\frac{1}{2}}(\mathcal{C})\delta_{\mathcal{CC'}}$: $\mathbb{W}^{\mathrm{sym}} = R^{-1}\mathbb{W}R$

$$(\mathbb{W}^{\text{sym}})_{\mathcal{C}'\mathcal{C}} = [W(\mathcal{C} \to \mathcal{C}')W(\mathcal{C}' \to \mathcal{C})]^{\frac{1}{2}} - r(\mathcal{C})\delta_{\mathcal{C}\mathcal{C}'}$$

we have

$$(\mathbb{W}^{sym})^{\dagger} = \mathbb{W}^{sym}$$

We assume detailed balance: $P_{\text{eq}}(\mathcal{C})W(\mathcal{C} \to \mathcal{C}') = P_{\text{eq}}(\mathcal{C}')W(\mathcal{C}' \to \mathcal{C})$ Maximization principle:

$$\psi(s) = \max_{P} rac{\langle P | \mathbb{W}_{K}^{ ext{sym}}(s) | P \rangle}{\langle P | P \rangle}$$

What is $\mathbb{W}_{\kappa}^{\text{sym}}$?

$$(\mathbb{W}_{\mathbf{K}})_{\mathcal{C}'\mathcal{C}} = \mathbf{e}^{-s} W(\mathcal{C} \to \mathcal{C}') - r(\mathcal{C}) \delta_{\mathcal{C}\mathcal{C}'}$$

Symetrization by $R = P_{\text{eq}}^{\frac{1}{2}}(\mathcal{C})\delta_{\mathcal{CC}'}$: $\mathbb{W}_{\mathbf{K}}^{\text{sym}} = R^{-1}\mathbb{W}_{\mathbf{K}}R$

$$(\mathbb{W}_{\mathbf{K}}^{\text{sym}})_{\mathcal{C}'\mathcal{C}} = e^{-s} [W(\mathcal{C} \to \mathcal{C}')W(\mathcal{C}' \to \mathcal{C})]^{\frac{1}{2}} - r(\mathcal{C})\delta_{\mathcal{C}\mathcal{C}'}$$

we have

$$(\mathbb{W}_{\mathbf{K}}^{\mathsf{sym}})^{\dagger} = \mathbb{W}_{\mathbf{K}}^{\mathsf{sym}}$$