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Settings: boundary-driven diffusive systems

* Diffusive interacting+conserving channel (disordered’ phase - think gas)

* Channel connected to two reservoirs at given densities
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Question: Consider current probability distribution

P(J) ~ exp|—TL®(J)] for large T and L
Large deviation function (LDF)

Here J is the time-averaged current
[’ the window of time over which we average

Are there cases where ®(J) is singular?

[ Dynamical Phase Transition (DPT) |

 Know to occur for driven-diffusive-systems with periodic boundary conditions

WASEP 1D - Bodineau, Derrida, PRE 72, 066110 (2005) Espigares et al., PRE 87, 032115 (2013)
WASEP 2D - Tizon-Escamilla et al., arXiv:1606.07507
KMP 1D - Bertini et al., JSP 123, 237 (2006), Hurtado, Garrido, PRL 107, 180601 (2011)

e Suggested to be possible in boundary driven in Bertini et al., PRL 94, 030601 (2005)

no microscopic model, scenario actually different



Answer: yes

 Two types of possible phase transitions:
1. symmetry breaking (continuous)
2. first-order
e Mechanism different from periodic boundary conditions
e Give general conditions for which models exhibit phase transitions

* |dentify microscopic models

* Transitions occur even when system is in equilibrium
(equal reservoir density, no bulk field - reversible dynamics)

Comment:
another mechanism identified in Shpielberg, Don, Akkermans, PRE 95, 032137 (2017)



Cartoon of transition scenarios

First-order DPTs
Jl JC JQ




QOutline

* Quick recap - formalism, some models, macroscopic fluctuation theory,
ensembles, additivity principle.

* Perturbative description of transitions - develop a Landau theory

Results general for any model



The formalism

Reservoir A ® O ® 0000 O Reservoir B
p(0) =p p(1)=p
L >

On large length scales : one characterizes the system by two linear-response quantities

Diffusivity D(p) mobility  o(p)

2D(p)
o(p)

which obey = f"(p) f(p) - free-energy density

o After diffusive rescaling i — Lz, t¢— L% the density field p(x) obeys

Oup =~ |~D(p) Dup + /7 (p) 1|

Diffusion Noise

* The noise is weak in the thermodynamic limit L — oo

1

(@, t)n(a’, 1)) = = d(x —a) 6(t =)



The generating function

e Instead of calculating P(J) ~ exp|—TL®(J)]| calculate the generating function

(e M) ~ exp[TLE (V)]

where as usual W(\) = sup [AJ — O(J)]
J

e Using Martin-Siggia-Rose

\

T 1
(M) ~ / DpDpi exp{L / dt / dz [pap — H(p, p2)] ¢
0 0

/

with p(0,t) = p(1,t) =p
pr(0,1) =0, pa(L,t) = A

and the Hamiltonian ~ H (p, px) = —D(p)(0xp)(0zpx) - A (0upr)°



Large L so calculate saddle point:

U(A) =— lim — inf / dt/ dz [pxp — H(p, pr)]

T—o0 1" p(t),pa(t)

or solve (with boundary conditions) - note momentum related to noise

5 ! . X
Oip = da H(p, px) = Oz [D(p)0zp — o(p) 0P|
PXx Jo
R 5 1 R X o’ X
i = 5 [ 4 (p.2) = ~0, D@0ua] - T 01

Simplification - the solutions which minimize action are time-independent

= additivity principle Bodineau, Derrida, PRL 92, 180601 (2004)

1 T 1
U(\) = - lim ~ inf / at / A [pp — H(p, pr)
0 0

T'—o0 T P(t),ﬁA (t)

1
— Sup / doe H (107 ﬁA) Maximize energy



In sum -

To calculate the generating function

(e M) ~ exp[TLE(N)]

Look for time-independent solutions (with bc) of

I )
Orp = 5 dz H(p, px) = O0x [D(p)0sp — 0(p)0zp]
X 6 [1 X o'
Opx = —@/ da H(p, pr) = =0z [D(p)0zpx] ;p)( Ozp>)’
0

Result -

Typical density and noise profile which realize the fluctuations



We are focused on looking for singularities (when? where?)

Comments:

1. Prior to this work phase transitions in current large deviations were
constrained to cases where the additivity principle is broken.

(non-stationary optimal profile)
2. For continuous transition: one proves that the additivity principle holds

3. Condition for applicability of additivity principle to hold
Shpielberg & Akkermans, PRL 116, 240603 (2016)



NeXxt - show that transitions can occur

—> derive Landau theory for transitions

To make discussion easier break into different types:
e Symmetry breaking transitions (continuous)
e First order phase transitions

e For each case identify microscopic model

DERIVATION IN EQUILIBRIUM
THEN OUT OF EQUILIBRIUM

Note, transitions occur even in equilibrium
where, say, density large-deviation is smooth



Symmetry breaking phase transitions

To observe symmetry breaking transition need an underlying symmetry

Particle-Hole symmetry (about,say, p=p =1/2 )

D(1/2 — ép) = D(1/2 + dp)

g(1/2 — dp) = o(1/2 + dp)

recall: consider boundary conditions
at equilibrium point

Consider possible solutions



One solution - symmetric profile (bc obey symmetry)

denote this solution

po(z) = 1/2 po(z), Pro ()

0

1
0= = / da H(p, p») = Os [D(p)0up — 0(p)0spi
5 )
R R R o) R
Oin = 5 / A H(p. pa) =~ [D(0)2ss] — T2 (0:)7

Near transition (if one occurs)
can imagine a deviation whose longest wave length component is

N (@
~— ~—
™ A
| |
—~ A~
- —
~— ~
Q Q

Pm(x) =1/2 4+ msin(rx)
If they occur must be in pairs - symmetry-breaking profiles

denote this solution POm (m)a ﬁ)\,m (x)



\
m(z) = 1/2 4+ msin(rz)

 p(0) = 1/2

With this in mind calculate

Landau theory (expansion in m , skipping details)
1
£am) = [ Aol (o pr0) = Hlpms pron)
0

Then the scaled CGF

1 1
U(N) = sup/ dx H(p, py) = / dz H (po, pr.0) — inf Ly (m)
0 0 m

PP

FIND TO LEADING ORDER

2D(AD!" =" _ NDA(4)
, ™ D(4D"c" — Da'")
oAM” 615G m

SA=X— A and A = 4] 2D
O-O-Il

Condition1 &” > 0

)\05_//

[,A(m) —

To have transition
Condition2 4D"5" > D&

TO HAVE A TRANSITION NEED A MODEL WITH A LOCAL MINIMUMIIN O



Recap -

Landau theory shows a symmetry-breaking transitions when
1. Particle-hold symmetry (in b.c. and model)

2. mobility ¢ at this point has a local minimum



Microscopic model

KLS model

——Mlicroscopic dynamics —

149

OQOO =) OOQO
QOQQ 4-> QQOQ

0 > 0 : Particles faster than holes
"

1 @@
X\

OO0®

e > 0 : Short-range repulsion
- Y,

Katz, Lebowitz, Spohn, JSP (1984)

— Transport coefficients ——

o(p) 6 = 0 (symmetric)

0'55- e =0.7
0.4;-

0.3}

0.2} |
0.1 L /Local minimum at p = 1/2
't/ as---101010--- is stable

Hager et al., PRE 63, 056110 (2001); Krapivsky (unpublished)



SUMMARY OF SYMMETRY BREAKING TRANSITION

o System with local minimum of 0 at symmetric’ point ﬁ
. Up to now in equilibrium

e Results unchanged to leading order for boundary conditions
p(0) =1/2+dp p(1) =1/2—6p

. 0 -/:/ }
Equally
probable :

U(\)4 2nd-order ),
singularity

N\




First order phase transitions

Now - models with no particle-hole symmetry
again in equilibrium at minimum of O

Landau theory (exactly along the lines outlined before)

Condition1 &" >0
Conditon2 D&® # 3D'"
Condition 3 4D"5" >~ D&

To have transition



orD(D&®) —3D'c")

2D (4D"5" — Do
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T(\)4 Ac

> )\



Microscopic model

KLS mOdeI Katz, Lebowitz, Spohn, JSP (1984)

——Mlicroscopic dynamics —

149

OQOO =) OOQO
QOQQ 4-> QQOQ

o > 0 : Particles faster than holes Transport coefficients ™)
a" 1—|—e
" T 19® 4_ .0.0 0.5 § = 0.5 (asymmetric)
e ol — 0.93
X\ 1+ ¢ 0.3l €=Vu. L
CO0® = OQOQ 0.2} ‘
L—e 0.1}
. e > 0 : Short-range repulsion J L ST 0 0T 10 )

Hager et al., PRE 63, 056110 (2001); Krapivsky (unpublished)



SUMMARY OF FIRST ORDER TRANSITIONS

o System with local minima of @ at symmetric’ point ﬁ
. Up to now in equilibrium

e Results unchanged to leading order for boundary conditions

p(0) =1/2+6p p(1) =1/2 — dp
T(N)4 A, ) B(.J)4 Coexistence )
L7 J1 Jo %

1 1

1 1 P
: A

1

>./

)



What happens when not at minima of o ?

J(p) 0 = 0.5 (asymmetric) Landau theory
0.5} . ¢=0.93 "2

0.4} e = 0.955 Ly(m) = 217_D 'm
0.3} e = 0.98 oo

0.22- N5

0.1 C4 O\ m2

02 0:45 06 08 1.00FP o _
' orD(D&®) —3D'c") .

p(0) = p(1) = p £ 1/2 — m
5 0 ) _9(70 )
m2D(4D"5" — DaW)
| m
6455

O  acts as a magnetic-field’ killing the transitions




SUMMARY UP TO HERE

—No DPTs—— ,Symmetry breaking, —First-order DPTs—

Boundary condition Boundary condition Boundary condition
I5 % ﬁS ﬁ — 158 15 — ﬁS
A : A
(0 \/ 7(p) \/
y > ~ >
_ Ps J L Ps J U
\5’ + 0 \5” > 0
f \ \
N2 —// /T — — _
- | 2nD? MG o orD(D&®) —3D'5")
A(m) =|————a'm m m
1) 4 ~ ~//
o0 9o0




———No DPTs—— ,Symmetry breaking,

®(J) o(J) Jo
A
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— First-order DPTs —
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Physical Intuition

Orp = —0y [—D(P) Oz p + \/@n}

Diffusion favors High .J is easier

Boundary condition

P = Ps

flat profile

if o(p) is high

Symmetric profile

Symmetry-breaking profiles

n n
Q. I
” # H

Y /N
- —
N——" N——"
QL QL

pm () = ps + msin(wx)



Lagrangian picture

®(J) :inf/1 dz J+ D

P

)0zp — U(P)E]Z

20(p)

Expandin TN
5.J? (D 562
d(J) ~ - inf
(J) = 55 +inf | { 5 45
numerator

With §J =J — FE

m* + O(m*)

denominator

DENOMINATOR WINS FOR LARGE ENOUGH ().J




Effect of Bulk Field

So far the possibility of a bulk field (with diffusive scaling) was ignored.

Including a bulk field gives the following dynamical equation for the density

Orp = — 0y [—D(p) Ozp+ o(p)n—+ 0(p)E}

REPEAT SAME ANALYSIS AS BEFORE



Landau theory

2mD* o (Ae + E)5" Sy 2 27TD(D5'(3) — 31_),5”) 3

55" 4 955"

7T2D ( Dﬂﬁ'” — D5(4)) 5_//2 EZ

4
+ 6455" + 645 |

Aslongas @ = () even if not sitting at minima of o

for large enough field J, have a transition



Microscopic model

WASEP

——Mlicroscopic dynamics —

Symmetric random walk
"

Q@O &=» O@9
%_/
Exclusion

X
o0
yl

— Transport coefficients ——

Symmetric w.r.t.
p—1/2—>1/2—p
o (p) (particle—holg symmetry)
0.5;-
0.4}
0.3}
0.2}
0.1}




SUMMARY

e Current LDF of boundary driven diffusive systems can have singularities

. Identified models for difference scenarios - 1st, 2nd order
. Transitions not associated with breaking of additivity principle
QUESTIONS

- Transition in boundary-driven which breaks additivity?

- Finite-size and finite-time behaviour?
(intermittency between coexisting profiles)

- Spatially discrete systems?



