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Settings: boundary-driven diffusive systems

left 

reservoir

right

reservoir

channel 

(in this talk: 1d)

⇢l ⇢r

• Diffusive interacting+conserving channel (`disordered’ phase - think gas) 

• Channel connected to two reservoirs at given densities 

 

 



P (J) � 2tT[�TL�(J)] for large T and L

Large deviation function (LDF)

Question: Consider current probability distribution

Here      is the time-averaged current

• Know to occur for driven-diffusive-systems with periodic boundary conditions


• Suggested to be possible in boundary driven in

WASEP 1D - Bodineau, Derrida, PRE 72, 066110 (2005) Espigares et al., PRE 87, 032115 (2013)  
WASEP 2D - Tizón-Escamilla et al., arXiv:1606.07507 
KMP     1D  - Bertini et al., JSP 123, 237 (2006), Hurtado, Garrido, PRL 107, 180601 (2011)

Bertini et al., PRL 94, 030601 (2005)
no microscopic model, scenario actually different

Are there cases where        is singular?

[ Dynamical Phase Transition (DPT) ]

the window of time over which we average



Answer: yes

• Two types of possible phase transitions:   
                                           1. symmetry breaking (continuous) 
                                           2. first-order 

• Mechanism different from periodic boundary conditions 

• Give general conditions for which models exhibit phase transitions 

• Identify microscopic models 

• Transitions occur even when system is in equilibrium  
(equal reservoir density, no bulk field - reversible dynamics)

Comment:
another mechanism identified in Shpielberg, Don, Akkermans, PRE 95, 032137 (2017)
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Outline

• Quick recap - formalism, some models, macroscopic fluctuation theory, 
                       ensembles, additivity principle.  

• Perturbative description of transitions - develop a Landau theory 

Results general for any model



The formalism

Reservoir A Reservoir B
�(0) = �̄ �(1) = �̄

D(�) �(�)Diffusivity mobility

On large length scales : one characterizes the system by two linear-response quantities

��(x, t) �(x�, t�)� =
1

L
�(x � x�) �(t � t�)

• The noise is weak in the thermodynamic limit L � �

�t� = ��x

�
�D(�) �x� +

�
�(�) �

�
• After diffusive rescaling                              the density field         obeys 

Diffusion Noise
D(�) �(�)

i � Lx, t � L2t

2D(�)

�(�)
= f ��(�)which obey - free-energy density



• Instead of calculating                                              calculate the generating function

�eTL�J� � 2tT[TL�(�)]

P (J) � 2tT[�TL�(J)]

where as usual �(�) = bmT
J

[�J � �(J)]

The generating function

• Using Martin-Siggia-Rose

�
�

D� D�̂� 2tT
�

�L

� T

0
/t

� 1

0
/x [�̂��̇ � H(�, �̂�)]

�

with �(0, t) = �(1, t) = �̄

�̂�(0, t) = 0, �̂�(1, t) = �

H(�, �̂�) = �D(�)(�x�)(�x�̂�) +
�(�)

2
(�x�̂�)2and the Hamiltonian 



Large       so calculate saddle point:  

�(�) = � HBK
T��

1

T
BM7

�(t),�̂�(t)

� T

0
/t

� 1

0
/x [�̂��̇ � H(�, �̂�)]

or solve (with boundary conditions) - note momentum related to noise

�t� =
�

��̂�

� 1

0
/x H(�, �̂�) = �x [D(�)�x� � �(�)�x�̂�]

�t�̂� = � �

��

� 1

0
/xH(�, �̂�) = ��x [D(�)�x�̂�] � ��(�)

2
(�x�̂�)2

Simplification - the solutions which minimize action are time-independent

= additivity principle Bodineau, Derrida, PRL 92, 180601 (2004)

�(�) = � HBK
T��
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0
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� 1

0
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�,�̂�

� 1

0
/x H(�, �̂�) Maximize energy



In sum -

To calculate the generating function

�eTL�J� � 2tT[TL�(�)]

Look for time-independent solutions (with bc) of 

�t� =
�

��̂�

� 1

0
/x H(�, �̂�) = �x [D(�)�x� � �(�)�x�̂�]

�t�̂� = � �

��

� 1

0
/xH(�, �̂�) = ��x [D(�)�x�̂�] � ��(�)

2
(�x�̂�)2

Result -  

Typical density and noise profile which realize the fluctuations



Comments:
1. Prior to this work phase transitions in current large deviations were  

constrained to cases where the additivity principle is broken. 
(non-stationary optimal profile)  

2. For continuous transition: one proves that the additivity principle holds  

3. Condition for applicability of additivity principle to hold
Shpielberg & Akkermans, PRL 116, 240603 (2016)


We are focused on looking for singularities (when? where?)



Next - Show that transitions can occur  
 
    —> derive Landau theory for transitions 

To make discussion easier break into different types: 

• Symmetry breaking transitions (continuous)  

• First order phase transitions 

• For each case identify microscopic model 
 
 
DERIVATION IN EQUILIBRIUM  
THEN OUT OF EQUILIBRIUM 

Note, transitions occur even in equilibrium  

where, say, density large-deviation is smooth



Symmetry breaking phase transitions
To observe symmetry breaking transition need an underlying symmetry

Particle-Hole symmetry (about, say,                          ) 

recall: consider boundary conditions

at equilibrium point

Consider possible solutions



Near transition (if one occurs) 

can imagine a deviation whose longest wave length component is

m

m

�m(x) = 1/2 + m bBM(�x)

�(
0)

=
1/

2

�(
1)

=
1/

2

One solution - symmetric profile (bc obey symmetry)

�

x

�0(x) = 1/2

�(
0)

=
1/

2

�(
1)

=
1/

2

denote this solution

If they occur must be in pairs - symmetry-breaking profiles

denote this solution

�t� =
�
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0
/xH(�, �̂�) = �x [D(�)�x� � �(�)�x�̂�]
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0
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With this in mind calculate

Landau theory (expansion in      , skipping details)
� 1

0
/x [H(�0, �̂�,0) � H(�m, �̂�,m)]L�(m) =

m

m

�m(x) = 1/2 + m bBM(�x)

�(
0)

=
1/

2

�(
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=
1/

2

Then the scaled CGF

�(�) = bmT
�,�̂�

� 1

0
/x H(�, �̂�) =

� 1

0
/x H(�0, �̂�,0) � BM7

m
L�(m)

 FIND TO LEADING ORDER

L�(m) = ��c�̄��

4
��m2 +

�2D̄(4D̄���̄�� � D̄�̄(4))

64�̄�̄�� m4

and

�̄�� > 0Condition 1To have transition
Condition 2 4D̄���̄�� > D̄�̄(4)

TO HAVE A TRANSITION NEED A MODEL WITH A LOCAL MINIMUM IN  



Recap -

Landau theory shows a symmetry-breaking transitions when 

1. Particle-hold symmetry (in b.c. and model) 

2. mobility          at this point has a local minimum



Microscopic model

KLS model Katz, Lebowitz, Spohn, JSP (1984)

Microscopic dynamics

1 + �

1 � �

� > 0 : Particles faster than holes

� > 0 : Short-range repulsion

1 + �

1 � �

1 + �

1 � �

Local minimum at � = 1/2
as · · · 101010 · · · is stable

Transport coefficients
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�(J) Jc

J0

�(�) �c

�0

Equally 
probable

2nd-order 
singularity

SUMMARY OF SYMMETRY BREAKING TRANSITION

• System with local minimum of      at `symmetric’ point 

• Up to now in equilibrium 

• Results unchanged to leading order for boundary conditions



First order phase transitions
Now - models with no particle-hole symmetry 
                     again in equilibrium at minimum of 

Landau theory (exactly along the lines outlined before)

L�(m) = ��c�̄��

4
��m2 �2�D̄(D̄�̄(3) � 3D̄��̄��)

9�̄�̄�� m3 +
�2D̄(4D̄���̄�� � D̄�̄(4))

64�̄�̄�� m4

�̄�� > 0Condition 1To have transition

Condition 3 4D̄���̄�� > D̄�̄(4)

Condition 2 D̄�̄(3) �= 3D̄��̄��



L�(m) = ��c�̄��

4
��m2 �2�D̄(D̄�̄(3) � 3D̄��̄��)

9�̄�̄�� m3 +
�2D̄(4D̄���̄�� � D̄�̄(4))

64�̄�̄�� m4
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Microscopic model

KLS model Katz, Lebowitz, Spohn, JSP (1984)

Microscopic dynamics

1 + �

1 � �

� > 0 : Particles faster than holes

� > 0 : Short-range repulsion

1 + �

1 � �

1 + �

1 � �

Local minimum at � = 1/2
as · · · 101010 · · · is stable
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Transport coefficients



SUMMARY OF FIRST ORDER TRANSITIONS

• System with local minima of        at `symmetric’ point 

• Up to now in equilibrium 

• Results unchanged to leading order for boundary conditions

�(�) �c

�0

�(J)

0 J

J1 J2

Coexistence



What happens when not at minima of    ? 

L�(m) =

��c�̄��

4
��m2

+
�2D̄(4D̄���̄�� � D̄�̄(4))

64�̄�̄�� m4

Landau theory
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SUMMARY UP TO HERE

No DPTs Symmetry breaking First-order DPTs

�̄� �= 0 �̄�� > 0 D̄�̄(3) � 3D̄��̄�� �= 0
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�̄s
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�̄ = �̄s

�
�̄s

�(�)

Boundary condition
�̄ = �̄s
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Physical Intuition

�t� = ��x

�
�D(�) �x� +

�
�(�) �

�

High J is easier
if �(�) is high

Diffusion favors 
flat profile

�(
0)

=
�̄ s

m

m

Symmetry-breaking profiles

�(
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=
�̄ s

�(
1)

=
�̄ s

Symmetric profile

�

x

�0(x) = �̄s

�m(x) = �̄s + m sin(�x)

�(
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=
�̄ s

Boundary condition
�̄ = �̄s

�
�̄s

�(�)



Lagrangian picture

Expand in 

With
numerator denominator

DENOMINATOR WINS FOR LARGE ENOUGH 



Effect of Bulk Field

So far the possibility of a bulk field (with diffusive scaling) was ignored. 

Including a bulk field gives the following dynamical equation for the density 

�t� = ��x

�
�D(�) �x� +

�
�(�) � + �(�)E

�
�(�)E

REPEAT SAME ANALYSIS AS BEFORE



Landau theory

As long as                    even if not sitting at minima of                


for large enough field          have a transition



Microscopic model

= 2�(1 � �)

D(�)

�(�)

= 1

Exclusion

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5
�(�)

�

� � 1/2 � 1/2 � �
Symmetric w.r.t.

(particle-hole symmetry)

Symmetric random walk

Microscopic dynamics Transport coefficients

WASEP



SUMMARY

• Current LDF of boundary driven diffusive systems can have singularities 

• Identified models for difference scenarios - 1st, 2nd order 

• Transitions not associated with breaking of additivity principle

QUESTIONS  

- Transition in boundary-driven which breaks additivity? 

- Finite-size and finite-time behaviour? 
(intermittency between coexisting profiles) 

- Spatially discrete systems? 


