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Appendix 1 : Geometrical description of cell spreading

1. Model

The simplest model of cell body shape corresponds to as-
sume that it is governed only by cortical actomyosin ten-
sion and plasma membrane-regulated volume. This has been
shown to lead to consistent predictions during cell spread-
ing on two plates (1). Volume regulation implies a pressure
difference across the membrane (and the thin actomyosin cor-
tex apposed to it), this pressure equilibrates spatially at a
timescale much shorter than spreading (2). Following (3) we
further assume that the cortex is under a uniform isotropic
tension 𝜎(𝑡) and axial symmetry of the shape. The shape of
the cell cortex in those conditions can be parameterised as
Γ = {𝑟 (𝑧, 𝑡), 𝑧min ≤ 𝑧 ≤ 𝑧max} and the volume of the cell body
can be calculated by:

𝑉 (𝑡) = 𝜋

∫ 𝑧max

𝑧min
𝑟 (𝑧, 𝑡)2d𝑧

It obeys the Young-Laplace equation:

𝐻 (𝑡) = 𝑟 ′′(
1 + 𝑟 ′2

)3/2 − 1
𝑟
√

1 + 𝑟 ′2
=

Δ𝑝

𝜎
[1]

where 𝑟 ′ = d𝑟/z, Δ𝑝(𝑡) is the pressure difference between the
interior and exterior and we define 𝐻 the mean curvature.
Given uniform pressure and tension, 𝐻 is uniform in space
and thus the shape has constant mean curvature and can be a
portion of sphere, cylinder, unduloid or nodoid (Fig. S5-C).
For single plate spreading, the only appropriate shape is obvi-
ously a spherical cap and it can be readily shown that for a
given volume 𝑉 and basal radius 𝑅𝑏 there is only one solution
to Eq 1. The ratio Δ𝑝

𝜎
of pressure difference and tension is

thus deduced from the volume.
For the spreading between two plates, the shape can be either
of a nodoid, unduloid or cylinder depending on the respective
values of 𝑅𝑏 and 𝑉 . Similar to the single plate case, being
given these two values, a unique shape and the corresponding
ratio Δ𝑝

𝜎
of pressure difference and tension can be deduced.

In what follows, we reproduce the sequence of shapes of a cell
during spreading, either in unconfined (single plate) or con-
fined (parallel plates) geometry, by assuming that it maintains
a constant volume 𝑉 = 𝑉0 and varying its radius 𝑅𝑏 (𝑡).

2. Single plate geometry: spherical cap

Given 𝑅𝑏 (𝑡) and 𝑉0, it can be easily verified that spheres of
parametric equation{

𝑧(𝑠) = 𝑅𝑐𝑎𝑝 (1 − cos(𝑠)) + 𝑧0
𝑟 (𝑠) = 𝑅𝑐𝑎𝑝 sin(𝑠)

for a curvilinear coordinate 𝑠 ∈ [0, 𝑠 𝑓 ], with 𝑧0 (𝑡) =

±
√︁
𝑅𝑐𝑎𝑝 − 𝑅𝑏 and 𝑠 𝑓 = arccos

(
𝑅𝑐𝑎𝑝 + 𝑧0
𝑅𝑐𝑎𝑝

)
are solutions. We

calculate the radius of curvature 𝑅𝑐𝑎𝑝 (𝑡) = 2/𝐻 (𝑡) such that
the spherical cap volume 𝑉 (𝑡) = 𝜋

6 (𝑅𝑐𝑎𝑝 + 𝑧0) (3𝑅2
𝑏
+ (𝑅𝑐𝑎𝑝 +

𝑧0)2) is equal to 𝑉0.
The (outer) contact angle at the plate can be calculated as
cot 𝜃 = −d𝑟

d𝑧 , resulting in 𝜃 = cos−1 (𝑧0/𝑅𝑐𝑎𝑝).

3. Two plates geometry

When spreading between two parallel plates spaced by height
ℎ, we assume that the shape is symmetric with respect to
the plane 𝑧 = 0 parallel to the plates 𝑧 = ±ℎ/2 and at equal
distance from them. Thus the surface forms a right angle with
this plane, 𝑟 ′(𝑧 = 0) = 0. The additional conditions are that
𝑟 (𝑧 = ℎ/2) = 𝑅𝑏 (𝑡) and, as above, volume 𝑉 (𝑡) = 𝑉0 allows
to set 𝐻 (𝑡). We proceed with an additional intermediate un-
known, 𝑟 (𝑧 = 0, 𝑡) = 𝑅𝑒 (𝑡): for a given 𝑡, we initialise 𝑅𝑒 (𝑡) to
a first guess 𝑅0

𝑒 (𝑡) and use a fixed point algorithm on 𝑅𝑖
𝑒 to

reach 𝑉 (𝑡) = 𝑉0.
The problem of integration of nonlinear Eq 1 is thus done with
boundary conditions:

𝑟 (𝑠𝑖 , 𝑡) = 𝑅𝑒 (𝑡), 𝑧(𝑠𝑖) = 0
𝑟 (𝑠 𝑓 ) = 𝑅𝑏 (𝑡), 𝑧(𝑠 𝑓 ) = ℎ/2
d𝑟
d𝑧 (𝑠𝑖) = 0

[2]

It is known (4) that depending on 𝑅𝑒, the solution can belong
to five families of curves: nodoids for 𝑅2

𝑒 < 𝑅2
𝑏
+ (ℎ/2)2, a

sphere when 𝑅2
𝑒 = 𝑅2

𝑏
+ (ℎ/2)2, an unduloid for intermediate

values of 𝑅𝑒 (but a cylinder for 𝑅𝑒 = 𝑅𝑏), a catenoid when
𝑅𝑒 = 𝑅∗

𝑒 such that 𝑅∗
𝑒 cosh(ℎ/(2𝑅∗

𝑒)) = 𝑅𝑏 and nodoids again
when 𝑅𝑒 > 𝑅∗

𝑒. In practice, for the range of 𝑅𝑏 (𝑡) that is useful
to compare with experiments, we find that 𝑅𝑒 < 𝑅∗

𝑒. Note
that spheres, cylinders and catenoids can be seen as limiting
cases of unduloids or nodoids.
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A. Unduloid. Its parametric representation (5) is:
𝑧(𝑠) = 𝑏2

𝑎

∫ 𝑠

0
𝐼𝑢 (𝑢)d𝑢 + 𝑧0,

𝑟 (𝑠) = 𝑏

√︂
1 − 𝜉𝑢 cos 𝑠
1 + 𝜉𝑢 cos 𝑠 .

[3]

where
𝐼𝑢 (𝑢) =

1

(1 + 𝜉𝑢 cos 𝑢)
√︃

1 − 𝜉2
𝑢 cos2 𝑢

,

and 𝑠 is a curvilinear coordinate varying in a range [𝑠𝑖 , 𝑠 𝑓 ]

which is to be determined, whereas 𝑎, 𝑏 and 𝜉𝑢 =

√︄
1 − 𝑏2

𝑎2 are

positive parameters also to be determined. It can be shown
that such curves obey the equation:

1 +
(
𝑑𝑟

𝑑𝑧

)2
=

4𝑎2𝑟2(
𝑟2 + 𝑏2)2 [4]

which in turn verify Eq 1 with 𝐻 = ±1/(2𝑎).
Because 𝑟 (𝑠𝑖) = 𝑅𝑒 is the minimum of 𝑟 if 𝑅𝑒 < 𝑅𝑏 (resp. the
maximum else), 𝑠𝑖 = 0 (resp. 𝑠𝑖 = 𝜋). Rewriting 𝑏 = 𝑎

√︃
1 − 𝜉2

𝑢

and using the boundary condition 𝑟 (𝑠 𝑓 ) = 𝑅𝑏, the parameters
𝑏, 𝑠𝑖 and 𝑠 𝑓 can be expressed as functions of 𝜉𝑢 and 𝑎. The
additional boundary condition 𝑟 ′(𝑧 = 0) = 0 injected in Eq 4,
yields two possible values of 𝑎 as a function of 𝜉𝑢,

𝑎(𝜉𝑢) =
𝑅𝑒 (1 − 𝜒𝜉𝑢)

1 − 𝜉2
𝑢

where 𝜒 = ±1. It can be shown that 𝜒 has to have the same
sign as 𝑅𝑒 − 𝑏 (6), which has the same as the sign as 𝑅𝑒 − 𝑅𝑏.
The remaining parameter, 𝜉𝑢, can be determined from the
implicit equation

ℎ/2 = 𝑧(𝑠 𝑓 (𝜉𝑢, 𝑅𝑏)) =
𝑏(𝜉𝑢)2
𝑎(𝜉𝑢)

∫ 𝑠 𝑓 ( 𝜉𝑢 ,𝑅𝑏)

𝑠𝑖

𝐼𝑢 (𝜉𝑢, 𝑠)d𝑠 [5]

As above, the angle at the bottom plate can be found using
cot 𝜃 = −d𝑟

d𝑧 (−𝑠 𝑓 ).

B. Nodoid. Its parametric representation (5) is:
𝑧(𝑠) = 𝑏2

𝑎

∫ 𝑠

0
𝐼𝑛 (𝑢) d𝑢 + 𝑧0,

𝑟 (𝑠) = 𝑏

√︂
𝜉𝑛 − cos 𝑠
𝜉𝑛 + cos 𝑠 .

[6]

where
𝐼𝑛 (𝑢) =

cos 𝑢

(𝜉𝑛 + cos 𝑢)
√︃
𝜉2
𝑛 − cos2 𝑢

,

and 𝑠 ∈ [𝑠𝑖 , 𝑠 𝑓 ], a range to be determined. The positive param-

eters 𝑎, 𝑏, and 𝜉𝑛 =

√︄
1 + 𝑏2

𝑎2 obey the governing differential

equation:

1 +
(
d𝑟
d𝑧

)2
=

4𝑎2𝑟2(
𝑟2 − 𝑏2)2 . [7]

Similarly to the unduloid case, and using the boundary con-
dition at 𝑧 = 0, 𝑎 can again be expressed as a function of
𝜉𝑛:

𝑎(𝜉𝑛) =
𝑅𝑒 (𝜒 − 𝜉𝑛)

1 − 𝜉2
𝑛

.

The remaining parameter, 𝜉𝑛, is determined by solving the
implicit equation:

ℎ/2 = 𝑧(𝑠 𝑓 (𝜉𝑛, 𝑅𝑏)) =
𝑏(𝜉𝑛)2
𝑎(𝜉𝑛)

∫ 𝑠 𝑓 ( 𝜉𝑛 ,𝑅𝑏)

𝑠𝑖

𝐼𝑛 (𝜉𝑛, 𝑠) d𝑠, [8]

where the integration bounds 𝑠𝑖 and 𝑠 𝑓 are defined based on
the boundary conditions.

C. Implementation and upper limit. In Figure 5, we set 𝑉0 =
4
3𝜋𝑅

3
0, where 𝑅0 = 8.83𝜇m for untreated cells, and ℎ = 1.9𝑅0,

in accordance with the experimental conditions. For 𝑅𝑏 vary-
ing over the range of experimentally observed values, we then
calculate the shape of spherical caps of volume 𝑉0, and of
either unduloids or nodoids of volume 𝑉0 and height ℎ, as
detailed above. We can then deduce the angle that these
shape make with the substrate.
There is a lower bound for the volume enclosed in a CMC
surface of rotational symmetry having radius 𝑟 = 𝑅𝑏 at 𝑧 = ℎ/2,
however to the best of our knowledge there is no general for-
mula allowing to compute it. In practice, we find that solutions
cease to exist for our choice of parameters 𝑉0 and ℎ beyond
a radius 𝑅∗

𝑏
≃ 13𝜇m. There does not exist, e.g., a section of

catenoid of height ℎ that has volume 𝑉0. The physical under-
standing of this geometrical limitation is that the model must
cease to be valid for cells observed with 𝑅𝑏 > 𝑅∗

𝑏
: it is e.g.

possible that the symmetries assumed here (axial symmetry,
isotropy of the tension) cease to be a fair approximation.
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Fig.S 1. A - Cell-substrate contact radius as a function of time of a typical Ref-52 fibroblast spreading on a bi-dimensional substrate. 𝑣𝑃1 describes the spreading speed during
the first phase of spreading. B - Boxplot representing the spreading speed during the first phase of spreading P1 in the single plate and parallel plates geometry. C - Contact
area as a function of time for all samples tested in the single plate (blue) and parallel plates (red) geometry. Bold lines represent the mean value calculated over all samples at
each time-point.

et al. 3



HG

FD E

A

TIRF

k
Traction
force

B C

Fig.S 2. Effect of upper plate stiffness on cell traction, spreading and focal adhesions formation (k=1.5 nN/µm, N=17; k=12.5 nN/µm, N=11 and infinite stiffness, N=14) and
comparison with single plate experiment (’1 plate’). A - Sketch of parallel plate setup. The upper plate is flexible, with stiffness 𝑘. TIRF imaging is performed at the bottom, rigid
plate. B - Maximum rate of traction force increase. C - Maximum traction force. D - Spreading rate during the first phase of spreading (P1). E - Contact area 𝐴(𝑡∗

𝑎𝑑ℎ
) at which

paxillin starts forming aggregates. F - Contact area 𝐴(𝑡∗
𝑅
) at transition between spreading phases. G- Cell-substrate contact area after 20 minutes of spreading. H - Ratio of

focal adhesions ring area over cell-substrate contact area after 20 minutes of spreading.
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Fig.S 3. Effect of mitomycin C treatment (0.25μM, 2 days) on cell size in suspension. A - Bright-field images of Ref-52 fibroblast in suspension treated (MMC, right) or not
(Untreated, left) with mitomycin C. Scale bar: 10μm. B - Effect of mitomycin C treatment on cell surface in suspension. C - Effect of mitomycin C treatment on cell volume in
suspension. D - Contact area as a function of time for all untreated (Unt., blue) and mitomycin C treated (MMC, green) samples. Bold lines represent the mean value calculated
over all samples at each time-point. E - Boxplot representing the spreading speed during the first phase of spreading P1 for untreated and mitomycin C-treated samples. F -
Contact area 𝐴(𝑡∗

𝑅
) as a function of cell volume in suspension 𝑉0 in untreated (blue) and Mitomycin C treated cells (green). Dotted line: power-law fit of exponent 0.94, close

to 1.
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Fig.S 4. A - Width of the focal adhesions ring versus contact radius along the second phase of spreading P2 for the single plate (blue), parallel plates (red) and MMC treated
cells spreading on a single plate (green). B - Typical event of paxillin aggregate formation and turnover during spreading of an untreated cell. Yellow arrow points to the cluster
of interest. C - Same as in A for a cell treated with ROCK inhibitor (Y27632). Scale bars: 2µm.
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Fig.S 5. Geometrical description of cell spreading. A - Cell shape on a single plate is modeled as a spherical cap of main radius 𝑅𝑐𝑎𝑝 and center (0, 𝑧0). These parameters
are calculated so that the spherical cap volume is equal to 𝑉0 and that the extreme contact point is at a given 𝑟 = 𝑅𝑏 (𝑡) , which can be varied to predict cell body shape along
spreading. B - Cell free edge between two plates is modelled by a constant mean curvature surface, symmetric around 𝑧 = 0 and truncated by the plates at 𝑧 = ±ℎ/2. C -
Illustration of constant non-zero mean curvature (CMC) surfaces: (a) Sphere, (b) Cylinder, (c) Unduloid, and (d) Nodoid. D - Dorsal arc radius (𝑅𝑐𝑎𝑝 on Fig. A) as a function of
cell body contact radius 𝑅𝑏 for the single plate geometry. Each color represent a single cell. Solid red line shows the result of simulations.
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A BUntreated MMC

Fig.S 6. Comparison of three-dimensional cell shape in fixed (blue) and live (yellow) cells. A - Contact angle as a function of cell body contact radius for untreated cells. B -
Contact angle as a function of cell body contact radius for mitomycin C-treated cells.
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Fig.S 7. Rare event (n/N = 3/30) of cell spreading in two steps : spreading slow-down is followed by increase of spreading rate and second slow-down. Top row : TIRF imaging
of paxillin-YFP along spreading. Left : Cell contact at t = 0s. Center : Cell contact at t=800s (first corona of paxillin clusters). Right : Cell contact at t=1600s (second corona of
paxillin clusters). Bottom row : Cell contact area along spreading.
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Supplementary movies legend

Movie 1. Time-lapse of Ref-52 fibroblast expressing paxilin-YFP spreading on a bi-dimensional glass substrate, imaged via
TIRF microscopy. Time is in min:sec. Scale bar: 5μm.

Movie 2. Time-lapse of Ref-52 fibroblast expressing paxilin-YFP spreading between two parallel glass plate. Bottom cell-substrate
contact is imaged via TIRF microscopy. Time is in min:sec. Scale bar: 5μm.

Movie 3. Time-lapse of Ref-52 fibroblast expressing paxilin-YFP treated with mitomycin C spreading on a bi-dimensional glass
substrate, imaged via TIRF microscopy. Time is in min:sec. Scale bar: 5μm.

Movie 4. Time-lapse of Ref-52 fibroblast expressing paxilin-YFP treated with Y27632 at 8µM spreading on a bi-dimensional
glass substrate, imaged via TIRF microscopy. Time is in min:sec. Scale bar: 5μm.

Movie 5. Time-lapse of Ref-52 fibroblast spreading on a glass plate seen in profile, imaged via bright-field microscopy. Time is
in min:sec. Scale bar: 5μm.

Movie 6. Time-lapse of Ref-52 fibroblast spreading between parallel glass plate seen in profile, imaged via bright-field microscopy.
Time is in min:sec. Scale bar: 5μm.

Movie 7. Segmentation and markers of cell profile along spreading of a Ref-52 fibroblast spreading on a glass plate. Scale bar:
5μm.

Movie 8. Shape changes and markers of the profile of a spherical cap of constant volume, mimicking cell spreading on a
bi-dimensional substrate.

Movie 9. Shape changes and markers of the profile of a constant mean curvature surface in contact with two parallel planes,
mimicking cell spreading between parallel plates.

Movie 10. Three-dimensional representation of shape changes of a constant mean curvature surface in contact with two parallel
planes, mimicking cell spreading between parallel plates.

Movie 11. Time-lapse of Ref-52 fibroblast expressing paxilin-YFP spreading on a bi-dimensional glass substrate, imaged via
TIRF microscopy, showing two steps of spreading and two successive focal adhesions ring forming. Time is in min:sec. Scale
bar: 5μm.
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