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Underwater bubbles are extremely good acoustic resonators, but are freely evolving and dissolving.
Recently it was found that bubbles can be stabilized in frames, but the influence of the frame shape is still
undocumented. Here we first explore the vibration of polyhedral bubbles with a low number of faces,
shaped as the five Platonic solids. Their resonance frequency is well approximated by the formula for
spherical bubbles with the same volume. Then we extend these results to shapes with a larger number of
faces using fullerenes, paving the way to obtain arbitrary large resonant bubbles.
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Introduction.—Bubbles in water react vividly under
acoustic waves because of the compressibility of their
constitutive gas, featuring ample vibrations compared to
liquid or solid surroundings. Bubbles are good acoustic
vibrators with a marked resonance frequency [1,2], useful
to absorb or reemit vibrations in materials containing many
of them [3–7]. Bubbles are strongly influenced by each
other even at a distance, responding to the vibration waves
emitted by neighbor bubbles. A lot of vibration without
contact is reminiscent of platonic love in human inter-
actions. Here, we will consider the vibration of a lone
bubble of Platonic shape.
Free bubbles in water, spherical in shape, are unstable in

position (they float) or in volume (their gas dissolves in
water [8,9]). In a previous work we introduced cubic
bubbles: air pockets trapped in 3D-fabricated cubic frames
immersed under water. The frame stabilizes both the bubble
position and volume for more than a day [10] and enables
us to build an array of such bubbles [11] useful to create
new acoustic metamaterials. Capillary forces prevent water
from entering the frames if the openings are small enough
(a maximum aperture of 2.1 mm was reported for a cube, a
dimension comparable to the capillary length lc ¼

ffiffiffiffiffiffiffiffiffiffiffi
σ=ρlg

p
,

with σ the surface tension, ρl the liquid density, and g the
gravitational constant). The frame does not impede vibra-
tions of the liquid-gas interfaces, that are flat at equilibrium.
The cubic shape is only one specific shape, chosen

because of its ease in 3D design. Our scientific question is
now to understand the vibration of other shapes, and to
determine what is the maximal bubble size of these shapes.
In this Letter we explore arbitrary shapes starting with

regular polyhedra: the five Platonic solids, namely tetra-
hedron, cube, octahedron, dodecahedron, and icosahedron.
We thus introduce platonic bubbles, featuring, respectively,
4, 6, 8, 12, and 20 faces. Eventually we extend our study to
bubbles with an arbitrary number of faces.
Millimetric frames representing the five solids were

manufactured by 3D stereolithography in photoresist that

is rendered hydrophobic by silanization to disadvantage the
entry of water (see further details in Supplemental Material
[12]). Frames are slowly immersed under water, keeping
bubbles trapped and creating roughly flat interfaces at the
openings (Fig. 1).
Acoustic vibrations of Platonic bubbles.—Platonic

frames are slowly immersed in a water tank and the
acoustic vibration of the formed enclosed bubble is excited
in the near field of an underwater loudspeaker [Fig. 2(a)],
sweeping a large range of frequencies. The acoustic
pressure PðtÞ is recorded with a hydrophone placed as
close as possible to the bubble to increase the signal
amplitude. A reference pressure signal P0ðtÞ is measured
at the same position without the bubble, in order to isolate
the contribution of the bubble. The relative contribution of
the bubble to the spectrum of the signal is estimated by A ¼
ðP̂ − P̂0Þ=P̂0, where P̂ and P̂0 are the Fourier transforms.
The bubble resonance is clearly evidenced by looking at

the amplitude of the bubble contribution A which goes
through a maximum [norm of A plotted on Fig. 2(b)]. A
more precise measurement of the resonance frequency is
found by looking at the cosinus of the phase, cos½φðAÞ%,
which crosses the horizontal axis at the resonance fre-
quency, a hallmark of harmonic forced oscillators.
For a given shape, the resonance frequency decreases

with the aperture size [Fig. 2(c)]. It is higher for solids
with small number of faces, such as the tetrahedron.
The maximum size of the structure was reached when
the aperture size was around l ¼ 2.5 mm, for which
capillary forces are not strong enough to prevent water
from invading the structures. We found that all results
beautifully collapse on the same master curve when
plotting the resonance frequency as a function of the size
Req linked to the gas volume Vg [Fig. 2(d)]. The volume is
calculated assuming the interfaces are coplanar with the
external faces of the solid. We define Req as the radius of
the sphere with the same volume or Req ¼ ½Vg=ð4π=3Þ%1=3.
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Minnert approximation.—Minnaert [1] found that the
resonance frequency of a spherical bubble of radius Req is
given by

fMinnaert ¼
1

2π

"
3γP0

ρlR2
eq

#
1=2

≃
3.24 m=s

Req
; ð1Þ

with ρl the liquid density, γ the specific heat ratio, and P0

the gas pressure, valid for bubbles larger than a micrometer.
This formula is called the Minnaert formula, plotted as a
line in Fig. 2(d). The agreement between the measured
resonant frequency of Platonic bubbles and that predicted
by the Minnaert frequency is stunning even for shapes far
from spherical. This formula is thus a very good approxi-
mation when using the equivalent radius of our shapes.
A closer comparison of the resonance frequency with that
of Minnaert is obtained by plotting fres=fMinnaert [inset of
Fig. 2(d)]. It shows slightly higher frequencies for the
tetrahedron, despite measurement noise due to variations
of the position of the contact line around each interface.
However, all measured resonance frequencies differ from
Minnaert frequency by less than 10%.
In order to understand the impact of the shape on the

bubble vibration, we conducted numerical 3D simulations
of sound propagation, implemented with a finite-difference
time-domain resolution [10,13] of elastodynamics equa-
tions. (See further details in Supplemental Material [12].)
Here the solid frame is neglected (assumed infinitely thin)
and the whole Platonic shape is filled with gas. Wideband
pressure pulses were sent in the presence and absence of
bubbles as in the experiment, to feature the bubble con-
tribution. The emitted pressure wave has isovalues whose
shape first match the bubble shape at very close distance,
and then rapidly transits to a monopolar spherical emission
further away from the bubble (Fig. 3). When looking at the
resonance frequency, we observe a significant deviation
from Minnaert for the tetrahedron, whose frequency is
higher by 8%, further supporting the experimental obser-
vation, while it tends to Minnaert for the icosahedron.

We give here a theoretical hint of this behavior, inspired
by Ref. [14]. For small pulsations of the gas volume, the gas
volume Vg oscillates around an equilibrium value V0

g. The
total potential energy writes U ¼ 1

2 kðVg − V0
gÞ2, with k a

stiffness coefficient due to the gas compression (neglecting
surface tension), that depends only on the bubble volume.
The total kinetic energy of the water moved around the
bubble writes Ec ¼ ∭ 1

2 ρlv
2dV ¼ 1

2m _Vg, withm an inertial
coefficient that depends on the exact geometry, being a
function of the potential velocity field v produced by the
volume pulsation. The bubble natural frequency of the
oscillator is given by f ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
=2π. Strasberg [14] found

an analogy between the coefficient m and the electrostatic
capacitance C of the shape: formally m=ρl is equivalent to
the inverse of C=ϵ0, with ϵ0 the vacuum permittivity.
The calculation of the capacitance of polyhedra is a long-

standing mathematical challenge [15]. It amounts to solv-
ing C=ϵ0 ¼ −∬Γð∂U=∂nÞdS, the integral over the surface
of the normal derivative of U, the latter being the solution
of Laplace equation ΔU ¼ 0 with boundary condition
U ¼ 1 on the surface Γ. Using numerical solutions [15]
for the value of C of polyhedra, we can compute the ratio of
the capacitance to the capacitance of the sphere with the
same volume CsphereðReqÞ ¼ 4πϵ0Req, from which we
deduce the frequency ratio

f
fMinnaert

¼
"

C
Csphere

#
1=2

ð2Þ

to be 1.082, 1.032,1.027, 1.0061, 1.0067, respectively,
from tetrahedron to icosahedron, close to sound propaga-
tion simulations [Fig. 3(f)]. Note that these ratios are larger
than 1, suggesting that the sphere is the shape minimizing
the resonance frequency (or the capacitance in the frame of
our electrostatic analogy) at a given volume. This hypoth-
esis is supported by exact results for some families of
shapes, such as the ellipsoids [16], or in general for a
slightly nonspherical shape.
The size of platonic bubbles is limited by water invasion:

the biggest one is the icosahedron (N ¼ 20) with an

(a)

(b)

(c)

FIG. 1. (a) Immersed tetrahedral bubble and hydrophone. (b) 3D-printed frames for the five Platonic solids. The width of the cube is
3 mm and gives the scale. (c) After immersion, air-liquid interfaces are pinned at the openings.
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equivalent radius Req ¼ 4.5 mm, and apertures of diameter
lmax ¼ 2.5 mm. Bigger bubbles could be imagined if one
could design frames with a larger number of faces, which is
not possible with regular polyhedron. This becomes pos-
sible if we go beyond Platonic solids.
More faces with the slightly irregular fullerenic solids.—

We therefore explored slightly irregular shapes considering
the shapes of fullerenes, and in particular the ones that
are made of hexagons and 12 pentagons positioned

homogeneously on the surface, at the vertices of an
inscribed icosahedron. We designed a variety of
fullerenes, starting from the smallest one which is the
Buckminsterfullerene C60 (a celebrated shape which
formed the panels of the Telstar soccer balls used in
World Cups 1970 and 1974), then continuing with C180,
C240, C320, and C540, featuring 32, 92, 122, 162, and 272
faces, respectively; see Figs. 4(a) and 4(b). With fullerenes,
we could increase the gas volume up to an equivalent radius
Req ¼ 7.5 mm (with C540).
The resonant frequency of fullerene bubbles was mea-

sured: it is still well approximated by the Minnaert relation-
ship; see Fig. 2(d). Note that such big bubbles feature a high
quality factor (around 30) close to the theoretical value for a
free spherical bubble of the same size [2]; the presence of a
structure does not add much damping.
One may wonder if there is a limit to the size of such

fullerene bubbles. We experienced that manufactured full-
erenes needed smaller apertures, in comparison to Platonic
shapes, to prevent water invasion. The maximum aperture
diameter is lmax ¼ 1.45 mm for C540 instead of lmax ¼
2.5 mm for the biggest icosahedric bubble.
This trend can be modeled using the simple following

arguments. When the dry frames of radius R are dipped
partially in water, interfaces at the bottom experience a
larger hydrostatic pressure just before complete immersion
[17], of order 2ρlgR. It is thus necessary to have apertures
small enough so that capillary Laplace pressure (of order
4σ=l for the highest interface curvature) can counteract the

(a) (f)

(b) (c) (d) (e)

FIG. 3. (a)–(e) Simulation of the pressure field emitted by the
vibration of a platonic shape made of gas (cross section in the
middle, except for the tetrahedron cut along a face). Each image
represents a snapshot of the scattered pressure amplitude at a time
of maximum pressure, normalized to the maximum value inside
the bubble. Isolines are chosen to be equidistant for a field
decaying as 1=r. Bubble volume is 27 mm3 made of 0.1 mm
voxels. (f) Frequency as a function of the number of faces,
normalized with Minnaert model. Filled symbols: numerical
predictions from the finite-difference time-domain simulations.
Open symbols: numerical solutions from the electrostatic analogy.

lll

(a) (b)

(c)

(d)

FIG. 2. (a) Vibration of a Platonic bubble, shown here with a
tetrahedron. The opening size is measured by the incircle of
diameter l. (b) Amplitude and cosinus of the phase of the
normalized frequency response A for a tetrahedron with
l ¼ 2.46 mm. (c) Resonance frequency as a function of l when
changing the bubble size. For apertures larger than 2.5 mm water
invaded all the structure. (d) Resonance frequency as function of
Req, the radius of the gas volume packed in a sphere. Line:
Minnaert model [Eq. (1)]. Cross: fullerenes. Inset: Ratio of the
resonance frequency to Minnaert frequency.
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hydrostatic pressure, and the aperture should be less than
l ≃ 2σ=ρlgR. Numerical data on lmax as a function of Req

closely follow this relationship with a prefactor 0.8 if we
chose σ ¼ 70 × 10−3 N=m.
A big polyhedral bubble therefore needs a lot of small

apertures. If the aperture area is a fraction ϕ (< 1) of the
Platonic face area, we find the total number of holes to be
N ≃ 4πR2ϕ=ðπl2=4Þ, assuming all faces to be identical and
assuming the shape to be close to a sphere. This number
should be higher than N ∼ 4ϕðR=lcÞ4, with lc the capillary
length, to prevent the water invasion. As a conclusion, there
is actually no limit on the bubble size, but the number of
faces increases dramatically with size.
Multifaceted model for thick edges.—One may also

wonder about the acoustic influence of the frames, espe-
cially if they become thick. To address this question we
have on purpose generated a polyhedron (here a cube) with
openings becoming smaller than the face size; see photo-
graph and sketch in Fig. 4(c). We observe that the
resonance frequency departs from the Minnaert prediction
when the openings become small compared to the faces.
A qualitative explanation is that only a smaller proportion
of the surface is oscillating compared to the case of a
pulsating sphere. This effect can be modeled quantitatively

following the approach in Ref. [10] focusing on individual
interfaces in the openings, that behave as individual
oscillators when they vibrate, coupled through the gas
(since they compress the same gas) and through the liquid
(since they emit acoustic waves).
According to this approach, each vibrating interface

(labeled i) can be modeled as an individual oscillator whose
displacement is ξ̄i (averaged over the surface assumed
circular). The gas compression or decompression results
in a potential energy U ¼ 1

2 kξ̄i
2 with a stiffness k ¼

γP0ðπl2Þ2=4Vg. When alone, a moving interface entrains
the fluid around and involves a kinetic energy Ec;i ¼
1
2miξ̄i2 with an added mass mi ¼ ð4=15Þρll3, assuming a
circular aperture embedded within infinite plane [18,19].
In the lowest mode, the N interfaces vibrate in phase and
experience a demultiplied effective stiffness keff ¼ Nk and
an effective mass meff ¼ mþ πρll3

P
j≠iðl=64rijÞ, with rij

chosen to be the shortest path in the liquid (for a cube
rij ¼ L) [10]. The resonance is computed from fres ¼
ðkeff=meffÞ1=2=2π and plotted in Fig. 4(c) as dashes and
matches well the experiments. The frequency is lowered
compared to Minnaert and even tends to zero when the ratio
of the aperture size to face size l=L tends to zero.
Conclusion and perspectives.—The resonance frequency

of Platonic and fullerene bubbles is well described by an
equation based on the Minnaert formula, in spite of the
presence of many frame edges and in spite of significant
deviation from sphericity. It is only when edges are thick
that we need a specific multifaceted model. A large number
of faces is possible, provided the opening is reduced to
counteract the additional hydrostatic pressure. Perspectives
include the use of this new type of bubbles in acoustic
metamaterials, trapping many bubbles at desired positions
and dimensions.
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