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2 Lab. Spectrométrie Physique, UMR 5588, CNRS and Univ. J. Fourier, B.P. 87, 38402 Saint-Martin d’Hères Cedex, France

May 5, 2008

Abstract. A numerical computation based on a tensorial visco-elasto-plastic model based on continuous
mechanics is compared to experimental measurements on liquid foams for a bidimensional Couette flow
between two glass plates, both in stationary and transient cases. The main features of the model are
elasticity up to a plastic yield stress, and viscoelasticity above it. The effect of the friction of the plates
is taken into account. The numerical modelling is based on a small set of standard material parameters
that are fully characterised. Shear localisation as well as acute transient observations are reproduced and
agree with experimental measurements. The plasticity appears to be the fundamental mechanism of the
localisation of the flow. Finally, the present approach could be extended from liquid foams to similar
materials such as emulsions, colloids or wet granular materials, that exhibit localisation.

PACS. 47.57.Bc Foams and emulsions – 83.60.La Viscoplasticity; yield stress – 83.60.Df Nonlinear vis-
coelasticity – 02.60.Cb Numerical simulation; solution of equations – 07.05.Tp Computer modelling and
simulation

Introduction

The bidimensional Couette flow of a foam has been widely
studied, from experimental, theoretical and numerical
points of view. Many studies focus on the velocity pro-
file that can localise near the moving walls [1,2]: the mea-
surements exhibit the coexistence between a flowing re-
gion and a region moving as a whole, similar to what has
been observed for bi- or tridimensional shear flows of emul-
sions [3], colloids [4] or wet granular materials [5–8].

Most of these studies reveal either a continuous [1,5–7]
or discontinuous [2–4] transition between the flowing and
non-flowing regions. These differences have not been un-
derstood yet and continue to excite debate [2,9]. A scalar
visco-elasto-plastic model including viscous drag [10,11]
successfully reproduced the exponential decay of velocity
that was observed in the bidimensional plane [9] and cylin-
drical [1] Couette flows of a foam between two glass plates.
In both cases, the localisation was interpreted as the com-
petition between the internal viscosity of the foam and
the external friction from the glass plates. Recently, the
data presented in [1] were re-analysed in [12] and, in addi-
tion to the velocity field, two tensorial informations were
extracted both in stationary and transient regimes: the
statistical elastic strain tensor and the plastic rearrange-
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ments rate tensor. Up to now, these measurements have
not been compared yet to a prediction from a numerical
model.

The aim of this paper is to compare the measurements on
a bidimensional Couette flow of a liquid foam between two
glass plates presented in [1,12] with the present numerical
computations based on a recent general tensorial and tridi-
mensional visco-elasto-plastic model based on continuous
mechanics [13] that combines viscoelasticity and viscoplas-
ticity in a unified framework. This model, which obeys
by construction the second principle of thermodynamics,
leads to numerically stable equations and robust resolu-
tion algorithms. It is general enough to apply to both bi-
and tridimensional geometries and to several materials.
Here, it is applied to bidimensional foams using three pa-
rameters found in the literature (with only minor adjust-
ments) and agrees with the published experiments. This
implies that we can also use it to predict flows in several
geometries and conditions, including transient, steady and
oscillatory flows, even if no experiment is available.

The bidimensional Couette flow experimental set-up dis-
cussed here is briefly recalled in the first section. The sec-
ond section presents the numerical modelling. The numer-
ical results are then analysed and compared with data
measurements in the third section for the transient case,
and in the fourth section for the stationary case. Finally,
the fifth section explores the mechanism of localisation.
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1 Presentation of the experimental set-up
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Fig. 1. Experimental set-up: (a) definition of the geometric
and kinematic parameters ; (b) picture of the confined bidi-
mensional liquid foam (from [1]).

Georges Debrégeas courteously provided data from the
experimental set-up represented on Fig. 1. It consists of
an inner shearing wheel of radius r0 and an outer fixed one
of radius re. Let ∆r = re−r0 denote the cylinder gap. The
cylinder boundaries are tooth shaped and there is no slip.
The liquid fraction (5.2%) is homogeneous and the bub-
ble size is of the order of 2 mm. The foam is confined be-
tween two transparent glass plates separated by an inter-
val h=2 mm. The inner wheel rotates at V =0.25 mm s−1,
well in the low velocity limit.

Two experimental runs are available:
• Run 1 is related to the transient case, measure-
ments are available in [12]. The internal radius is r0 =
71 mm and the external radius is re =112 mm. To pre-
pare the foam, the inner disk is rotated counterclockwise,
until a stationary regime is reached; then, at an arbi-
trary time chosen as the origin (t = 0), the shear di-
rection is switched to clockwise, the experiment begins
and measurements are made using image analysis. In [12],
the measured quantities are averaged over eight equi-
spaced orthoradial circular boxes corresponding to posi-
tions rj = r0 + 1.7 10−3 × (0.4 + 2.7 × (j − 0.5)) for j =1
to 8.
• Run 2 focuses on the stationary case and measure-
ments are presented in [1,12,14]. The internal radius is
r0=71 mm, as for the previous run, and the external ra-
dius is re=122 mm, which differs from the previous run.
The preparatory rotation is clockwise. Then, at an arbi-
trary time, it is switched to counterclockwise. Pictures are
recorded only after a full 2π turn.

2 The numerical modelling

The strain tensor ε is supposed to split into two contribu-
tions:

ε = ε
(p) + ε

(e), (1)

where ε
(p) and ε

(e) denote respectively the plastic and
the elastic strain tensors. The model considered in this
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Fig. 2. The visco-elasto-plastic model.

paper is presented on Fig. 2. The total Cauchy stress ten-
sor writes:

σ = −p.I + τ , (2)

where p is the pressure, I is the identity tensor (here in two
dimensions), τ = 2µε

(e) is the elastic stress tensor, and
µ is the elastic modulus of the foam. When the stress is
lower than a yield value, the material behaves as an elastic
solid: the plastic strain ε

(p) is equal to zero and the stress
is 2µε. Otherwise, the foam is supposed to behave as a
Maxwell viscoelastic fluid with a relaxation time λ = η/µ,
where η is the viscosity.

This model is a simplified version of the model introduced
in [13]: the second solvent viscosity of the original model
is here taken to zero. This choice is coherent with experi-
mental observations [12,15]: at slow strain rate and when
no plasticity occurs, the foam behaves as a solid elastic
body while the model considered in [13] describes a more
general Kelvin-Voigt viscoelastic solid. This choice in the
modelling is also justified a posteriori in the present pa-
per by comparisons between numerical computations and
experimental measurements.

The tensor τ satisfies the following nonlinear differential
constitutive equation:

λ
Dτ

Dt
+ max

(

0, 1 − τY

|τ d|

)

τ = 2ηD(v), (3)

where v is the velocity field, D(v) = (∇v + ∇vT )/2 is
the strain rate tensor and τY > 0 is the yield stress. We
denote also by τ d = τ − (1/2) tr(τ ) I the deviatoric part
of τ and by |τ d| its matrix norm. The upper convected
derivative of tensors writes :

Dτ

Dt
=

∂τ

∂t
+ (v.∇)τ − τ ∇vT −∇v τ .

The set of equations is closed by the conservation of mo-
mentum:

ρ

(

∂v

∂t
+ v.∇v

)

− divσ = −β

h
v, (4)
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where ρ denotes the density, which is constant [16]. The
right-hand side expresses the external force due to the
friction of the plates: β ≥ 0 is a friction coefficient and
h the distance between the two plates; following [10], a
linear friction model is assumed for the sake of simplicity.
A discussion on the effect of this approximation at low
velocity can be found in [17]. Finally, since the density is
constant, the mass conservation reduces to :

divv = 0. (5)

The three unknowns of the problem are (τ ,v, p) and the
corresponding equations are (3), (4) and (5). They are
completed by some boundary conditions for v at r = r0

and re for any t > 0, and some initial conditions for τ

and v at t = 0. In the bidimensional polar coordinate
system (r, θ), we assume the solution to be independent of
θ: the radial component velocity vr is zero and vθ is simply
written as v. Detailed equations presented in appendix A
show that the problem reduces to a time-dependent one-
dimensional system of partial derivative equations with
four scalar unknowns v, τrr, τrθ, τθθ that depend upon t
and r.

We solve it with a second order time splitting algorithm,
similar to what has been used for viscoelastic fluid flows
problems [18]; this algorithm allows to simplify the highly
non-linear initial problem into a sequel of (i) elliptic prob-
lems resolutions and of (ii) constitutive equation resolu-
tions. Problems (i) and (ii) can then be solved by classical
methods. A mixed finite element method is implemented
for the discretisation with respect with r; the gap [r0, re]
is discretised with 500 points. The time discretisation is
performed with a time step ∆t of the order of 0.2 s, which
is small considering that the motion is very slow. The sta-
tionary solutions are obtained by running the transient
algorithm until the relative error between two time steps
divided by ∆t is less than 10−3.

In order to perform computations and compare them to
the experimental data, we need to specify the numer-
ical values of the kinematic and geometric parameters
(V, ∆r, h) of the experimental set-up, and the material
parameters (µ, η, τY , β). Let ∆r, V , ∆r/V and ηV/∆r be
the characteristic length, velocity, time and stress, respec-
tively. We can define a Reynolds number Re = ρV ∆R/η,
but we will see below that we can neglect it. We choose
three dimensionless numbers: the Bingham and Weis-
senberg numbers, and a friction coefficient, defined as, re-
spectively:

Bi =
τY ∆r

η V
, We =

η V

µ∆r
and CF =

β∆r2

ηh
. (6)

This choice of dimensionless numbers (Bi, We, CF ) corre-
sponds to a description of the foam as a fluid: the char-
acteristic stress is a viscous stress ηV/∆r. An alternative
choice would be to choose the elastic modulus µ as the
characteristic stress, in order to emphasise the elastic-
like behaviour of the foam; the corresponding dimen-

sionless numbers would be the yield deformation ε
(e)
Y =

1/2Bi We = τY /(2µ), the ratio βV ∆r/(µh) = CF We of
the friction of the plates with the elastic modulus, and
the same Weissenberg number. We will see in the sequel
that the latter choice is appropriate for the transient flow
description (section 3), whereas the former choice is ap-
propriate for the stationary flow description (section 4).

From [19], the bidimensional elastic modulus in Nm−1

is expressed as µ̄=µ/h ≈ 2 10−2Nm−1. The estimation
of the elastic modulus µ is thus µ ≈ 10 Nm−2. From [15]
the relaxation time λ=η/µ of the foam on this experi-
ment should be of the order of 1 s, and thus η ≈ 10 Pa s.

The yield strain ε
(e)
Y is dimensionless; it is evaluated

from the experiments [12] as the maximal value of |ε(e)
d |

(Fig. 10): ε
(e)
Y ≈ 0.26, and thus τY ≈ 5.2 N m−2. It

should be pointed out that in the model, |ε(e)
d | can ex-

ceed ε
(e)
Y at non zero velocity. Again from [19], the fric-

tion force of the plates is estimated in N m−2 for any
velocity v as f =31 v0.64. Since the maximum value of
the velocity is V =0.25 mm s−1, the maximum value of

the friction force is 31 ×
(

0.25 · 10−3
)0.64

. As we have
chosen a linear friction model for the sake of sim-
plicity, f̃ =βv/h, we choose β such that the maximal
value of the friction is the same with both expressions:

β ≈ 31 ×
(

0.25 · 10−3
)0.64

/(0.25 · 10−3)=613 Pa s m−1.

After a first computation based on this set of parame-
ters, we found a good agreement of the model with both
transient and stationary cases with slightly adjusted pa-
rameters which we use throughout the paper for compar-
ison with experiments: µ = 10.9 N m−2, η = 13.1 Pa s,
τY = 5.47 N m−2. β = 613 Pa s m−1. This adjustment
leads to the set of dimensionless numbers (6) presented in
Table 1.

run Bi We CF

1. transient 68.3 7.31 × 10−3 39.2

2. stationary 85.0 5.88 × 10−3 60.7

Table 1. The choice of dimensionless numbers as defined
in (6). The material parameters of the foam are identical in
both runs, but since the cylinder gaps differ, the dimensionless
numbers differ as well.

Since the nonlinear inertia term v.∇v in (4) vanishes for
simple shear flows such as the Couette flow, the Reynolds
number Re = ρV ∆r/η ≈ 5 × 10−5 has a negligible influ-
ence on the transient problem and no influence on the
stationary one. Thus, Re is taken as zero for the compu-
tations. For the comparison with experiments, the results
at time t and radius r are expressed in a dimensionless
form, respectively, as the total applied shear γ = V t/∆r
and as the distance to the inner cylinder normalised by
the size of the gap (r − r0)/∆r.
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Fig. 3. Transient case: (a) velocity profile versus r at different times ; (b) velocity profile versus t for r = r1 to r8.
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Fig. 4. Transient case: cross component of the elastic strain ε
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rθ versus t for r = r1 to r8. Inset: the vertical dashed line mark

the cross-over γc between the transient and the stationary regimes, defined by the intersection of the tangent at the point of

minimum curvature and the asymptotic value of ε
(e)
rθ , here plotted for r = r4.

3 The transient flow

The transient numerical computation is performed as fol-
lows: first, the computation is done with the foam initially
at rest with v(r0) = V and v(re) = 0. When a stationary
regime is reached, the boundary conditions are changed to
v(r0) = −V and v(re) = 0 at a time chosen as the origin
(t = 0) and results are stored at each time step.

Fig. 3a plots the velocity profile versus r at different
times. Conversely, the velocity is represented on Fig. 3b
versus time at different radii, from r = r1 to r8. When
γ = 0.01, the shear direction has just been switched and
the velocity profile is roughly exponential. After a short
transient, 0 ≤ γ ≤ 0.1, the velocity profile becomes quasi
linear up to γ ≈ 0.3. Then, at γ = 0.3 and r = r1, i.e.
near the moving disk, it starts to decrease rather abruptly.
Far from the moving disk, the decreasing starts later, at
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Fig. 5. Transient case: (a) γc versus r with parameters as in table (1). •: experimental data with error bars; solid line: numerical
data. (b) γc versus r with Bi and We as in table (1) and CF We = 0, 0.1, 0.2, 0.287, 0.4.

γ = 0.35. At γ = 1, the foam has reached a stationary
regime in which the flow is strongly localised near the
moving disk.

Fig 4 shows ε
(e)
rθ = τrθ/2µ versus time for r = r1 to r8.

After a short transient of about 0.05, ε
(e)
rθ reaches a first

regime where it varies linearly (0.05 ≤ γ ≤ 0.3 for r = r1

and 0.2 ≤ γ ≤ 0.4 for r = r8). Thus, the stress τ depends
linearly upon γ, i.e. the material behaves as an elastic
solid in this regime. Then, after a second transition, τ sat-
urates and reaches a stationary regime. For a given radius
r, the characteristic value of γ associated to this second
transition is denoted by γc(r), defined as the intersection
between the tangent at the point of minimal curvature in
the transient regime and the horizontal line correspond-
ing to the asymptotic value in the stationary regime, as
shown in the inset of Fig. 4.

Figure 5a shows the inhomogeneity in yielding accross
the gap. The numerical results agree with the experi-
ment [12] within error bars. Both numerical and exper-
imental results show that the regions close to the mov-
ing wall saturate earlier than the regions far from it. We
take advantage of the numerical computations to study
how this inhomogeneity depends on the physical param-
eters. As mentioned in section 2, the appropriate param-
eters here are (BiWe, CF We, We). We find that when
CF We = 0.287 is maintained constant and BiWe and
We are varying, the curve γc(r) is only translated up-
wards or downwards, the inhomogeneity throughout the
gap remains the same. Conversely, when BiWe and We
are fixed as in Table (1), the inhomogeneity varies with
CF We (see Fig. 5b). We plot in Fig. 6 γc(re) − γc(r0)
versus CF We; the dependence is almost linear:

γc(re) − γc(r0) ≈ 0.65 CF We. (7)
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Fig. 6. Transient case: γc(re) − γc(r0) versus CF We. 2: nu-
merical data; dashed line: linear fit tothese data.

In particular, when CF We = 0, γc(r) = 0 for all r ; the
inhomogeneity is thus an effect of the friction of the plates.

Fig. 7 plots the norm of the deviatoric part of the elastic
strain tensor
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We recall that the plasticity occurs when |τ d| ≥ τY , and

thus when |ε(e)
d | is above ε

(e)
Y = τY /(2µ) = Bi We/2 =

0.25. Fig. 7 shows that it occurs only close to the mov-
ing cylinder, for r = r1; and only for small times, dur-
ing the first transition regime, or for large time, during

the stationary regime. At initial time, |ε(e)
d | is above ε

(e)
Y

near the moving disk. As the disk moves, the velocity and

its gradient change sign and |ε(e)
d | decreases rapidly until

|ε(e)
d | < ε

(e)
Y everywhere in the foam. Therefore there is no

plasticity in the foam and the constitutive equation (3) re-
duces to: Dε

(e)/Dt = D(v). This relation expresses that
all the velocity gradient is loaded into ε

(e). The foam be-

haves like an elastic body and ε
(e)
rθ increases linearly with

the applied strain γ. Because of the cylindric geometry
and the friction of the plates, ε

(e) is higher near the inner

moving disk. When |ε(e)
d | reaches ε

(e)
Y near the inner disk,

plasticity occurs and the foam starts to flow. Then ε
(e)

saturates everywhere in the gap, even though it is above
the yield deformation only in a region near the moving
disk. Inside this region, the foam is flowing, while outside
there is no flow and the foam is at rest.

Let us summarise our findings for the transient case. Af-
ter a brief transient, the material behaves as an elastic
solid: there is no plasticity yet and the velocity profile
is quasi linear. The deformation saturates first near the
moving disk, and then gradually throughout the gap. The
friction of the plates is responsible for this gradual satu-
ration. Finally, after this second transient, the stationary
regime is reached: the material is flowing and the flow is
strongly localised near the moving disk.

4 The stationary flow

The stationary numerical computation is performed as fol-
lows: as in the experiment, there is a preparatory clock-
wise rotation (the boundary conditions are v(r0)=−V and

v(re) = 0) after which the inner cylinder is rotated coun-
terclockwise (the boundary conditions become v(r0) = V
and v(re) = 0). As in the previous section, after a tran-
sient, the flow evolves asymptotically and monotonously
towards a stationary flow.

Fig. 8a compares the numerical results to measurements
made in [1]. The velocity is strongly localised near the
moving disk, as in the transient case (Fig. 3a). Both the
computed and experimental velocities have the same ini-
tial slope, but the transition to zero is more abrupt in the
case of the numerical resolution. We denote by rc the ra-
dius at which the velocity drops to zero. The computation
yields rc =77.6 mm while rc =84.0 mm for the experimen-
tal data. The rc prediction error is about 12 % of the gap
size. The origin of this abrupt behaviour is discussed in
the sequel.

Fig. 8b represents the total shear strain rate ε̇rθ: it
strongly localises near the moving disk, and is discontinu-
ous at the transition between the flowing and non-flowing
regions. There is no experimental data available for the
comparison.

The stationary elastic strain ε
(e) (Fig. 9) is compared

to experimental measurements from [12]. The computed

shear component ε
(e)
rθ (Fig. 9a) is slightly overestimated.

Nevertheless, it presents qualitatively the same behaviour
as in the experiment: it does not localise near the moving
disk and varies smoothly with r. The computed difference

of the normal components ε
(e)
rr − ε

(e)
θθ presents a disconti-

nuity at the point at r = rc, where the computed velocity
and plasticity drop to zero (Fig. 9b). Conversely, the sign
of the experimental data changes in the middle of the gap.

This strong difference is not surprising since ε
(e)
rr − ε

(e)
θθ is

not so geometrically constrained as is ε
(e)
rθ , and depends

on the foam preparation. This is especially true in the re-
gion of the foam which is not sheared much beyond the
plasticity limit. Anisotropic trapped elasticity [20] may be
initially present in the experimental setup [12]. Similarly,
in the model, the stationary normal components depend
on the initial conditions (Cf. appendix B).

Finally, we plot |ε(e)
d | versus r (Fig. 10); this quantity

is discontinuous as well; max(0, 1 − τY /|τ d|) is zero for
r = r+

c but non zero for r = r−c .

Such an abrupt transition has been observed on bubble
rafts [2] and various experimental systems [3,4]. In the
present numerical computation, this discontinuity is an
effect of the model and not a numerical artefact. Calcula-
tions presented in appendix B show that in the stationary
regime the model analytically predicts either continuous
or discontinuous quantities, separated by a critical strain
rate:

ε̇c
rθ =

τrθ(rc)

2η






1 − τY√

2|τrθ(rc)|
1

(

1 + λ2

η2 τrθ(rc)2
)1/2






.

(8)
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If we assume that the normal stress difference is small
compared to the shear stress in the non-flowing, elastic re-
gion, then |τrθ(rc)| is of the order of τY /

√
2 and (8) yields

a more practical formula that does not involve τrθ(rc):

|ε̇c
rθ| ≈

√
2τY

4η






1 − 1

(

1 + λ2

2η2 τ2
Y

)1/2






. (9)

(9) yields ∆r/v(r0)|ε̇c
rθ| = 1.72, in excellent agreement

with the computed value (Fig. 8b) ∆r/v(r0)|ε̇c
rθ| = 1.73.

If we set λ = 0 in (3), the model reduces to the Bingham
model; if we set τY = 0 in (3), the model reduces to the
Oldroyd-B model. None of these models exhibits a critical
strain rate whereas their combination does. When λ is not
zero, the term −τ∇vt − ∇vτ in the objective derivative
introduces normal components in the off-diagonal term of
the constitutive equation (Cf. appendix A) which enables
the model to have discontinuous solutions even though
the term max(0, 1 − τY /|τ d|)τ is continuous. Thus, the
discontinuous behaviour observed with the present model
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˛
versus r. Solid line: numerical

resolution; •: experimental data from [12].

arises from the tensorial formalism. A scalar model may
not be able to reproduce it.

Let us summarise our findings in the stationary case. The
flowing region is well predicted by the model. The non-
flowing region is very sensitive, especially to foam prepa-
ration, both in the experiments and in the model. In be-
tween, the model can predict a discontinuous transition.
In this case, we are able to predict the velocity gradient
jump.

5 The mechanism of localisation

In order to probe the effect of the friction of the plates
on the localisation in the stationary regime, a station-
ary numerical computation with both Bi = 85.0 and
We = 5.88 × 10−3 unchanged, and CF set to zero, is
performed. The result is compared (Fig. 11a) with the
numerical solution with the reference set of parameters
CF = 60.7 from Table (1). The velocity profile is almost
the same: the friction of the plates does not seem to be
responsible for the localisation in this experiment. The de-
pendence of the localisation point rc upon We was found
to be negligible. More precisely, for any fixed value of Bi
in the range [0 : 153], the variation of rc/∆r upon We in
the range [0 : 1.96 × 10−2] was found to be less than 3%.
Therefore, the localisation point rc can be approximated
using the Bingham model.

Fig. 11b plots the localisation point versus Bi for the
Bingham model (We=CF =0): rc−r0 behaves as Bi−1/2.
An explicit computation for the Couette flow of a Bingham
fluid (see e.g. [21] or [22, p. 241]) expresses the ratio rc/r0

as the solution of:
(

rc

r0

)2

− 2 ln

(

rc

r0

)

= 1 + 2
√

2

(

∆r

r0

)

Bi−1 (10)

A Taylor expansion of (10) for small rc − r0 leads to:

rc − r0

∆r
≈ 21/4

( r0

∆r

)1/2

Bi−1/2. (11)

This explicit approximate formula predicts well the local-
isation point, as shown on Fig. 11b.

In [9], the authors shear a bubble raft in a plane Couette
geometry and see no localisation at all. Adding a plate
on the top, a localisation is observed. The authors con-
clude that the plate is responsible for the localisation. This
result seems to be in contradiction with our conclusion
that the friction has a minor influence on the localisation.
Therefore, we performed the numerical resolution of our
model in the case of a plane Couette flow, in order to
check if our model was able to reproduce the behaviour
observed in [9]. We used a gap width of 40 mm and a mov-
ing boundary with a velocity of 0.25 mm/s as in [9]. The
dimensionless numbers Bi=85 and We=5.88× 10−3 are
fixed and only CF is varying. Fig. 12 shows the results for
CF =0, 6.07 and 60.7. For CF =0, all the foam is flowing

and the velocity profile is linear (Fig. 12a) while |ε(e)
d | is

constant and above ε
(e)
Y (Fig. 12b). For CF =6.07, all the

foam is flowing but the velocity profile is no longer lin-

ear, while |ε(e)
d | is non uniform but above ε

(e)
Y throughout

the gap. For CF = 60.7, the velocity is localised near the

moving wall and |ε(e)
d | is not uniform: it is above ε

(e)
Y in

the region where the velocity is not zero and under ε
(e)
Y

otherwise.

Let us summarise our findings. We explain the localisa-
tion by the non uniform stress: part of the system is above
the yield stress and part of the system is below the yield
stress. In the case of the plane Couette flow, the friction
of the plates is responsible for the non uniform stress. In
the case of the cylindrical Couette flow, it is mostly the
geometry, and the localisation position is mainly governed
by the Bingham number while both the friction and the
Weissenberg number have only a minor influence.

Conclusion

For the first time, comparisons between an visco-elasto-
plastic model based on continuous mechanics and mea-
surements both in stationary and transient cases are per-
formed and found to be in good agreement. The direct nu-
merical resolution enables a full comparison with all avail-
able data from measurement. The comparison performed
with only one set of material parameters confirms the pre-
dictive character of the proposed model. This model is
fully parametrised by only three standard dimensionless
numbers that depend on a limited set of experimentally
measurable material parameters.
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The transition to the shear banding was analysed both
in the transient and stationary cases. An elastic behaviour
appears during the transient flow. The effect of the fric-
tion of plates on the propagation of the plastic rearrange-
ments throughout the gap is also analysed in details. In the
stationary case, a non uniform stress throughout the gap
leads to a flowing part above the yield stress and a non-
flowing part under the yield stress. It appears to be the
fundamental mechanism for the localisation of the flow.
The mechanism of localisation is analysed in details with
respect to the effect of friction on the plates and to the

plasticity. Finally, the plasticity appears to be the funda-
mental mechanism of the localisation of the flow.

In the future, we plan to compare the numerical resolu-
tion of our model with more complex liquid foam flows
like flows around an obstacle. It can also be interesting to
study models with a different description of plasticity as
in [14]. Finally, we point out the fact that our approach
is not specific to liquid foams: it could well describe emul-
sions, colloids or wet granular materials that are known
to develop a similar behaviour.
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Appendix

A Detailed equations

We write equations (3), (4) and (5) in cylindrical coor-
dinates, using the fact that the velocity is of the form
v = (0, v(t, r)) and that the τ tensor components depend
only on t and r. The tensorial equation (3) is equivalent
to three scalar equations:

λ

(

∂τrr

∂t
+ 2

v

r
τrθ

)

+ max

(

0, 1 − τY

|τ d|

)

τrr = 0,

(12a)

λ

(

∂τrθ

∂t
− ∂v

∂r
τrr +

v

r
τθθ

)

+ max

(

0, 1 − τY

|τ d|

)

τrθ − η

(

∂v

∂r
− v

r

)

= 0,

(12b)

λ

(

∂τθθ

∂t
− 2

∂v

∂r
τrθ

)

+ max

(

0, 1 − τY

|τ d|

)

τθθ = 0.

(12c)

with |τ d| =
(

2τ2
rθ + 1

2 (τrr − τθθ)
2
)1/2

. The vectorial equa-
tion (4) is equivalent to two scalar equations:

∂p

∂r
− ∂τrr

∂r
− τrr − τθθ

r
= 0, (13a)

− 1

r2

∂

∂r

(

r2τrθ

)

= −βv

h
. (13b)

The equation (5) is verified for any v of the form (0, v(r)).

B Analytical analysis of the stationary

equations

We show here that the model can lead either to continuous
or discontinuous quantities in the stationary regime for
the circular geometry. Similar developments can be made
for the plane geometry and yield the same results. We
make the reasonable assumptions that in the stationary
regime, |τ d| is decreasing throughout the gap, and that
there exists rc such that |τ d| > τY for r < rc and |τ d| < τY

for r > rc.

First of all, as there are no point forces at the interface
between flowing and non flowing regions, the total stress
τ − pI has to be continuous. However, this is not neces-
sarily the case for the components of τ : (13a) shows that
the normal components of τ can be discontinuous if the
pressure is discontinuous; conversely, (13b) shows that τrθ

must be continuous as it is not balanced with pressure.

Then we write the constitutive equation with ∂
∂t = 0. We

have:
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• When r > rc: the plasticity term is zero, so (12a) leads
to 2λ(v/r)τrθ = 0, and v = 0 as τrθ 6= 0. Eqn. (12c)
leads to −2λ∂v

∂r τrθ = 0, and thus ∂v
∂r = 0. However,

(12b) is then equivalent to 0 = 0, and the normal
stress components are not determined by the station-
ary equations only. In the transient problem, their
value are determined by the initial conditions. Finally,
as v = 0, (13b) yields τrθ = C/r2 where C is a con-
stant.

• When r < rc: (12a)-(12c) lead to

2λ
v

r
τrθ +

(

1 − τY

|τ d|

)

τrr = 0,

−λ

(

∂v

∂r
τrr −

v

r
τθθ

)

+

(

1 − τY

|τ d|

)

τrθ = η

(

∂v

∂r
− v

r

)

,

−2λ
∂v

∂r
τrθ +

(

1 − τY

|τ d|

)

τθθ = 0.

We denote with a − (resp. a +) the quantities evaluated
in r = r−c (resp. in r = r+

c ); v and τrθ are continuous,
thus v− = v+ = 0, τ−

rθ = τ+
rθ = τrθ(rc) and we have:

(

1 − τY

|τ−
d |

)

τ−
rr = 0,

− λ
∂v

∂r

−

τ−
rr +

(

1 − τY

|τ−
d |

)

τrθ(rc) = η
∂v

∂r

−

,

− 2λ
∂v

∂r

−

τrθ(rc) +

(

1 − τY

|τ−
d |

)

τ−
θθ = 0.

If 1 − τY

|τ−

d
|

= 0, we find ∂v
∂r

−
= 0 = ∂v

∂r

+
: there is no

discontinuity.
If 1 − τY

|τ−

d
|
6= 0, we find:

τ−
rr = 0,

τ−
θθ = 2

λ

η
τrθ(rc)

2,

∂v

∂r

−

=
1

η

(

1 − τY

|τ−
d |

)

τrθ(rc),

with now

|τ−
d | =

(

2τrθ(rc)
2 + 2

λ2

η2
τrθ(rc)

4

)1/2

.

As ∂v
∂r

− 6= ∂v
∂r

+
, the strain rate is discontinuous at

r = rc and we can define a critical strain rate:

ε̇c
rθ =

1

2

(

∂v−

∂r
− v

r

)

=
1

2η






1 − τY√

2|τrθ(rc)|
1

(

1 + λ2

η2 τrθ(rc)2
)1/2






τrθ(rc).


