
This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 2829--2835 | 2829

Cite this: SoftMatter, 2020,

16, 2829

Acoustic interaction between 3D-fabricated
cubic bubbles

Thomas Combriat, Philippine Rouby-Poizat, Alexander A. Doinikov, Olivier Stephan
and Philippe Marmottant *

Spherical bubbles are notoriously difficult to hold in specific arrangements in water and tend to dissolve

over time. Here, using stereolithographic printing, we built an assembly of millimetric cubic frames

overcoming these limitations. Indeed, each of these open frames holds an air bubble when immersed

into water, resulting in bubbles that are stable for a long time and are still able to oscillate acoustically.

Several bubbles can be placed in any wanted spatial arrangement, thanks to the fabrication process. We

show that bubbles are coupled acoustically when disposed along lines, planes or in 3D arrangements,

and that their collective resonance frequency is shifted to much lower values, especially for 3D

arrangements where bubbles have a higher number of close neighbours. Considering that these cubic

bubbles behave acoustically as spherical bubbles of the same volume, we develop a theory allowing one

to predict the acoustical emission of any arbitrary group of bubbles, in agreement with experimental

results.

1 Introduction

Acoustic metamaterials present extraordinary properties such
as negative index of refraction, or enhanced absorption, giving
the hope that it would be possible to create an invisibility cloak
around an object cancel acoustic echoes from it. Typically,
such metamaterials contain sub-wavelength resonators that
give them unique properties in terms of effective density or
compressibility.1,2 Gas bubbles are good candidates for these
sub-wavelength resonators, because of their remarkable reso-
nance, explained by the much greater compressibility of the gas
they contain compared to the surrounding liquid. A small
amount of bubbles have a huge acoustic effect on sound
propagation,3 which can be experienced in every day life with
the hot chocolate effect,4 where tiny bubbles dramatically
change the frequency of sound when the mug is lightly struck.
Bubbles can be arranged in static configurations within a solid
material, embedded in an aqueous gel5 or silicone elastomer6,7

with specific positions and sizes. Free gas bubbles in water can
be trapped under a net, but with random positions.8 Bubbles
then give super absorption properties to these materials.5,9

Here we would like to introduce metamaterials with gas
bubbles in water in order to have as little viscous friction as
possible while still being able to precisely control their sizes
and positions. This would enable interesting underwater appli-
cations for providing surfaces that could be totally absorbant or

acoustically transparent to ultrasonic waves. On a more funda-
mental level, it is of importance to characterize the resonance
of groups of interacting bubbles.

Thanks to the recent evolution of 3D-printing techniques,
we have shown in a previous work10 that it is possible to (i)
maintain the position of a gas bubble in water, and (ii) stabilise
its size, using a single cubic frame where a bubble is trapped.

The present manuscript proposes to incorporate cubic bubbles
as building blocks to be arranged into a metamaterial. Our purpose
is to find out how bubbles couple acoustically to each other, and
then to investigate what are the fundamental laws dictating the
resonance as a function of the spatial arrangement of bubbles.

2 Methods

We built open cubic frames (external size 3 mm) supported by a
loose scaffold (see Fig. 1). This structure was fabricated using a
stereolithographic (SLA) 3D-printer (Titan from Kudo3D, ‘‘Hard
and Tough’’ type resin, 50 mm resolution). The faces of the cube
have square openings 1.94 � 0.05 mm in height and 1.75 �
0.05 mm in width (slightly smaller than the 2 mm in design).
The actual dimensions of the cubic frames were determined by
taking photographs of several structures using a macroscope
(Leica Z6). The frames were silanized (30 minutes of vapour-
phase deposition of trichloro(perfluoro-octyle)silane) in order
to make them hydrophobic.

Upon immersion in a water tank, bubbles spontaneously
stay inside the cubic frames, because openings are small
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enough for capillary forces to be stronger than gravity and
prevent water from entering. On the other hand, the spaces in
the scaffold are large enough to let water invade the structure.
In order to minimise the number of parasitic bubbles forming
outside the cubes, the number of supporting frames was
minimised as much as possible in the limit of two supports
per cube. In particular, these frames were put in place so that
no closed volumes are delimited, giving the ‘‘X’’ shapes that can
be seen in Fig. 1 for complex networks.

Each bubble has flat interfaces located on the same plane than
the external faces of the cube. The gas volume Vg of these bubbles is
equal to 17 mm3 (using measured dimensions). As previously
shown10 they can, with a good approximation, be considered
acoustically equivalent to a spherical bubble of radius Req =
1.6 mm, with the same volume. Because the interfaces are not
curved, the Laplace overpressure inside these bubbles is null and
therefore bubbles are much more stable over time. We could study
complex arrangements of bubbles, like the one shown in Fig. 1, for
a long time before dissolution, which can occur after a day.

Experiments were performed in a tank (29� 29� 50 cm3) made
of PMMA filled with tap water and a small amount of bleach to
prevent the development of microorganisms. Experiments were
performed a few days after filling the tank in order for the dissolved
gas to reach equilibrium. The sample, denoted (1) in Fig. 1, stood
on a mesh cage placed on a steel plate, denoted (5) in Fig. 1, in
order for the sample to be situated at the middle of the tank.

The acoustical response of such arrangements was
measured by sending acoustic waves with an underwater
speaker, broadcasting repeated frequency sweeps. Frequency
sweeps ranging from 0.1 kHz to 5 kHz and lasting 1 second
were generated by an arbitrary waveform generator (Handy-
scope HS5, TiePie) at a sampling frequency of 100 kHz. After
being amplified (amplifier 7600M, Krohn Hite Corporation)
they were sent to a waterproof loudspeaker (FR 13 WP, Visaton)
denoted (2) in Fig. 1. The sound was measured by a hydrophone

(8103, Brüel & Kjær) denoted (3) in Fig. 1 and amplified (Nexus
Conditioning Amplifier 2692, Brüel & Kjær). This hydrophone
can either be attached to a 3D moving stage, denoted (4) in
Fig. 1, made from scavenged parts of a 3D printer (Prusa i3 –
eMotionTech), allowing us to measure acoustic signals at
different positions in the tank, or fixed at a given position for
the whole experiment.

A signal Vmic was recorded by placing a hydrophone in the
vicinity of the structure. An additional recording V0

mic was also
performed at the same position, in the absence of the structure.
Following Leroy et al.,11 we compute the relative bubble con-
tribution using the normalised spectrum

Aðf Þ ¼
~Vmic � ~V0

mic

~V0
mic

(1)

where Ṽmic and Ṽ0
mic are the Fourier transforms of the signals

acquired and f is the frequency.

3 Acoustical response

The emission spectrum of a single bubble is shown in Fig. 2. It
features a marked resonant behaviour with a maximum of the
amplitude of the normalised emitted pressure |A| and a shift of
its phase with respect to the external exciting field from 0 to p,
meaning a shift from cos(j(A)) = 1 to cos(j(A)) =�1. Experimentally,
we will define the resonant frequency by the condition cos(j(A)) = 0
at resonance. Here it is equal to 2050 Hz. This value is very close to
the Minnaert’s prediction12 for a spherical bubble of equivalent gas

Fig. 1 Left: Acoustical setup with: (1) the sample, (2) the loudspeaker, (3)
the hydrophone and (4) the moving stage. Top right: 3D view of a typical
sample, holding a bubble. Bottom right: Photo of a real sample containing
a network of 4 � 4 bubbles.

Fig. 2 Amplitude and phase of the acoustic signal A recorded near a
single bubble. This signal is the relative difference of the acoustic recording
with the recording in the absence of bubbles. Smoothed data (using
Savitzky–Golay filter of order 2 on 25 adjacent points) in black are super-
imposed with the raw data in light grey. The vertical orange line denotes
the resonance based on the criteria cos(j(A)) = 0. Numerical simulation for
a bubble of radius R0 = 1.57 mm is also shown by the dashed purple line.
Inset in top figure: extract of temporal signals V0

mic without a bubble (black)
and Vmic with a bubble (red) present as a function of the instantaneous
frequency. Signal envelopes are also shown. The hydrophone is placed
approximately 1 cm away from the fixed bubble.
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volume: fMinnaert = A/Req = 2040 Hz with A = 3.24 m s�1, the
Minnaert constant and a radius Req = 1.6 mm for a spherical bubble
having the same gas volume as for the cubic bubble. The resonance
frequency slowly increases with time (1.7% per hour), which we
interpret as a slow dissolution of the bubble. These bubbles have a
good quality factor, around Q = 20, meaning that the damping ratio
d = 1/Q is around 5 � 10�2.

In order to understand the coupling between bubbles, we
started with two identical bubbles. One cubic bubble was
placed at the sample area of the tank and the other was fixed
to a 3D moving stage. Starting from a position of the stage
where the bubbles are in contact, the distance d between the
centers was increased by 0.5 mm steps. The hydrophone was
placed at the same height as the bubbles, approximately 1 cm
away from the fixed bubble and outside the path of the moving
bubble. Fig. 3 (dots) shows the experimental values of the
resonance frequency of such a system with the evolution of
distance d: the resonance frequency decreases when bubbles are
approaching each other, as is the case for spherical bubbles.13

To further study the interactions between bubbles, we per-
formed experiments with various numbers of bubbles arranged
along a 1D line. We varied the number of bubbles from 2 to 8
bubbles, spaced by d = 8 mm. Fig. 4 shows that the experimental
resonance frequency diminishes with the number of bubbles.

2D networks of identical bubbles were also studied. Bubbles
were arranged in a matrix configuration, the closest neighbours
spaced by 10 mm. Similar to lines of bubbles, it was found that
the resonant frequency decreases with the number of bubbles
present in the system (see Fig. 4). The frequency is more
reduced with an increasing number of bubbles compared to
the linear case because of the larger number of neighbours in
2D arrangements, which is highlighted in Fig. 4.

In 3D arrangements the number of neighbours increases
dramatically. As every bubble will interact with more bubbles
one can expect an even greater reduction in the resonance
frequency compared to in 1D/2D geometries. In order to
specifically pinpoint the influence of the dimensions, we have

designed arrangements with a central bubble, surrounded by
two neighbours in a line (1D line called 1 + 2), four neighbours
in a plane (2D cross 1 + 4), and six neighbours in three
directions (3D cross 1 + 6), see the photographs in Fig. 5a–c.

The table in Fig. 5 shows experimental observations up to a
3D arrangement of 3 � 3 � 3 bubbles. This last system has a
resonant frequency of around 1 kHz, which represents a huge

Fig. 3 Evolution of the resonance frequency of a group of two bubbles as
a function of their spacing d: dots: experimental data; purple line: numer-
ical resolution with R0 = 1.65 mm; orange line: fit using the analytical

expression (eqn (30)) oana
0 ¼ o0

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0

d

r
and the Minnaert relation for

the frequency, giving R0 = 1.65 mm.

Fig. 4 Evolution of the resonance frequency for lines and matrices of
bubbles with the number of bubbles. Black and dark blue points are the
experimental frequencies for lines of N bubbles and matrices of N � N
bubbles, respectively. Purple and blue dashed lines are the numerical
predictions for these systems, taking R0 = 1.6 mm.

Fig. 5 Top: Pictures of bubble arrangements: 1 + 2 (a), 1 + 4 (b), 1 + 6
(c) and 3 � 3 � 3 (d). The spacing is 8 mm. Bottom: Table presenting the
measured resonance frequencies f

exp
0 of these systems, along with the

numerical predictions f num0 and the value of the analytical expressions f ana0

from Appendix B using R0 = 1.6 mm.
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reduction of the resonant frequency, which is 2 times smaller
than the resonant frequency of a single bubble.

4 Modelling

We now attempt to model those observations.

4.1 Bubbles as spherical pulsators

We have previously shown10 that the acoustic resonance fre-
quency of a cubic bubble is very close to that of a spherical
bubble of the same volume. In addition, the emitted field is
spatially very close to that of a monopolar source, provided the
distance d of the observation to the cube centre is larger than
the cube size. For these reasons we model bubbles as spherical,
and the sound emitted by each bubble is described as the one
emitted by a spherical bubble whose radius evolves as

Rn(t) = Rn0 + an exp(iot) (2)

where Rn0 is the bubble radius at the rest of the bubble n and an

is the amplitude of pulsation (|an| { Rn0), in response to a
driving acoustic pressure Pac = Pa exp(iot).

The mechanical equations for the fluid are written in Appendix
A. For simplicity we have included the full derivation in the
appendix and we give only the end results here. We found that
each bubble, when alone, behaves as an oscillator with a resonant
pulsation frequency on and damping ratio dn (given by eqn (25) and
(26)). Note that the resonant frequency is well approximated by the
Minnaert equation f n ¼ on=2p ¼ A=Rn for millimetric bubbles in
water, with a = 3.24 m s�1. Damping is the consequence of three
phenomena: thermal effects, viscosity and radiation.

4.2 Interactions between pulsators

Each bubble receives the pressure emitted by neighbouring
bubbles in addition to the incoming driving field. The model
predicts that bubble oscillators when oscillating with an ampli-
tude an are coupled by the following set of equations:

o2 � on
2 � io2dn

� �
an

þ o2

Rn0

XN
m¼1
man

Rm0
2 exp �ikdnm½ �am

dnm
¼ Pa

r0Rn0

(3)

see Appendix A for a full derivation. The coupling term is the second
term on the left hand side. In this equation the distance between
the centres of bubbles n and m is noted as dnm. The wavevector is k =
o/c, with c being the speed of sound and neglecting here fluid
viscosity. The acoustic pressure received by the bubbles is assumed
to be uniform and equal to Pa, and r0 is the water density. Inverting
this system of equations provides the value of the amplitudes an.
The pressure emitted by all these bubbles is

pbubblesðr; tÞ ¼ �r0c2k2 expðiotÞ
XN
n¼1

Rn0
2an exp �ikdrn½ �

drn
(4)

with drn = |r� rn|, the distance between the microphone of position
vector r and the nth bubble of position vector rn.

4.3 Numerical predictions of the acoustic response

Here we assume all bubbles to have the same rest radius Rn = R0,
and we will adjust this parameter to describe the experiments.

The total acoustic pressure amplitude field received by a micro-
phone is pmic = Pac + pbubbles, while it is p0

mic = Pac in the absence of
bubbles. We can thus model the measured relative spectrum as:

Anum ¼ pmic � p0mic

p0mic

¼ pbubbles

Pac
(5)

This prediction always showed a peak in amplitude and a
change of phase from 0 to p. As in the experiments, we define
the numerical resonant frequency f num

0 as the first frequency
for which the phase of the response crosses 0, which is the
condition cos(j(Anum)) = 0 at resonance.

4.4 Comparison with experiments

One bubble. The model predicts a spectral response Anum( f )
for single bubbles, in agreement with one bubble experiments
when choosing the parameter R0 = 1.57 mm (Fig. 2) close to the
expected value from the gas volume.

Two bubbles. We correctly predict the resonance of a couple
of bubbles (Fig. 3), as a function of distance between the bubble
centers, with a slightly larger R0 = 1.65 mm.

In this special case, it is possible to give a simple analytical
prediction (see details in Appendix B, eqn (30)) and it gives a
good agreement with experimental and numerical data as it is
shown in Fig. 3. For small separation distances d in front of the
wavelength (which is around 750 mm at 2 kHz), eqn (30) is

close to the expression oana
0 ’ o0

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0

d

r
, an expression

that is classical in the litterature.14

Arrangements in lines or matrices. For 1D lines of bubbles
and 2D networks (from 2 � 2 to 6 � 6) the numerical predic-
tions are in good agreement with experiments, still taking
R0 = 1.6 mm, see Fig. 4.

Arrangements in volumes. We also find a good agreement
for 3D grids, see the table in Fig. 5. Note that because some
of these systems have a lot of symmetries, their resonant
frequency can be expressed analytically, assuming two groups
of bubbles oscillating with the same amplitude: the central one,
and the peripheral ones, see Appendix B for formulas.

5 Conclusion

In conclusion, we have shown that the interactions which take
place between the bubbles downshift the global resonant
frequency of the system and can be predicted using a model
of spherical bubbles. This interaction has tremendous effects
in 3D arrangements, even when bubbles are parted by distances
several times their own sizes (here d/R0 = 5). We found that the
radius of the spherical bubbles used in the simulations varied
between 1.57 mm and 1.65 mm depending on the experiments,
which we believe is due to imperfections in the fabrication
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process that slightly changes the inner gas volume, or to a
different attachment of the contact line during immersion.

Perspectives will be the global study of larger scale meta-
materials, with different inter-bubble distances, in order to
understand the transmission and absorption properties.
In addition further work is needed to detect higher order
modes where not all bubbles oscillate in phase.
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Appendix
A Theory for an assembly of bubbles

We have previously shown10 that the acoustic resonance fre-
quency of a cubic bubble is very close to that of a spherical bubble
of the same volume. In addition, the emitted field is spatially very
close to that of a monopolar source, provided the distance d of the
observation to the cube centre is larger than the cube size. For
these reasons, we will model bubbles as spherical, which should
be valid if they are a sufficient distance apart.

We consider a cluster of spherical bubbles located arbitrarily
in space. We introduce a global Cartesian coordinate system.
The position vector of an arbitrary space point is denoted by r
and has coordinates (x, y, z). The position vector of the centre of
the nth bubble is denoted by rn and has coordinates (xn, yn, zn).

The time-varying radius of the nth bubble is represented as

Rn(t) = Rn0 + an exp(iot) (6)

where Rn0 is the bubble radius at rest and an is the amplitude of
the bubble pulsation. We assume that |an| { Rn0 and solve the
problem in the linear approximation.

The liquid around the bubbles is assumed to be viscous and
compressible. In the linear approximation, the liquid has a
velocity v and a perturbed density r, which obey the following
equations:15

r0
@v

@t
¼ �rpþ ZDvþ zþ 1

3
Z

� �
r r � vð Þ (7)

@r
@t
þ r0r � v ¼ 0 (8)

p = c2r (9)

where r0 is the equilibrium liquid density, p is the perturbed
liquid pressure, and Z and z are the shear viscosity and the bulk
viscosity, respectively, while c is the speed of sound. These
equations are the linearized versions of the compressible
Navier–Stokes equation, the continuity equation and the equa-
tion of state of the liquid.

The liquid motion is assumed to be irrotational with v =rf,
where f is the velocity potential. With a time dependence
proportional to exp(iot), eqn (7)–(9) then provide the Helmoltz
equation

Df + k2f = 0 (10)

where k is given by

k ¼ o
c

1þ io
r0c2

zþ 4

3
Z

� �� ��1=2
(11)

The velocity potential around the nth bubble is a spherically
symmetrical solution of eqn (10),

fnðr; tÞ ¼
An

jr� rnj
exp iot� ikjr� rnjð Þ: (12)

The velocity is then

vnðr; tÞ ¼ �
An 1þ ikjr� rnjð Þ r� rnð Þ

jr� rnj3

� exp iot� ikjr� rnjð Þ
(13)

and the pressure produced by the bubble is

pnðr; tÞ ¼ �
ir0c

2k2An

ojr� rnj
exp iot� ikjr� rnjð Þ (14)

The influence of bubbles on the pulsation of each other is taken
into account with an accuracy up to leading terms with respect to
interbubble distances and compressibility effects. Within the fra-
mework of this accuracy, from the boundary condition for the
liquid velocity at the surface of the nth bubble, one obtains

An = �ioRn0
2an (15)

To find an, we apply the boundary condition for the normal
stress at the surface of the nth bubble, which is given by

Pgn
Rn0

Rn

� �3kn

¼ 2s
Rn
þ P0 þ Pac �

XN
m¼1

smð Þjr�rnj¼Rn
(16)

where Pgn is the equilibrium pressure of the gas inside the nth
bubble, s is the surface tension, P0 is the equilibrium pressure
in the liquid, Pac = Pa exp(iot) is the driving acoustic pressure,
N is the number of bubbles and sm(r,t) is the normal stress
produced by the mth bubble in the liquid. Note that in eqn (16),
sm(r,t) is taken at the surface of the nth bubble.

In order to take into account deviations from the adiabatic
law, the exponent kn is defined as16

kn = g(an + ibn) (17)

where g is the specific heat ratio of the gas. The quantities an and bn

(which are introduced to describe the phase shift between varia-
tions of the gas pressure and the bubble volume, caused by heat
losses) are the real and imaginary part of kn and are calculated by

an ¼ 1þ wn
2

� �
1þ 3ðg� 1Þ sinhXn � sinXnð Þ

Xn coshXn � cosXnð Þ

� �� ��1
(18)

bn = anwn (19)

where

wn ¼ 3ðg� 1Þ

� Xn sinhXn þ sinXnð Þ � 2 coshXn � cosXnð Þ
Xn

2 coshXn � cosXnð Þ þ 3ðg� 1ÞXn sinhXn � sinXnð Þ
(20)
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Xn ¼ Rn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2o
	
Dgn

q
, Dgn = K/rncpg is the thermal diffusivity of

the gas inside the nth bubble, K is the thermal gas conductivity,
cpg is the specific gas heat at constant pressure, rn = rAPgn/PA is
the equilibrium gas density inside the nth bubble and rA is the
gas density at the atmospheric pressure PA.

The complex exponent kn in eqn (16) makes it possible to
take into account of thermal effects whose contribution to the
damping of bubble oscillations is known to dominate the
viscous and radiation contributions over a wide range of bubble
radii – from a few microns to several hundred microns – unless
the driving frequency is considerably above the bubble mono-
polar resonance frequency.16–18

The normal stress produced by the nth bubble is
calculated by

snðr; tÞ ¼ �pn þ 2Z
@vn

@ r� rnj j þ z� 2

3
Z

� �
r � vn (21)

where vn = |vn|. Substitution of eqn (13)–(15) into eqn (21) yields

snðr; tÞ ¼ � ioRn0
2an

ir0o
jr� rnj

þ 4ikZ
jr� rnj2

þ 4Z
jr� rnj3

� �

� exp iot� ikjr� rnjð Þ
(22)

Substituting eqn (6) and (22) into eqn (16), one obtains

Pgn ¼ P0 þ
2s
Rn0

(23)

o2 � on
2 � io2dn

� �
an

þ o2

Rn0

XN
m¼1
man

Rm0
2 exp �ikdnmð Þam

dnm
¼ Pa

r0Rn0

(24)

which is eqn (3) in the main text, where we have introduced the
resonance frequency of bubbles (when isolated)

on ¼
1

Rn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ganPgn

r0
� 2s
r0Pn0

s
(25)

their damping constant

dn ¼
oRn0

c
þ 4Z
r0oRn0

2
þ on

o


 �2
wn (26)

and the inter-bubble distances dnm = |rn � rm|.
It should be noted that we assume the bubble radii to be

much smaller than the acoustic wavelength, kRn { 1. There-
fore, terms of this order are neglected in eqn (24), whereas the
distances between the bubbles, dnm, can be comparable to and
even greater than the acoustic wavelength. Thus, terms of the
order kdnm are kept in eqn (24). We also assume the bubble
radii to be small compared to the distances between the
bubbles, Rn0 { dnm. Therefore, terms of a higher order than
Rn0/dnm are omitted in eqn (24).

The system of eqn (24) is a system of N algebraic equations
in the unknown an. Its solutions give the values of an.

The total pressure produced by all bubbles at the point r is
calculated by

pðx; y; z; tÞ ¼ �r0c2k2 expðiotÞ
PN
n¼1

Rn0
2an exp �ikdrn½ �

drn
(27)

with drn = |r � rn|, which is eqn (4) in the main text.

B Analytical predictions for the resonance frequency of 1 + N
bubbles

For the specific case of a bubble surrounded by N bubbles at
the same distance d, it is possible to find analytical predictions
for the resonance frequency, still assuming spherical bubbles.
We have tested several configurations.

B.1 Two bubbles: 1 + 1. Note that for the case of a couple of
bubbles we can derive an analytical formula for the resonance
frequency. Eqn (3) gives, in a matrix form:

o2 � o0
2 � io2d

� �
o2R0

d
e�ikd

o2R0

d
e�ikd o2 � o0

2 � io2d
� �

2
664

3
775 a1

a2

" #
¼

Pa

rR0

Pa

rR0

2
6664

3
7775

(28)

where we have introduced on = o0 and dn = d. The solution is:

a1 ¼ a2 ¼
Pa=rR0

o2 1þ R0

d
e�ikd

� �
� o0

2 � io2d
(29)

This suggests a natural resonance at

oana
0 ¼ o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R0

d
cosðkdÞ

r (30)

B.2 Three aligned bubbles: 1 + 2. Now, for simplicity we
neglect damping factors d, and we have assumed the distance d
to be extremely small compared to the wavelength kd { 1 and
e�ikd C 1.

Owing to the symmetry of the network of three aligned
bubbles, we can assume that the amplitudes of the first and
last bubbles are equal (a1 = a3), while the amplitude of vibration
of the central bubble (a2) might be different. Eqn (24) gives

o2 � o0
2 þ o2R0

d

� �
o2R0

d

2o2R0

d
o2 � o0

2
� �

2
6664

3
7775

a1

a2

" #
¼

Pa

rR0

Pa

rR0

2
6664

3
7775 (31)

The eigenvalues of the matrix on the left-hand side are

o� ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0

4d
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 1

16

r
R0

d

1þ R0

2d
� 2

R0

d

� �2

vuuuuuut (32)

the frequency oana
0 = o� and corresponds to the mode where all

bubbles oscillate in phase, while o+ is a higher frequency mode
that is not excited here.
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B.3 A cross of bubbles: 1 + 4. For the case of four peripheral
bubbles all in a plane, still assuming they oscillate in phase,
eqn (24) gives

o2 � o0
2 þ o2R0

2d
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ffiffiffi
2
p� �� �

o2R0

d
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d
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� �
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3
7775

a1

a2

" #
¼

Pa

rR0

Pa

rR0

2
6664

3
7775

(33)

and has eigenvalues given by

o� ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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16

s
R0

d

1þ R0

2d
1þ 2

ffiffiffi
2
p� �
� 4

R0

d

� �2

vuuuuuuut (34)

where oana
0 = o� gives the first resonance frequency.

B.4 A 3D cross of bubbles: 1 + 6. For the case of six
peripheral bubbles, still assuming they oscillate in phase,
eqn (24) writes

o2 � o0
2 þ o2R0

2d
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ffiffiffi
2
p� �� �
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d
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d
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(35)

with eigenvalues for the frequency

o� ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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16

s
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d
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2d
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2
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R0

d

� �2

vuuuuuuut (36)

where oana
0 = o� gives the first resonance frequency.
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