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Effect of surface waves on the secondary Bjerknes force experienced
by bubbles in a microfluidic channel
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An analytical expression is derived for the secondary Bjerknes force experienced by two cylindrical bubbles
in a microfluidic channel with planar elastic walls. The derived expression takes into account that the bubbles
generate two types of scattered acoustic waves: bulk waves that propagate in the fluid gap with the speed of
sound and Lamb-type surface waves that propagate at the fluid-wall interfaces with a much lower speed than
that of the bulk waves. It is shown that the surface waves cause the bubbles to form a bound pair in which the
equilibrium interbubble distance is determined by the wavelength of the surface waves, which is much smaller
than the acoustic wavelength. Comparison of theoretical and experimental results demonstrates good agreement.

DOI: 10.1103/PhysRevE.94.023105

I. INTRODUCTION

The dynamics of ultrasound-driven bubbles in a microflu-
idic channel is characterized by specific conditions. First,
bubbles are squeezed between two closely spaced channel
walls, which makes their form close to cylindrical. Second,
bubble oscillations set in motion not only the fluid inside the
channel, but the elastic channel walls as well. As a result,
two types of scattered acoustic waves arise in the fluid gap,
namely, bulk waves that propagate with the speed of sound,
and Lamb-type surface waves whose propagation speed is
much smaller than the sound speed in the fluid [1–3]. These
conditions are observed experimentally to change radically
acoustic radiation forces acting between bubbles [1].

The interaction between two bubbles in an acoustic field
is conventionally described in terms of secondary Bjerknes
force [4,5]. The classical theory of this phenomenon for two
spherical bubbles was developed by C. A. Bjerknes and his son
V. F. K. Bjerknes [6]. Their theory predicts that, if the driving
frequency is higher or lower than the resonance frequencies
of both bubbles, the bubbles attract each other; if the driving
frequency is between the resonance frequencies of the bubbles,
the bubbles repel each other. It should be emphasized that
the Bjerknes theory implies that the direction of the force
remains the same at all times. However, later studies, both
theoretical and experimental, have shown that the force can
change sign when the interbubble distance is changed [7–14].
In particular, attraction can change to repulsion at small
distances comparable to bubble radii [12], and the direction of
the force can change repeatedly when the interbubble distance
is comparable to or more than the acoustic wavelength [13].
This means that two bubbles can form a stable bound pair with
a fixed separation distance.

However, until recently there was no information on
acoustic radiation forces experienced by cylindrical bubbles
in microfluidic systems. Rabaud et al. [1] reported on such
investigations. Their experimental observations show that
acoustically excited microfluidic bubbles can form a bound
structure in which equilibrium interbubble distances are much
smaller than the acoustic wavelength but still remain large
compared to bubble radii. It was also found that the equilibrium
distance was independent of the acoustic pressure amplitude
and bubble size. These results cannot be explained by existing

theories for secondary Bjerknes forces. Rabaud et al. [1] have
assumed that, in addition to bulk waves, bubbles emit surface
acoustic waves that propagate at the channel walls and whose
wavelength is much smaller than that of the bulk waves. Based
on this assumption, they developed a semiqualitative model
that was able to explain their observations.

The present study is inspired by the results of Rabaud
et al. [1]. Our purpose is to derive rigorously an analytical
formula for the secondary Bjerknes force experienced by two
cylindrical bubbles in a microfluidic channel and to check this
formula against experimental data. The derivation is based on
the results of our recent work [3], where analytical solutions
were obtained for both bulk and Lamb-type surface waves
produced by a cylindrical bubble in a fluid channel with planar
elastic walls.

II. THEORY

The geometry of the problem under consideration is shown
in Fig. 1. Two gas cylindrical bubbles are confined in a
fluid channel with planar elastic walls. The bubbles undergo
radial oscillations in response to an imposed acoustic pressure
field. The bubble oscillations induce bulk scattered waves
in the surrounding fluid and elastic surface waves in the
channel walls. The surface waves, in turn, produce acoustic
perturbations in the fluid. As a result, there are two types of
scattered acoustic waves in the fluid: the bulk waves whose
speed, cf , is the speed of sound in the fluid, and Lamb-type
surface wave that propagate at the fluid-wall interfaces and
whose speed, cs , is equal to the speed of the surface waves in
the channel walls. This process is described in [3], where it
is shown that cs is much smaller than cf . Our purpose is to
calculate the secondary Bjerknes force between the bubbles
with allowance made for both types of scattered acoustic
waves. To describe the fluid motion, we introduce two systems
of cylindrical coordinates originated at the bubble centers as
shown in Fig. 1(b).

Let us calculate the force on bubble 1. It is given by [5]

F1 = −
〈∫

p2n1ds

〉
, (1)

where p2 is the fluid pressure produced by bubble 2 at the
position of bubble 1, n1 is the outward unit normal to the

2470-0045/2016/94(2)/023105(4) 023105-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.023105


DOINIKOV, COMBRIAT, THIBAULT, AND MARMOTTANT PHYSICAL REVIEW E 94, 023105 (2016)

FIG. 1. Two cylindrical bubbles in a microfluidic channel.
(a) Side view. (b) Top view.

surface of bubble 1, 〈·〉 means time averaging, and the integral
is taken over the surface of bubble 1. Changing the integration
over the bubble surface to that over the bubble volume and
keeping up to leading terms, one has

F1 = −
〈∫

∇p2dV

〉
= −〈V1∇p2〉, (2)

where V1 is the time-varying volume of bubble 1 and ∇p2
is taken at the center of bubble 1. Let us assume that the
time-varying radius of bubble 1 is given by

R1(t) = R10[1 + a1 exp(−iωt)], (3)

where R10 is the equilibrium radius, a1 is the dimensionless
pulsation amplitude, and ω is the angular driving frequency.
It should be emphasized that Eq. (3) means that the bubble
pulsation is treated as linear. In microfluidic experiments, the
bubble pulsation amplitude is on the order of a few percent of
the equilibrium bubble radius. For example, Fig. 4 of Ref. [15]
shows that the pulsation amplitude of two interacting bubbles
with radii 35 µm is 0.8 µm, i.e., 2.3% of the equilibrium radius.
Therefore, the linear approximation of the bubble pulsation is
justified.

Substituting Eq. (3) into Eq. (2) and averaging over the
acoustic period, one obtains

F1 = −πhR2
10Re{a∗

1∇p2}, (4)

where h is the height of the microfluidic channel, Re means
“the real part of,” and the asterisk indicates the complex
conjugate.

To calculate p2, we use the results of our recent work [3]. It
follows from Eqs. (2.62), (2.73), (2.76), and (2.87) of Ref. [3]
that p2 can be represented by

p2(r2) = − ρf ω2a2

kf H
(1)
1 (kf R20)

[
R20 − ktq2

πµ
If r (R20,0)

]

×H
(1)
0 (kf r2) − ρf ω2q2a2

πµ
Ip(r2,0), (5)

where the following designations are used:

q2 = −2πγ

(
P0 + σf

R20

)
R2

20ε2. (6)

ρf is the fluid density, a2 is the dimensionless pulsation
amplitude of bubble 2, kf = ω/cf is the wave number of the
bulk wave, H (1)

n is the Hankel function of the first kind of
order n, R20 is the equilibrium radius of bubble 2, kt = ω/ct is
the wave number of the transverse wave in the channel walls,
ct is the speed of the transverse wave [16], µ is the shear
modulus of the wall material, the functions If r and Ip are
given by Eqs. (2.65) and (2.67) in Ref. [3], γ is the ratio of

specific heats of the gas in the bubbles, P0 is the hydrostatic
pressure in the fluid, σf is the surface tension coefficient for
the fluid-gas interfaces, and ε2 is a fitting parameter that is
introduced in Ref. [3] to describe the action of the bubble on
the channel walls. The values of this parameter for different
frequencies are given in Ref. [3]. According to Ref. [3], the
first term on the right-hand side of Eq. (5) is due to the bulk
wave and the second term is due to the surface waves.

Substitution of Eq. (5) into Eq. (4) yields

F1 = −πhρf ω2R2
10R20e21Re{G2(d)a∗

1a2}, (7)

where e21 is the unit vector directed from bubble 2 to bubble
1, d is the distance between the bubble centers, and the
dimensionless function G2 is defined by

G2(r2) =
[

1 − ktq2

πµR20
If r (R20,0)

]
H

(1)
1 (kf r2)

H
(1)
1 (kf R20)

− q2

πµR20

dIp(r2,0)
dr2

. (8)

Note also that it follows from Eqs. (2.65) and (2.67) in
Ref. [3] that dIp(r2,0)/dr2 = −kt If r (r2,0). In order to get the
force on bubble 2, it is sufficient to write the above equations
interchanging indices 1 and 2 that denote the bubbles.

It remains to calculate a1 and a2. To this end, we use
Eq. (2.88) of Ref. [3]. According to that equation, considering
also that we have two bubbles, a1 and a2 can be represented as

a1 = −Pa + p2(d)
D1

, a2 = −Pa + p1(d)
D2

, (9)

where Pa is the amplitude of the imposed acoustic pressure
field and Dj (j = 1, 2) is given by

Dj = 2γP0 + (2γ − 1)σf

Rj0
−

ρf ω2R2
j0H

(1)
0 (αfj )

αfjH
(1)
1 (αfj )

+
2γ ρf α2

tjεj

ρs

(
P0 + σf

Rj0

)

×
[

Ip(Rj0,0) − αtjH
(1)
0 (αfj )

αfjH
(1)
1 (αfj )

If r (Rj0,0)

]

, (10)

with αfj = kf Rj0, αtj = ktRj0, and ρs being the wall density.
The quantity p1(d) is the fluid pressure produced by bubble
1 at the center of bubble 2. It is calculated by Eq. (5), where
index 2, denoting bubble 2, should be replaced by 1. Solving
Eqs. (9) simultaneously, one obtains

a1 = (B2 − D2)Pa

D1D2 − B1B2
, a2 = (B1 − D1)Pa

D1D2 − B1B2
, (11)

where

Bj = −ρf ω2

πµ

{
H

(1)
0 (kf d)

kf H
(1)
1 (kf Rj0)

[πµRj0 − ktqj If r (Rj0,0)]

+ qj Ip(d,0)
}
. (12)

It is interesting to compare Eq. (7) with the expression for
the force which was derived by Rabaud et al. [1] on the basis
of qualitative considerations. Their considerations lead to the
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FIG. 2. Secondary Bjerknes force versus interbubble distance.
Two bubbles with radii 25 µm are excited at 50 kHz. The solid line
shows the force when both bulk and surface waves are taken into
account. The dashed line shows the force when the surface waves are
neglected. The open circles show equilibrium states.

result that the potential of the Bjerknes force (B depends on
the distance between the bubbles d as follows:

(B(d) ∼ cos(ksd)√
d

, (13)

where ks = ω/cs is the wave number of the surface waves in
the channel walls. The force potential in Eq. (7) is given by
the function

(F1 (d) = πhR2
10Re{a∗

1p2(d)}. (14)

This equation, in combination with Eq. (5), shows that, if
we neglect the contribution of the bulk waves compared to that
of the surface waves and take into account that the function
Ip(d,0) behaves as the Hankel function H

(1)
0 (ksd) at large d

(see Ref. [3]), we obtain the following result:

(F1 (d) ∼ Ip(d,0) ∼ H
(1)
0 (ksd) ∼ exp(iksd)√

ksd
, (15)

where the last term follows from the asymptotic expansion
of the Hankel function for large arguments [17]. Equation
(15) shows that the assumptions of Rabaud et al. [1] are in
agreement with our theory.

III. NUMERICAL EXAMPLES AND COMPARISON
WITH EXPERIMENTAL DATA

Numerical calculations were made assuming that the fluid
in the channel is water and the gas in the bubbles is air. Cor-
respondingly, the following physical parameters were used:
ρf = 998 kg/m3, σf = 0.072 N/m, cf = 1481 m/s, P0 =
101.3 kPa, and γ = 1.4. The channel walls were assumed to
be made of a polydimethylsiloxane (PDMS) elastomer with
the following parameters: ρs = 970 kg/m3, Young’s modulus
E = 1.6 MPa, and Poisson’s ratio σ = 0.499. E and σ are
necessary to calculate µ, ct , and cs [3,16,18]. The channel
height was taken to be h = 25 µm.

Figure 2 exemplifies the dependence of the secondary
Bjerknes force on the interbubble distance d. The solid line
shows the force when both bulk and surface waves are taken
into account. For comparison, the dashed line shows what
happens if the surface waves are neglected and only the

FIG. 3. Experimental snapshot of an ordered structure formed by
bubbles in a PDMS channel under exposure to ultrasound: A view
through the transparent top of the channel. The driving frequency
is 85 kHz and the bubble radii are approximately 20–25 µm. The
equilibrium distances between the bubbles in the hexagon structure
are about 386 µm. The distances between the bubbles on the left
side of the figure are equal to twice the equilibrium distance in the
hexagon.

bulk waves are allowed for. The calculation was made for
bubbles with radii R10 = R20 = 25 µm, excited at a frequency
f = 50 kHz and acoustic pressure amplitude Pa = 1 kPa. The
force is normalized by P 2

a /(ρf ω2) and d is normalized by
the wavelength of the surface waves λs = cs/f . The positive
and negative values of the force correspond to attraction
and repulsion, respectively. Equilibrium states arise when
attraction changes to repulsion with decreasing d. They are
circled on the solid curve. Note that, as the dashed curve
shows, if the surface waves are absent, the force is permanently
attractive. It should be mentioned that, in view of the linear
approximation of the bubble pulsation, the force is linearly
dependent on P 2

a . Therefore, the change of the acoustic
pressure amplitude changes only the magnitude of the force
and does not affect the behavior of the curves in Fig. 2.

Figure 3 is an experimental snapshot that provides an idea of
the bubble behavior in a microfluidic channel under exposure
to ultrasound. The snapshot was made using a microfluidic
setup described in Ref. [1]. It gives a view through the
transparent top of a PDMS channel. As one can see on
the right upper side of Fig. 3, bubbles self-organize in a
hexagonlike structure with fixed interbubble distances. The
depicted arrows, which are equal in length, allow one to
compare the distances. It is interesting to note that on the left
of the hexagon, there are bubble pairs in which the equilibrium
distance is twice as large as that between the bubbles in
the hexagon. This observation corroborates the prediction of
Rabaud et al. [1], as well as that of Fig. 2, that equilibrium
states can arise at multiple distances. Note also that there
are two bubbles in contact in the center of the hexagonlike
structure. Figure 2 shows that at separations smaller than
about λs/2 the force is attractive. Thus, if bubbles are at such
distances, they approach each other up to contact. The bubble
pair in the center of the hexagon demonstrates this case.

Figure 4 checks theoretical predictions against experi-
mental measurements. It shows the equilibrium interbub-
ble distance as a function of the driving frequency. The
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FIG. 4. Equilibrium interbubble distance versus driving fre-
quency. The circles show experimental data adopted from Ref. [1].
The curves show theoretical results for three bubble pairs with
different radii.

experimental data are depicted by circles. They were adopted
from the work by Rabaud et al. [1] (see Fig. 3 in their article).
The microfluidic setup used by Rabaud et al. [1] did not
allow one to determine the amplitude of the driving acoustic
pressure, Pa . However, the same setup was used in the work
of Mekki-Berrada et al. [15], where measurements were made
for bubble pulsation amplitudes under similar experimental
conditions. For example, for bubbles with radii 35 µm, the
pulsation amplitude was 0.8 µm. Theoretical estimations,
based on the theory developed in Ref. [3], show that such
pulsation amplitudes correspond to values of Pa about 1–2 kPa.
These data confirm that the linear approximation of the bubble
pulsation is valid under the experimental conditions of Ref. [1].
The experimental data of Ref. [1] were obtained for the pairs
of equal bubbles with radii in the range 20–30 µm. Rabaud
et al. [1] report that their measurements do not demonstrate a
noticeable dependence on bubble size. The theoretical results
are presented by three curves that were calculated for three
pairs of equal bubbles with radii 20 µm (solid), 25 µm
(dotted), and 30 µm (dashed). In this calculation, we have

assumed that the equilibrium state observed in the experiment
is a state that corresponds to the circle beside d/λs = 2 in
Fig. 2. With this assumption, the theoretical curves are in
good agreement with the experimental data. Note also that
they show an insignificant dependence on bubble size, which
conforms to the observations of Rabaud et al. [1]. For the sake
of completeness, it should be mentioned that the calculations
were made at Pa = 1 kPa. However, in view of the linearity
of the bubble pulsation, the value of Pa does not affect
the results of Fig. 4. The effect of the acoustic pressure
amplitude becomes important in the case of nonlinear bubble
pulsations. At present, however, experimental and theoretical
investigations need to be made on the interaction force between
microfluidic bubbles exposed to nonlinear excitation. This
problem requires a separate consideration.

IV. CONCLUSION

An analytical expression has been derived for the secondary
Bjerknes force experienced by two cylindrical bubbles con-
fined in a microfluidic channel with planar elastic walls. The
derived expression takes into account two types of scattered
waves generated by the bubbles, namely, the bulk waves, which
propagate in the fluid gap with the speed of sound and the
Lamb-type surface waves, which propagate at the fluid-wall
interfaces with the speed equal to that of the surface waves in
the channel walls. It has been shown that the surface waves
make the bubbles form a bound pair in which the equilibrium
distance between the bubbles is determined by the wavelength
of the surface waves. As a result, equilibrium states can arise at
interbubble distances that are much smaller than the acoustic
wavelength. Comparison of theoretical and experimental data
has demonstrated good agreement. The obtained results are of
immediate interest for investigations into microfluidics.
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