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Acoustic streaming produced by a cylindrical bubble undergoing volume and translational
oscillations in a microfluidic channel
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A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid
channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations.
The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave
in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational
oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory
fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational
modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations
of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the
bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline
patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex
orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of
translational excitation. Experimental verification of the developed theory is performed using data for streaming
generated by bubble pairs.
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I. INTRODUCTION

In recent years, the dynamics of acoustically excited
cylindrical bubbles has attracted considerable attention in the
context of research on microfluidic systems [1–3]. Steady
recirculating flows produced by such bubbles, referred to as
acoustic streaming [4–6], are essential to a number of technical
developments, such as particle trapping [7–9], size-selective
sorting [10,11], shear force actuation [12], and micromixing
[13–16]. Consequently, a large amount of studies have been
devoted to the streaming generated by acoustically excited
spherical bubbles [17–28]. Theoretical developments on this
subject show that the modeling of acoustic streaming is a
challenging mathematical problem, which requires a great
effort to bring theoretical calculations close to situations of
practical interest. The literature on the streaming generated
by cylindrical bubbles is much less extensive. Raney et al.
[29] developed a theoretical treatment of the streaming around
a solid cylinder immersed in an oscillating fluid. It gives
an insight into the structure of steady flows caused by the
translational type of motion of a cylindrical object. Rallabandi
and co-workers [30,31] developed a theory for streaming
flows induced by a harmonically oscillating semicylindrical
bubble attached to a rigid wall. In this case, the acoustic
streaming is caused by the mixed-mode interaction of the
volume (breathing) mode and shape modes. In a different
context, Mekki-Berrada et al. [32] have recently shown that
the acoustic streaming generated by cylindrical bubbles in
a microfluidic channel also results from the mixed-mode
interaction but this interaction occurs between the volume and
translational modes of the bubble oscillations.

The purpose of the present paper is to develop a theoretical
model for acoustic streaming produced by a cylindrical bubble
placed between two elastic solid walls, assuming that the
bubble undergoes volume and translational oscillations. An
important point to be taken into consideration is that, in the case
under study, the bubble generates two types of scattered waves,

namely, the bulk scattered wave in the fluid gap and surface
waves in the elastic walls, which, in turn, induce Lamb-type
surface waves in the fluid channel [33,34]. The previous studies
applied a phenomenological model for bubble oscillation
[32,35], which is based on qualitative reasoning rather than
on a rigorous mathematical derivation and assumes only the
existence of the surface waves, while the existence of the bulk
wave is ignored. Since the calculation of acoustic streaming is
based on the solution given by the bubble oscillation model,
the equations of acoustic streaming obtained in Ref. [32]
are not mathematically rigorous either. Moreover, they are
only applicable to streaming outside the boundary layer. In
the present study, the calculation of acoustic streaming is
performed using an improved bubble model that was developed
in our recent paper [34]. The model is based on rigorous
mathematical solutions to the equations of the elastic motion
of the channel walls and the equations of the fluid motion in
the interior of the channel. It takes into account the existence
of both surface and bulk waves. The present study provides
solutions for acoustic streaming in the entire space. It should
be also emphasized that, in contrast to most studies on acoustic
streaming, our derivation does not impose any restriction on
the ratio between the viscous penetration depth and the bubble
size, so the developed model can be applied to high-viscosity
fluids.

II. THEORY

The geometry of the problem under consideration is shown
in Fig. 1. A cylindrical bubble is squeezed between two planar
elastic walls in a microfluidic channel. It should be recognized
that real microfluidic bubbles have a pancakelike form [35]. To
make the problem amenable to analytical solution, we neglect
the curvature of the bubble surface along the z direction and
assume that the bubble shape is cylindrical and the scattered
acoustic field is predominantly two dimensional. Ilinskii et al.
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FIG. 1. A cylindrical bubble is squeezed between two planar
elastic walls in a microfluidic channel. (a) Side view. (b) Top view.

[36] and others (see references in Ref. [36]) have shown that
this approximation works well for bubbles in a narrow channel.
This approach also agrees with experimental observations
reported in Refs. [16] and [30], which show that the long-range
streaming is well captured by a two-dimensional (2D) model.

It is assumed that the bubble undergoes volume and
translational oscillations, which will be called modes 0 and 1,
respectively. The volume oscillation is assumed to be caused
by an imposed acoustic pressure field and to include two
components, one of which is related to the bulk scattered wave
in the fluid gap and the second is related to the surface waves
propagating in the elastic walls. The translational oscillation
is assumed to be induced by the velocity field of an external
sound source such as another bubble or an oscillatory fluid
flow. Since the problem under consideration is axisymmetric,
cylindrical coordinates are used. Their origin is located in
the middle of the bubble with the axis z perpendicular to the
surface of the walls and the azimuthal angle θ measured from
the direction of the bubble translation; see Fig. 1. It should be
emphasized that the mathematical derivation presented below
is completely different from that used previously in Ref. [32].

A. Linear solutions

1. Linear equations of fluid motion

The linear velocity field produced by the bubble in the fluid
can be represented as

v = vs + vb, (1)

where vs is the fluid velocity caused by the surface waves
propagating in the walls and vb is the velocity of the bulk
scattered wave propagating in the fluid gap. vs can be written
as

vs = vs(r)e−iωt er , (2)

where er is the unit radial vector of the cylindrical coordinates
and vs(r) is defined by Eq. (2.60) of Ref. [34], in which z is
set equal to 0. vb can be represented as

vb = e−iωt [vbr (r,θ )er + vbθ (r,θ )eθ ], (3)

where eθ is the unit azimuth vector. If the fluid is treated as
incompressible, vb obeys the volume continuity equation,

∇·vb = 0, (4)

and the incompressible Navier-Stokes equation,

ρf

∂vb

∂t
− ηf �vb = −∇pb, (5)

where ρf is the fluid density, ηf is the fluid dynamic viscosity,
and pb is the pressure of the bulk wave. Since the time
dependence is taken as exp(−iωt), Eq. (5) is transformed to

(
� + k2

v

)
vb = 1

ηf

∇pb, (6)

where

kv = 1 + i

δv

, δv =
√

2νf

ω
, νf = ηf

ρf

, (7)

νf and δv being the fluid kinematic viscosity and the viscous
penetration depth, respectively.

To satisfy Eq. (4), vb can be expressed in terms of a vector
potential ψ as

vb = ∇ × ψ, ψ = e−iωtψ(r,θ )ez, (8)

where ez is the unit vector along the axis z. From Eq. (8) it
follows that

vbr = 1

r

∂ψ

∂θ
, vbθ = −∂ψ

∂r
, (9)

i.e., ψ is the stream function of the bulk wave. Substituting
Eq. (8) into Eq. (6) and applying the curl operator, one obtains(

� + k2
v

)
�ψ = 0. (10)

Considering that the bubble undergoes both radial and
translational oscillations, a solution to Eq. (10) can be taken
as

ψ = Aθ + B
R0

r
sin θ + CH

(1)
1 (kvr) sin θ, (11)

where R0 is the equilibrium bubble radius, H (1)
n is the Hankel

function of the first kind of order n [37], and A, B, C are
constants to be determined from the boundary conditions at the
bubble surface. Note that the first two terms on the right-hand
side of Eq. (11) are the monopole and the dipole solutions of the
equation �ψ = 0 and the third term is the dipole solution of
the equation (� + k2

v)ψ = 0 [see Eq. (10)]. Thus the term with
A describes the contribution of the bubble volume oscillation
to the scattered wave and the terms with B and C describe
the contribution of the bubble translation, the term with C

allowing for the effect of the fluid viscosity.
Substitution of Eq. (11) into Eq. (9) yields

vbr = A

r
+

[
B

R0

r2
+ C

r
H

(1)
1 (kvr)

]
cos θ, (12)

vbθ =
(

B
R0

r2
− C

r

[
kvrH

(1)
0 (kvr) − H

(1)
1 (kvr)

])
sin θ. (13)

To find the constants A, B, and C, three boundary conditions
at the bubble surface are used: continuity of normal velocity,
zero tangential stress, and normal stress balance. These
conditions are considered in the next subsection.

2. Boundary conditions for linear solutions

The total fluid velocity, in addition to vs and vb, includes a
velocity produced by a source of the bubble translation, such
as another bubble. Let us denote this velocity by vex . Since we
assume that the bubble translates along the axis x (see Fig. 1),
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vex should have the same direction and therefore can be taken
as

vex = vexe
−iωt ex = vexe

−iωt (er cos θ − eθ sin θ ), (14)

where ex is the unit vector along the axis x. Taking into account
Eqs. (2), (3), and (14), the boundary condition for normal
velocity at the bubble surface is written as

(vs + vbr + vex cos θ )e−iωt = dR

dt
+ dx

dt
·er at r = R0,

(15)

where R(t) is the time-varying bubble radius and x(t) is
the translational displacement of the bubble center. These
quantities can be defined by

R(t) = R0(1 + ae−iωt ), x(t) = xme−iωt ex. (16)

Substituting Eqs. (12) and (16) into Eq. (15) and separating
terms without and with cos θ , one obtains

A = −iωR2
0a − R0vs(R0), (17)

xm = i

ωR0

[
R0vex + B + CH

(1)
1 (αv)

]
, (18)

where αv = kvR0.
We assume that the bubble surface is free of impurities and

surfactants and, as the viscosity of the gas inside the bubble is
much smaller than that of the fluid, slippage on the gas-fluid
interface occurs. Then we can apply the boundary condition
of zero tangential stress, which is given by

σrθ = 0 at r = R0, (19)

where the tangential stress σrθ is calculated by [38]

σrθ = ηf

(
1

r

∂vbr

∂θ
+ ∂vbθ

∂r
− vbθ

r

)
e−iωt . (20)

Substitution of Eqs. (12) and (13) into Eq. (20) results in

σrθ = −ηf sin θ

r2

(
4R0

r
B + C

[(
4 − k2

vr
2)H (1)

1 (kvr)

− 2kvrH
(1)
0 (kvr)

])
e−iωt . (21)

On substitution of Eq. (21) into Eq. (19), one obtains

C = 4B

2αvH
(1)
0 (αv) + (

α2
v − 4

)
H

(1)
1 (αv)

. (22)

The boundary condition of normal stress balance is given
by

pg = P0 + pac + pst + ps + pex − σrr at r = R0, (23)

where pg is the gas pressure in the bubble, P0 is the
hydrostatic pressure in the fluid, pac = Pa exp(−iωt) is the
driving acoustic pressure, where Pa stands for the pressure
amplitude, pst is the surface tension pressure, ps is the fluid
pressure caused by the surface waves [it is given by Eq. (2.62)
of Ref. [34]], pex is the fluid pressure corresponding to the
velocity vex , and σrr is the normal stress produced by the bulk
wave. The terms of Eq. (23) are calculated by equations that
follow.

With the bubble volume given by

V = πR2h ≈ πR2
0h(1 + 2ae−iωt ) = V0(1 + 2ae−iωt ), (24)

where h is the height of the fluid channel, pg is calculated by

pg = Pg0

(
V0

V

)γ

≈ Pg0(1 − 2γ ae−iωt ), (25)

where Pg0 is the equilibrium gas pressure and γ is the ratio of
specific heats of the gas. For pst , one has

pst = σf

R
≈ σf

R0
(1 − ae−iωt ), (26)

where σf is the surface tension coefficient for the fluid-gas
interface. The value of pex at r = R0 is given by

pex |r=R0
= pex |r=0 + R0er ·∇pex

= (pex0 + iωρf R0vex cos θ )e−iωt , (27)

where pex0 is the amplitude of pex at the center of the bubble
and the expression on the right-hand side of Eq. (27) was
obtained by the following relation:

∇pex = −ρf

∂vex

∂t
= iωρf vex . (28)

Equation (27) provides the contribution of pex to the normal
stress balance with the same accuracy as the contribution of
vex to the boundary condition for normal velocity.

It remains to calculate σrr , which is given by [38]

σrr = −pb + 2ηf

∂vbr

∂r
e−iωt . (29)

To find pb, Eq. (6) is used. Substitution of Eq. (8) into the
left-hand side of Eq. (6) yields(

�+k2
v

)
vb = (

� + k2
v

)
(∇ × ψ) = e−iωt∇ × [

ez

(
�+k2

v

)
ψ

]
= e−iωt k2

v∇ ×
[

ez

(
Aθ + B

R0

r
sin θ

)]
. (30)

It is easy to check by direct calculation that the last
expression on the right-hand side of Eq. (30) is identical to

e−iωt k2
v∇

(
A ln(r) − B

R0

r
cos θ

)
. (31)

Substituting Eq. (31) into Eq. (6), one obtains

pb = iωρf e−iωt

(
A ln(r) − B

R0

r
cos θ + const

)
. (32)

Equation (32) shows a well-known problem that arises in
an incompressible fluid, namely, the pressure generated by the
bubble does not vanish as r → ∞. The conventional solution
of this problem consists of limiting the radial extent of an
incompressible fluid to a finite distance rmax [36]. To this end,
the arbitrary constant in Eq. (32) is set equal to −A ln(rmax) so
that Eq. (32) takes the form

pb = −iωρf e−iωt

[
A ln

( rmax

r

)
+ B

R0

r
cos θ

]
. (33)

In our study, this point is of no importance because pb is
not used in calculating acoustic streaming. Equation (33) is
required only in order to obtain a relationship between the
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constants B and C from the normal stress balance. We will see
below that this aim does not require the use of the logarithmic
term of Eq. (33).

Substitution of Eqs. (12) and (33) into Eq. (29) gives σrr .
Substituting σrr along with the other quantities calculated
above into Eq. (23) and separating out terms with cos θ , one
obtains(

α2
v − 4

)
B + 2

[
αvH

(1)
0 (αv) − 2H

(1)
1 (αv)

]
C = α2

vR0vex.

(34)

In combination with Eq. (22), Eq. (34) gives

B = R0vex

2αvH
(1)
0 (αv) + (

α2
v − 4

)
H

(1)
1 (αv)

2αvH
(1)
0 (αv) + (

α2
v − 8

)
H

(1)
1 (αv)

, (35)

C = 4R0vex

2αvH
(1)
0 (αv) + (

α2
v − 8

)
H

(1)
1 (αv)

. (36)

Note that the logarithmic term of Eq. (33) is not involved
in these calculations. Substituting Eqs. (35) and (36) into
Eq. (18), one obtains the amplitude of the bubble translational
displacement:

xm = 2iB

ωR0
= 2ivex

ω

(
2αvH

(1)
0 (αv) + (

α2
v − 4

)
H

(1)
1 (αv)

2αvH
(1)
0 (αv) + (

α2
v − 8

)
H

(1)
1 (αv)

)
.

(37)

It should be mentioned that the terms of Eq. (23) without
cos θ give an equation for the amplitude of the bubble pulsation
a. This equation reduces to the well-known equation for the
pulsation of a cylindrical bubble in an incompressible fluid
if terms related to the surface waves are omitted; see, e.g.,
Ref. [36]. We do not consider this equation because it is more
reasonable to use the equation for a derived in Ref. [34], which
takes the fluid compressibility into account and hence is free
from problems related to the logarithmic term in Eq. (33).

B. Solutions of the equations of acoustic streaming

1. Method of solution

The equations of acoustic streaming are given by [4]

∇ · V = 0, (38)

νf �V − 1

ρf

∇P = 〈(v · ∇)v〉, (39)

where V and P are the Eulerian streaming velocity and
pressure fields, 〈〉 means time averaging, and v is the linear
fluid velocity. To satisfy Eq. (38), V is taken as

V = ∇ × �. (40)

Substituting Eq. (40) into Eq. (39) and applying the curl
operator, one obtains

�2� = − 1

νf

∇ × W , (41)

where

W = 〈(v · ∇)v〉. (42)

This nonlinear quantity results from the convection term of
the nonlinear Navier-Stokes equation.

In our case, � can be written as

� = �(r,θ )ez. (43)

Substitution of Eq. (43) into Eq. (40) shows that the radial
and azimuthal components of V are given by

Vr = 1

r

∂�

∂θ
, Vθ = −∂�

∂r
, (44)

which means that � can be treated as the stream function of
acoustic streaming. Substituting Eq. (43) into Eq. (41), one
obtains

�2� = − 1

νf r

[
∂(rWθ )

∂r
− ∂Wr

∂θ

]
. (45)

We will see below that for streaming produced by modes
0 (volume oscillation) and 1 (translation), the function on the
right-hand side of Eq. (45) depends on θ as sin θ . For modes
1 and 1 or 0 and 2 (quadrupole oscillation), the dependence
on θ is given by sin 2θ [29,30]. Thus, for two arbitrary modes,
Eq. (45) can be represented as

�2� = F (r) sin nθ, (46)

where n = 1,2 . . . and F (r) is calculated by substituting
corresponding linear solutions into Eq. (42).

Equation (46) suggests that � should be sought in the
following form:

� = G(r) sin nθ. (47)

Substitution of Eq. (47) into Eq. (46) yields

d4G

dr4
+ 2

r

d3G

dr3
− 2n2 + 1

r2

d2G

dr2
+ 2n2 + 1

r3

dG

dr

+ n2(n2 − 4)

r4
G = F. (48)

In the theory of ordinary differential equations (ODE),
Eq. (48) is called the nonhomogeneous Cauchy-Euler equa-
tion. It can be solved by the so-called method of variation of
parameters, also known as the Lagrange method [39]. Accord-
ing to this method, the homogeneous equation corresponding
to Eq. (48) is first solved,

d4G

dr4
+ 2

r

d3G

dr3
− 2n2 + 1

r2

d2G

dr2
+ 2n2 + 1

r3

dG

dr

+ n2(n2 − 4)

r4
G = 0. (49)

Solutions to Eq. (49) are sought as rλ. Substitution of this
expression into Eq. (49) yields

λ(λ − 1)(λ − 2)(λ − 3) + 2λ(λ − 1)(λ − 2)

− (2n2 + 1)λ(λ − 2) + n2(n2 − 4) = 0. (50)

This equation is the characteristic equation of the differ-
ential equation (49). Its roots determine the partial solutions
of Eq. (49). Equation (50) is of fourth order in λ. Hence it
has four roots and if all of them are different, the fundamental
system of solutions of Eq. (49) is given by

s1 = rλ1 , s2 = rλ2, s3 = rλ3, s4 = rλ4 . (51)
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If there are multiple (identical) roots, for example, λ1 = λ2,
the fundamental solutions are given by

s1 = rλ1 , s2 = rλ1 ln(r), s3 = rλ3 , s4 = rλ4 . (52)

The general solution of Eq. (49) is the sum of the
fundamental solutions with arbitrary constants,

G = G1s1 + G2s2 + G3s3 + G4s4. (53)

In order to find the solution of Eq. (48), the constants Gn

in Eq. (53) are replaced with functions Gn(r),

G = G1(r)s1 + G2(r)s2 + G3(r)s3 + G4(r)s4. (54)

According to the theory of ODE, Eq. (54) provides the
solution of Eq. (48) if the functions Gn(r) obey the following
system of equations:

G′
1s1 + G′

2s2 + G′
3s3 + G′

4s4 = 0,

G′
1s

′
1 + G′

2s
′
2 + G′

3s
′
3 + G′

4s
′
4 = 0,

(55)
G′

1s
′′
1 + G′

2s
′′
2 + G′

3s
′′
3 + G′

4s
′′
4 = 0,

G′
1s

′′′
1 + G′

2s
′′′
2 + G′

3s
′′′
3 + G′

4s
′′′
4 = F (r),

where the prime denotes the derivative over r . From this
system, we can find expressions for G′

n and then integrate
them. As a result, we will obtain expressions for Gn(r) with
four arbitrary constants Gn0. The constants are calculated from
boundary conditions at infinity and at the bubble surface.

2. Calculation of the function F(r) for modes 0 and 1

Let us split the linear velocity v into modes 0 and 1 by
introducing the following designations:

v(0) = e−iωt
(
vs + v

(0)
br

)
er , (56)

v(1) = e−iωt
(
v

(1)
br er + v

(1)
bθ eθ

)
, (57)

where the superscripts (0) and (1) denote quantities related to
modes 0 and 1, respectively. From Eqs. (12) and (13) it follows
that

v
(0)
br = A

r
, (58)

v
(1)
br =

(
B

R0

r2
+ C

r
H

(1)
1 (kvr)

)
cos θ, (59)

v
(1)
bθ =

(
B

R0

r2
− C

r

[
kvrH

(1)
0 (kvr) − H

(1)
1 (kvr)

])
sin θ. (60)

Substituting Eqs. (56) and (57) into Eq. (42) and keeping
only the mixed-mode terms, one obtains

W (01) = 〈(v(0) · ∇)v(1) + (v(1) · ∇)v(0)〉

= 1

2
Re

[(
vs + v

(0)
br

)∗ ∂

∂r

(
v

(1)
br er + v

(1)
bθ eθ

)

+
(

v
(1)
br

∂

∂r
+ v

(1)
bθ

r

∂

∂θ

)[
er

(
vs + v

(0)
br

)∗]]
, (61)

where the asterisk denotes the complex conjugate. From
Eq. (61), one finds the r and θ components of W (01) to be

W (01)
r = 1

2
Re

((
vs + v

(0)
br

)∗ ∂v
(1)
br

∂r
+ v

(1)
br

∂

∂r

(
vs + v

(0)
br

)∗
)

= 1

2
Re

(
∂

∂r

[
v

(1)
br

(
vs + v

(0)
br

)∗])
, (62)

W
(01)
θ = 1

2
Re

((
vs + v

(0)
br

)∗ ∂v
(1)
bθ

∂r
+ v

(1)
bθ

r

(
vs + v

(0)
br

)∗
)

= 1

2
Re

((
vs + v

(0)
br

)∗ 1

r

∂
(
rv

(1)
bθ

)
∂r

)
. (63)

Note that in Eq. (63) the relation eθ = ∂er/∂θ was used.
Substitution of Eqs. (62) and (63) into the right-hand side of
Eq. (45) leads to

− 1

νf r

(
∂(rWθ )

∂r
− ∂Wr

∂θ

)

= − 1

2νf r
Re

{
∂

∂r

[(
vs + v

(0)
br

)∗
(

∂
(
rv

(1)
bθ

)
∂r

− ∂v
(1)
br

∂θ

)]}
.

(64)

Substituting Eqs. (58)–(60) into Eq. (64), one has

− 1

νf r

(
∂(rWθ )

∂r
− ∂Wr

∂θ

)

= − sin θ

2νf r
Re

(
k2
vC

d

dr

{
H

(1)
1 (kvr)[rv∗

s (r) + A∗]
})

.

(65)

Comparison with Eq. (46) finally yields

F (r) = − ω

2ν2
f r

Re

(
iC

d

dr

{
H

(1)
1 (kvr)[rv∗

s (r) + A∗]
})

.

(66)

Note that at a distance from the bubble, vs(r) can be
approximated by a Hankel function. However, in the vicinity
of the bubble, vs(r) should be calculated from the integral
expression (2.60) in Ref. [34].

3. Calculation of the function G(r) for modes 0 and 1

For modes 0 and 1, n = 1 in Eq. (47). In this case, Eq. (50)
takes the form

(λ − 1)2(λ2 − 2λ − 3) = 0. (67)

The roots of this equation are

λ1 = λ2 = 1, λ3 = 3, λ4 = −1. (68)
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With these roots, Eqs. (54) and (55) give

G = G1(r)r + G2(r)r ln(r) + G3(r)r3 + G4(r)

r
, (69)

rG′
1 + r ln(r)G′

2 + r3G′
3 + r−1G′

4 = 0,

G′
1 + [1 + ln(r)]G′

2 + 3r2G′
3 − r−2G′

4 = 0,
(70)

r−1G′
2 + 6rG′

3 + 2r−3G′
4 = 0,

−r−2G′
2 + 6G′

3 − 6r−4G′
4 = F (r).

Solving Eq. (70) yields

G′
1 = r2 ln(r)F

4
, G′

2 = − r2F

4
, G′

3 = F

16
, G′

4 = − r4F

16
.

(71)

After integrating Eq. (71), one has

G1(r) = G10 + 1

4

∫ r

R0

x2 ln(x)F (x)dx,

(72)

G2(r) = G20 − 1

4

∫ r

R0

x2F (x)dx,

G3(r) = G30 + 1

16

∫ r

R0

F (x)dx,

(73)

G4(r) = G40 − 1

16

∫ r

R0

x4F (x)dx,

where Gm0 are arbitrary constants.

4. Expressions for the components of the Eulerian
streaming velocity

Substitution of Eq. (47) into Eq. (44) yields

Vr = G(r)

r
cos θ, Vθ = −G′(r) sin θ. (74)

From Eqs. (69) and (70) it follows that

G′(r) = G1(r) + G2(r)[1 + ln(r)] + 3r2G3(r) − G4(r)

r2
.

(75)

The unknown constants Gm0 appearing in these equations
will be calculated by applying the boundary conditions to the
Lagrangian streaming velocity, which is calculated in the next
subsection.

5. Lagrangian streaming velocity

The Lagrangian streaming velocity is given by

V L = V + V S, (76)

where V S is the Stokes drift velocity, which is defined by [24]

V S =
〈∫

vdt·∇v

〉
. (77)

Equation (77) can be transformed as follows:

V S = 1

ω
〈(iv·∇)v〉 = 1

ω
〈(iv(0)·∇)v(1) + (iv(1)·∇)v(0)〉

= 1

2ω
Re

[
− i

(
vs + v

(0)
br

)∗ ∂

∂r

(
v

(1)
br er + v

(1)
bθ eθ

)

+ i

(
v

(1)
br

∂

∂r
+ v

(1)
bθ

r

∂

∂θ

)[
er

(
vs + v

(0)
br

)∗]]
. (78)

The components of V S are found from Eq. (78) as

VSr = 1

2ω
Re

(
−i

(
vs + v

(0)
br

)∗ ∂v
(1)
br

∂r
+ iv

(1)
br

∂

∂r

(
vs + v

(0)
br

)∗
)

,

(79)

VSθ = 1

2ω
Re

[
i
(
vs + v

(0)
br

)∗
(

v
(1)
bθ

r
− ∂v

(1)
bθ

∂r

)]
. (80)

On substitution of Eqs. (58)–(60) into Eqs. (79) and (80),
one obtains

VSr = Sr (r) cos θ, VSθ = Sθ (r) sin θ, (81)

where

Sr (r) = 1

2ωr3
Re

[
i(rv∗

s + A∗)

×
(

2B
R0

r
− C

[
kvrH

(1)
0 (kvr) − 2H

(1)
1 (kvr)

])

+ i(r2v′∗
s − A∗)

(
B

R0

r
+ CH

(1)
1 (kvr)

)]
, (82)

Sθ (r) = 1

2ωr3
Re

[
i(rv∗

s + A∗)

(
3B

R0

r

+C

[(
3 − k2

vr
2
)
H

(1)
1 (kvr) − 2kvrH

(1)
0 (kvr)

])]
.

(83)

Thus, the components of V L are given by

VLr = Ur (r) cos θ, VLθ = Uθ (r) sin θ, (84)

where

Ur (r) = Sr (r) + G(r)

r
, Uθ (r) = Sθ (r) − G′(r). (85)

6. Calculation of the constants Gm0

The condition of zero streaming velocity at infinity requires
that

G10 = −1

4

∫ ∞

R0

x2 ln(x)F (x)dx,

G20 = 1

4

∫ ∞

R0

x2F (x)dx, (86)

G30 = − 1

16

∫ ∞

R0

F (x)dx.

These equations follow from Eqs. (72) and (73).
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To find G40, the condition of continuity of normal velocity
at the bubble surface is applied. It is shown in Ref. [30] that
in terms of Lagrangian streaming, the above condition can be
written as

VLr = 0 at r = R0. (87)

Substitution of the first of Eqs. (84) into Eq. (87) yields

G40 = −R2
0

[
Sr (R0) + G10 + ln(R0)G20 + R2

0G30
]
. (88)

7. Limit of low viscosity

In most studies on acoustic streaming, solutions are calcu-
lated in the limit of low viscosity, assuming that δv/R0 	 1.
In our case, this condition is valid as well. Therefore, it is
appropriate to consider this limit and to simplify the equations
derived above.

For δv/R0 	 1, Eqs. (35) and (36) reduce to

B = R0vex,C = 2(i − 1)
√

πR0α
−3/2
v e−iαv vex. (89)

Recall that the constants B and C are related to the bubble
translation; see the paragraph following Eq. (11). Substitution
of B from Eq. (89) into Eq. (37) yields

xm0 = 2ivex/ω, um0 = −iωxm0 = 2vex, (90)

where xm0 and um0 denote, respectively, the amplitude of
the bubble translational displacement and the amplitude of
the bubble translational velocity at δv/R0 	 1. Note that
um0 is twice the fluid velocity that forces the bubble into
the translational motion. For a spherical bubble, this factor
is 3 [38].

In the limit δv/R0 	 1, Eq. (85) take the form

Ur (r) = 1

4r2
Re

[
x∗

m0

(
R2

0

r2
[A + 2rvs(r) + r2v′

s(r)]

−A − 2R0vs(R0) − R2
0v

′
s(R0)

)]
, (91)

Uθ (r) = 1

4r2
Re

[
x∗

m0

(
3R2

0

r2
[A + rvs(r)]

−A − 2R0vs(R0) − R2
0v

′
s(R0)

)]
. (92)

If there are no surface waves (vs = 0), Eqs. (91) and (92)
reduce to

Ur (r) = 1

4
ω|a||xm0| sin(�φ)

(
R2

0

r2
− R4

0

r4

)
, (93)

Uθ (r) = 1

4
ω|a||xm0| sin(�φ)

(
R2

0

r2
− 3R4

0

r4

)
, (94)

where �φ = φ1 − φ0 with φ0 and φ1 being the arguments of
a and xm0. These equations agree with the results of Mekki-
Berrada et al. [32].

Equations (93) and (94) show that the velocity components
are proportional to sin(�φ). For vs �= 0, the dependence on �φ

is not so simple. The complexity of the equations with vs �= 0
makes it impossible to see straight away the dependence of

FIG. 2. Dependence of the streaming velocity on the phase shift
�φ between the radial and translational oscillations. Normalized (a)
radial and (b) azimuthal velocity components vs sin(�φ) for three
values of R0. The numbers in brackets are the values of the ratio
δv/R0.

Ur and Uθ on �φ. Therefore, we have to resort to numerical
examples. Figure 2 shows the values of Ur and Uθ , calculated
at r/R0 = 2 and normalized by ω|a||xm0|, versus sin(�φ). The
simulations were made at the driving frequency f = 30 kHz
for three values of R0: 21.7 μm (δv/R0 = 0.15), 32.5 μm
(δv/R0 = 0.1), and 65 μm (δv/R0 = 0.05). Figure 2 reveals
that for vs �= 0, the streaming velocity is not linearly dependent
on sin(�φ) and does not vanish at �φ = 0.

C. Calculation of vex , pex , and a for the case of two bubbles

Let us assume that the translational motion of the bubble
under consideration (bubble 1) is induced by a neighboring
bubble (bubble 2) located at a distance d as shown in Fig. 3.
It is evident that not only does bubble 2 affect the oscillation
of bubble 1, but bubble 1 affects the oscillation of bubble 2 as

FIG. 3. Relative position of two bubbles: top view.
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well. This fact should be taken into account when calculating
a, vex , and pex .

Assuming that j = 1 or 2, let us denote the equilibrium
radius of the j th bubble by Rj0, the dimensionless pulsation
amplitude of the j th bubble by aj , and the velocity and the
pressure produced by the j th bubble at the position of the
other bubble by vexj and pexj . In terms of these designations,
the previous designations are expressed as follows: R0 = R10,
a = a1, vex = vex2, and pex = pex2.

By using the results of Ref. [34], pexj can be written as

pexj = βjaj , (95)

where

βj = −ρf ω2

πμ

(
H

(1)
0 (kf d)

kf H
(1)
1 (kf Rj0)

[πμRj0 − ktqj If r (Rj0,0)]

+ qj Ip(d,0)

)
, (96)

qj = −2πγ

(
P0 + σf

Rj0

)
R2

j0εj , (97)

εj = εj1 exp(iεj2ksRj0). (98)

Here, μ is the shear modulus of the wall material, kf =
ω/cf , cf is the speed of sound in the fluid, and kt = ω/ct , where
ct is the speed of the transverse wave in the walls [33]. The
functions If r and Ip are defined by Eqs. (2.65) and (2.67) in
Ref. [34]. The quantities εj1 and εj2 serve as fitting parameters.
They were introduced in Ref. [34] to describe the action of the
bubble on the elastic walls. Finally, ks = ω/cs , where cs is
the speed of the surface waves propagating along the fluid-
solid interfaces. It is calculated from Eq. (2.57) in Ref. [34].
Equations (95)–(98) follow from Eqs. (2.62), (2.73), (2.76),
(2.87), and (3.1) in Ref. [34].

According to Eq. (2.88) in Ref. [34], the pulsation ampli-
tude of the j th bubble, with allowance made for the presence
of the other bubble, can be represented as

aj = −Pa + pex(3−j )

Dj

, (99)

where

Dj = 2γP0 + (2γ − 1)σf

Rj0
− ρf ω2R2

j0H
(1)
0 (αfj )

αfjH
(1)
1 (αfj )

+ 2γ ρf α2
tj εj

ρs

(
P0 + σf

Rj0

)

×
(

Ip(Rj0,0) − αtjH
(1)
0 (αfj )

αfjH
(1)
1 (αfj )

If r (Rj0,0)

)
, (100)

αfj = kf Rj0, αtj = ktRj0, and ρs is the wall density.
Substituting Eq. (95) into Eq. (99) and solving for aj , one
obtains

aj = (β3−j − D3−j )Pa

D1D2 − β1β2
. (101)

It remains to find vexj . To this end, we use Eqs. (2.60),
(2.71), (2.72), (2.76), and (2.87) in Ref. [34]. As a result, we
obtain the following equation for the amplitude of vexj :

vexj = i(−1)j+1ωaj

πμ

(
ktqj If r (d,0)

+ H
(1)
1 (kf d)

H
(1)
1 (αfj )

[πμRj0 − ktqj If r (Rj0,0)]

)
.

(102)

To sum up, the solutions of the equations of acoustic
streaming derived in our work are applicable to both bubbles.
Ultimately they are expressed in terms of the pulsation
amplitude of the j th bubble, aj , and the fluid velocity produced
by the other bubble, vex(3−j ). Therefore, to apply the solutions
to the j th bubble, it is necessary to substitute appropriate
expressions for aj and vex(3−j ) derived in this subsection.
Doing so, it should be also remembered that the cylindrical
coordinates r and θ appearing in the solutions should be
considered as coordinates originated at the center of the j th
bubble. The total streaming produced by both bubbles can be
evaluated assuming the additivity of this effect, namely, that
the total streaming is a sum of the flows produced by the
bubbles.

FIG. 4. The radial component of the streaming velocity at θ = 0 vs distance r1 from the center of bubble 1. The results were obtained for
two equal bubbles with radii R0 = 30 μm, separated by a distance d = 10R0 and excited at a frequency f = 50 kHz. (a) Surface waves are
absent. (b) Surface waves are present.
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III. SIMULATIONS AND EXPERIMENTAL VERIFICATION

A. Numerical examples

We assume that the fluid in the microfluidic channel
is water and the gas in bubbles is air with the following
physical parameters: ρf = 998 kg/m3, ηf = 0.001 Pa s, σf =
0.072 N/m, cf = 1481 m/s, P0 = 101.3 kPa, and γ = 1.4.
The channel walls are assumed to be made of a polydimethyl-
siloxane (PDMS) elastomer the parameters of which are the
density ρs = 970 kg/m3, Young’s modulus E = 1.6 MPa, and
Poisson’s ratio σ = 0.499. The channel height is taken to be
h = 25 μm and the acoustic pressure amplitude is set equal
to Pa = 10 kPa. To make numerical calculations easier, we
consider examples with δv/R0 	 1, which allows us to use
Eqs. (91) and (92).

Figures 4–6 compare acoustic streaming in the cases of
the absence and the presence of surface waves. The absence
of surface waves implies rigid walls. The simulations were

FIG. 5. Streamlines for two equal bubbles undergoing radial and
translational oscillations between two walls when surface waves are
absent: (a) overall view, (b) enlarged view near the surface of bubble 1
(solid line). R0 = 30 μm, d = 10R0, f = 50 kHz, sin(�φ) = 0.003.
The dashed line indicates the thickness of the viscous boundary layer
δv = 0.08R0. The streaming is of the fountain type.

made for two equal bubbles with radii Rj0 = R0 = 30 μm,
separated by a distance d = 10R0 and excited at a frequency
f = 50 kHz. The bubble pulsation amplitudes were calculated
at εj1 = 1.95 and εj2 = −0.756. These values were adopted
from Ref. [34]. Figure 4 shows the radial component of the total
streaming velocity along the direction θ = 0. This quantity
is calculated as Ur (r1) = Ur1(r1) + Ur2(d + r1), where Urj is
the radial component of the velocity field produced by the j th
bubble and r1 is the distance from the center of bubble 1. In
Fig. 4(a), the surface waves are absent, while in Fig. 4(b), they
are present. It is seen that the surface waves change the sign
of the streaming velocity and greatly increase its magnitude.
Figures 5 and 6 demonstrate streamlines when the surface
waves are absent and when they are present. Figures 5(a)
and 6(a) depict the overall view of the streamlines and
Figs. 5(b) and 6(b) show the behavior of the streamlines near
the surface of bubble 1 (solid line) around the angle θ = π/2.
The dashed line indicates the thickness of the viscous boundary

FIG. 6. Streamlines for two equal bubbles undergoing radial and
translational oscillations between two walls when surface waves are
present: (a) overall view, (b) enlarged view near the surface of bubble 1
(solid line). R0 = 30 μm, d = 10R0, f = 50 kHz, sin(�φ) = −0.67.
The dashed line indicates the thickness of the viscous boundary layer
δv = 0.08R0. The streaming is of the antifountain type.
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FIG. 7. Behavior of the radial component of the streaming
velocity at different bubble radii. The calculations were made for
two bubbles of equal radii R0 at θ = 0, d = 5R0 and f = (a) 30 kHz
and (b) 50 kHz. r1 is the distance from the center of bubble 1. The
numbers in brackets are the values of sin(�φ).

layer δv = 0.08R0. Note also that in Fig. 5, sin(�φ) = 0.003,
and in Fig. 6, sin(�φ) = −0.67. According to the terminology
proposed by Rallabandi et al. [30], the vortex pattern in Fig. 5
is a streaming of the “fountain” type, while that in Fig. 6
is a streaming of the “antifountain” type. Thus, one can say
that the surface waves reverse the vortex orientation. It is also
interesting to note that for each bubble taken separately, the
streamline structure resembles the flow generated by a source
dipole [40].

Figures 7 and 8 demonstrate the effect of different parame-
ters on acoustic streaming. Figure 7 shows the behavior of the
radial velocity component at different values of bubble radii
R0. The velocity component is calculated along the direction
θ = 0 at d = 5R0 and f = 30 and 50 kHz. The numbers in
brackets are the values of sin(�φ). Note that the positive
sign of Ur corresponds to the fountain type of streaming
and vice versa. Thus, one can see that, for smaller bubbles,
a fountain-type streaming occurs, while for bigger bubbles,
the vortex pattern changes to the antifountain type. These
results conform to experimental observations reported by
Mekki-Berrada et al. [32]. Comparison of Figs. 7(a) and 7(b)
also reveals that the value of R0 at which the changeover of the
vortex orientation occurs decreases with increasing frequency.
Figure 8 shows the behavior of the radial velocity component
at different values of the separation distance d between
the bubbles. The calculations were made at f = 50 kHz for
R0 = 30 μm and 50 μm. The numbers in brackets are the

FIG. 8. Behavior of the radial component of the streaming
velocity at different interbubble distances d . The calculations were
made for two bubbles with equal radii R0 =(a) 30 μm and (b) 50 μm
at θ = 0 and f = 50 kHz. r1 is the distance from the center of bubble
1. The numbers in brackets are the values of sin(�φ).

values of sin(�φ). Figure 8(a) reveals that for R0 = 30 μm, the
streaming changes from the antifountain type to the fountain
type as d reduces from 10R0 to 3R0. For R0 = 50 μm, as
Fig. 8(b) shows, the streaming type changes three times with
decreasing d: antifountain (d = 10R0), fountain (d = 7R0),
antifountain (d = 5R0), and again fountain (d = 3R0).

Figures 7 and 8 suggest that in many cases, the streaming
type is determined by the sign of sin(�φ): sin(�φ) > 0
results in the fountain type, whereas sin(�φ) < 0 leads to
the antifountain type. However, this is not always the case. For
example, the curve for R0 = 54 μm in Fig. 7(a) and the curve
for R0 = 40 μm in Fig. 7(b) show the antifountain behavior,
although sin(�φ) > 0. On the contrary, the curve for d = 7R0

in Fig. 8(b) shows the fountain behavior at sin(�φ) < 0. These
examples reflect the fact that for vs �= 0, the dependence on
sin(�φ) is not linear.

B. Experimental verification

Experimental and theoretical results are compared in Fig. 9.
The experimental data are shown by circles. They were ob-
tained using a microfluidic setup described in detail in Refs. [3]
and [32]. Figure 9 shows the radial velocity component of
acoustic streaming generated by a pair of bubbles. The velocity
component is measured along the direction θ = 0 as a function
of distance r1 from the center of the right bubble (bubble 1);
see the insets in Fig. 9. The data in Fig. 9(a) were obtained
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FIG. 9. Comparison of experimental (circles) and theoretical (solid and dashed lines) results. The radial component of the streaming velocity
is plotted as a function of distance r1 from the center of the right bubble (bubble 1). (a) Bubbles with radii R10 = 38.3 μm and R20 = 33.6 μm,
separated by a distance d = 175 μm, excited at 40 kHz. (b) Bubbles in contact, with radii R0 = 30 μm, excited at 80 kHz. The solid and dashed
lines show the results given by the present model and the model of Mekki-Berrada et al. [32], respectively.

for bubbles with radii R10 = 38.3 μm and R20 = 33.6 μm,
separated by a distance of 175 μm and excited at 40 kHz. The
data in Fig. 9(b) were obtained for two bubbles with equal radii
R0 = 30 μm, which were in contact and excited at 80 kHz.
Experimental conditions do not allow one to determine the
amplitude of the driving acoustic pressure, Pa . Therefore, this
quantity is an adjustable parameter in simulations. It should
be also mentioned that in the experiment, a surfactant was
added to the fluid to prevent bubble coalescence. However, its
concentration was low so the slip boundary condition on the
bubble surface, applied in our theory, is justified.

The solid lines in Fig. 9 show the fitting of the experimental
points by Eq. (91). The physical parameters of the fluid and
the channel walls used in the simulations are the same as in
the preceding subsection. The solid curve in Fig. 9(a) was
calculated at Pa = 1.88 kPa, εj1 = 2.15, and εj2 = −0.42.
The solid curve in Fig. 9(b) was calculated at Pa = 34.4 kPa,
εj1 = 1.95, and εj2 = −0.8. The values of εj1 and εj2 were
adopted from Ref. [34]. For comparison, the dashed lines in
Fig. 9 show the results given by the model developed by
Mekki-Berrada et al. [32]. The dashed curve in Fig. 9(a)
was calculated at Pa = 10 kPa, and that in Fig. 9(b) at
Pa = 160 kPa. Note that the model of Mekki-Berrada et al.
[32] requires much higher values of the acoustic pressure. The
difference between the solid and dashed curves is explained by
the fact that Mekki-Berrada et al. [32] have used a simplified
model for the bubble dynamics. Figure 9 shows that there is a
good agreement between the experimental measurements and
the theory developed in the present study.

IV. CONCLUSION

A theoretical model has been developed for acoustic
streaming generated by a cylindrical bubble squeezed in a

microfluidic channel between two planar elastic walls. The
model assumes that the acoustic streaming results from the
mixed-mode interaction between the volume and translational
modes of the bubble oscillations. The translational oscillation
is supposed to originate from an external sound source such as
a neighboring bubble. Unlike the previous study [34], which
used a phenomenological model for bubble oscillation and
ignored the existence of the bulk scattered wave, the present
study is based on rigorous mathematical solutions and takes
into account the existence of both surface waves propagating
along the fluid-wall interfaces and the bulk scattered wave
propagating in the fluid gap. The general analytical solutions
to the linear equations of fluid motion and to the equations
of acoustic streaming are calculated with no restriction on the
ratio between the viscous penetration depth and the bubble
size. Approximate solutions for the limit of low viscosity are
provided as well. Numerical simulations of acoustic streaming
generated by bubble pairs are performed. They show that
the vortex orientation of streamline patterns is governed
by the driving frequency, bubble size, and the interbubble
distance. Experimental verification of the developed theory
has been performed using data for streaming generated by
bubble pairs. It demonstrated good agreement between the
theoretical predictions and the experimental measurements.
The obtained results are of immediate interest for microfluidic
investigations.
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