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An analytical solution is derived for the acoustic streaming generated by two orthogonal standing
waves in a fluid confined between two plane rigid walls. It is assumed that the standing waves have
the same frequency but, in general, are out of phase. The main restriction is that the boundary layer
thickness is much smaller than the acoustic wavelength. It is shown that the acoustic streaming
gives rise to vortices in which fluid particles, when moving between the walls, are rotating about
axes perpendicular to the walls. The location, the form, the sense of rotation of the vortices and the
vortex strength are governed by the phase shift between the driving waves.
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I. INTRODUCTION

The problem of acoustic streaming generated by a plane
standing wave in a fluid channel confined between two plane
rigid walls was first solved by Rayleigh.1 The vortex pattern
outside the viscous boundary layer predicted by his theory is
known as Rayleigh streaming. Various theoretical aspects of
this problem have been analyzed by Westervelt,2 Nyborg,3,4

and Zarembo.5 The solutions obtained by Rayleigh,
Westervelt, and Nyborg are valid for channels with a rela-
tively large distance between the walls, in which the bound-
ary layer thickness is negligible in comparison with the
interwall distance. Zarembo’s analysis is based on a solution
for the sound field that is derived for a semi-infinite fluid in
contact with a single wall, which excludes the application of
his solution to channels with a finite distance between the
walls. An analytical solution for acoustic streaming gener-
ated by a single standing wave in a channel with an arbitrary
interwall distance was derived by Hamilton et al.6 They
have shown that, as the distance between the channel walls
is reduced, the streaming vortices inside the boundary layer
increase in size relative to the Rayleigh streaming vortices
outside the boundary layer, and for interwall distances less
than about 10 times the boundary layer thickness, the
Rayleigh vortices disappear and only the inner vortices exist.

In recent years, in the context of the advancement of
acoustic microfluidics,7 there has been great interest in meth-
ods that allow one to generate stationary vortex flows in
two-dimensional fluid-filled channels. This technology
implies various applications, such as micromixing of fluids
and the manipulation of microparticles suspended in a
fluid.8–11 The present paper shows theoretically that two
orthogonal standing waves, confined between two plane
rigid walls, generate acoustic streaming that is of interest for
the microfluidic applications mentioned above. Specifically,
the streaming gives rise to rotational fluid motion in planes

parallel to the walls. As a result, fluid particles, when mov-
ing up and down between the walls, are rotating about axes
perpendicular to the walls.

II. THEORY

Let us consider a viscous fluid confined between two
plane rigid walls. The geometry of the problem is shown in
Fig. 1. The walls are assumed to be at z ¼ 6z0, which means
that the plane z ¼ 0 is midway between them. Two orthogo-
nal standing waves of the same frequency propagate along
the x and y axes. From symmetry considerations, the x and y
components of the fluid particle velocity must be even func-
tions of z, while the z component must be an odd function of
z, such that it vanishes at z¼ 0. All the velocity components
are assumed to vanish at the walls. In microfluidics, it is com-
monly accepted to refer to the distance between the channel
walls as channel height. We will follow this terminology.

A. Model equations

Hamilton et al.6,12 have developed an approximation
approach for calculating the acoustic streaming generated by
a single standing wave between two plane rigid walls,
assuming that the viscous penetration depth is small com-
pared to the acoustic wavelength. The generalization of their
approach to the case of two orthogonal standing waves gives
the following equations of fluid motion between the walls:
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where q is the fluid density, v is the fluid velocity, p is the
fluid pressure, g is the dynamic viscosity, and fi denotes aa)Electronic mail: doinikov@hotmail.com
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source (a body force per unit volume) that excites the stand-
ing waves in the fluid. The indices i¼ 1,2,3 correspond to x,
y, z and summation over repeated indices is implied. The
scale analysis that justifies Eqs. (1)–(3) is provided by
Hamilton et al.6,12 (see also a paper by Waxler13) and there-
fore we do not dwell on it here. However, it should be men-
tioned that Hamilton et al. have demonstrated that their
results are in agreement with the solutions derived by
Rayleigh,1 Westervelt,2 and Nyborg.3 In what follows, we
use Eqs. (1)–(3) to calculate the acoustic streaming in the
case shown in Fig. 1.

B. Linear solutions

The linear fluid velocity can be represented as

u ¼ ux þ uy; (4)

where

ux ¼ uxxðx; z; tÞex þ uxzðx; z; tÞez (5)

is the velocity produced by the standing wave propagating
along the x axis and

uy ¼ uyyðy; z; tÞey þ uyzðy; z; tÞez (6)

is the velocity produced by the standing wave propagating
along the y axis. In view of linearity, ux and uy can be consid-
ered independently and hence, to get expressions for them,
we can use the results obtained by Hamilton et al.6 for a sin-
gle standing wave. These results, as applied to our case, yield

uxx ¼ %ux0 1% cosh ax

cosh al

! "
F zð Þeixt; (7)

uxz ¼ %ux0z0ab
sinh ax

cosh al
G zð Þeixt; (8)

uyy ¼ %uy0 1% cosh ay

cosh al

! "
F zð Þeixt; (9)

uyz ¼ %uy0z0ab
sinh ay

cosh al
G zð Þeixt: (10)

Here,

F zð Þ ¼ 1% cosh kvz

cosh kvz0
; G zð Þ ¼

z

z0
% sinh kvz

sinh kvz0
; (11)

a ¼ ix
c
ffiffiffiffiffiffiffiffiffiffiffi
1% b
p ; b ¼ tanhkvz0

kvz0
; kv ¼

1þ i

dv
;

dv ¼
ffiffiffiffiffi
2!

x

r
; (12)

c is the speed of sound in the fluid, and ! is the kinematic
viscosity. The quantities ux0 and uy0 can be regarded as the
complex velocity amplitudes of the x and y standing waves,
respectively. To introduce a phase shift / between the x and
y waves, it will suffice to set uy0 ¼ ux0 expði/Þ. l is the dis-
tance between the center of the resonator and side walls
along x and y. It is assumed that the side walls are at the
velocity nodes along both positive and negative directions of
x and y, so that l ¼ k=4þ nk=2, where k is the acoustic
wavelength and n¼ 0,1,2,… .

C. Equations of acoustic streaming

We calculate the acoustic streaming in the approxima-
tion of an incompressible fluid. Averaging Eqs. (1) and (2)
over time and substituting Eqs. (7)–(10), one obtains
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where Vx ¼ hvxi, Vy ¼ hvyi, Vz ¼ hvzi are the velocity com-
ponents of the streaming, the angular brackets h i denote the
time average, and q0 is the equilibrium fluid density. Note
that hpi is a function of x and y only. The approximation
approach developed by Hamilton et al.6,12 proposes that the
x and y components of the streaming velocity, Vx and Vy,
should be calculated by Eqs. (14) and (15), respectively, and
then the z component, Vz, is calculated from Eq. (13).

The streaming velocity can be represented as

V ¼ Ux þ Uy þW; (16)

where

Ux ¼ Uxxðx; zÞex þ Uxzðx; zÞez;

Uy ¼ Uyyðy; zÞey þ Uyzðy; zÞez; (17)

W ¼ Wxðx; y; zÞex þWyðx; y; zÞey þWzðx; y; zÞez: (18)

The terms Ux and Uy describe the streaming velocities pro-
duced by the x and y waves, respectively, as if the second
wave were absent. The term W stands for cross terms that
result from the interaction of the x and y waves. It will be

FIG. 1. (Color online) Geometry of the problem under consideration. Two
orthogonal standing waves propagate between two plane rigid walls.
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shown below that it is these cross terms that give rise to the
fluid rotation in the xy planes.

Substitution of Eqs. (16)–(18) into Eqs. (13)–(15) gives
the following equations:
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where Px (Py) denotes a part of hpi that is generated if the y
(x) wave vanishes.

An equation identical to Eqs. (20) and (21) has already
been solved by Hamilton et al.6 using linear solutions identi-
cal to Eqs. (7)–(10). That is Eq. (37) in their paper.
Therefore, expressions for Ux and Uy can be merely written
by analogy. These expressions are given in the Appendix.

Two integrations of Eqs. (23) and (24) with respect to z
yield

Wx¼Ax x;yð Þþ
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where the asterisk indicates the complex conjugate, Ax and
Ay are unknown functions to be determined by boundary
conditions, and Bx, By, D1, and D2 are defined as
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The integration also produces terms linear in z but they were
dropped because Wx and Wy must be even functions of z.

From the boundary condition Wx ¼ Wy ¼ 0 at z ¼ 6z0,
one obtains
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To find Wz, we substitute Eqs. (25) and (26) into Eq.
(22) and integrate with respect to z. This yields the following
equation:
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where
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(33)

The integration also produces a term dependent on x and y
but it was dropped because Wz must be an odd function of z.

Substitution of Eq. (32) into the boundary condition
Wz ¼ 0 at z ¼ 6z0 and the use of Eqs. (30) and (31) yield
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þ
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@y
¼ 3q0jaj
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(34)
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where

e ¼ 2 Re D2 z0ð Þ
+ ,

% 2D1 z0ð Þ %
dv

z0
D3 z0ð Þ: (35)

From Eq. (34), one finds

Bx x; yð Þ ¼
3q0d

2
ve

4jcosh alj2z2
0
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;
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2
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0
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+ ,

:

(37)

Substitution of Eqs. (30), (31), (36), and (37) into Eqs. (25),
(26), and (32) yields the final expressions for the components
of W:
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D. Lagrangian streaming

The Lagrangian streaming velocity VL is calculated as a
sum of the Eulerian streaming velocity V and the Stokes drift
velocity VS. The latter is given by14

VS ¼

* ð
udt * $u

+

¼

*
1

ix
u * $ð Þu

+

: (41)

Substitution of Eqs. (7)–(10) into Eq. (41) yields
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where the prime denotes the derivative with respect to z.

III. NUMERICAL SIMULATIONS

Simulations were made at the following values of
the physical parameters: q0¼ 1000 kg/m3, g¼ 0.001 Pa s,
c¼ 1500 m/s, z0¼ 25 lm (channel width h¼ 2, z0¼ 50 lm),
l ¼ 5k=4, and f¼ 36 MHz. These parameters are typical of
microfluidic devices.15

Figure 2 shows streamlines of the projected streaming
field on xy planes at z ¼ 0 and z ¼ %0:9z0. Similar patterns
are observed for other values of z as well. The phase shift
between the x and y waves is / ¼ p=2. As one can see, the
fluid is rotating about axes perpendicular to the walls. For
the frequency used, dv ¼ 0:094 lm and z0=dv + 266, so the
vortices in Fig. 2 are of Rayleigh (outer) type.

Figure 3 provides an example of the 3D trajectory of a
fluid particle involved in the acoustic streaming. The fluid
particle is rotating in the central vortex shown in Fig. 2. It is
moving upstream from the bottom wall located at z ¼ %z0.
When doing so, the particle is rotating with a variable rota-
tion radius about the vertical axis with the coordinates
x; y ¼ 0. The starting point of the trajectory, shown by the
black point in Fig. 3, has the coordinates (0, 0:2k, %0:95z0).
It should be noted that Fig. 3 depicts only a part of the trajec-
tory. The extension of the trajectory (not presented here in
order to avoid overloading the figure) shows that, after mov-
ing up, the fluid particle is moving down, then up again, and
so forth. The simulation also shows that the pitch of the spi-
ral changes in the process of the particle motion. In the case
shown in Fig. 3, the pitch increases as the particle is going
up. When the particle approaches the upper point of the tra-
jectory, the pitch of the spiral decreases. When the particle is
going down, the pitch increases again. The strength of the
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driving acoustic field changes the velocity with which the
fluid particle is moving along the trajectory but the shape of
the trajectory remains invariable. The trajectory shape
depends on the position of the starting point.

The calculation reveals that the rotation is caused by the
cross terms of the streaming, Wx and Wy. As an example,
Fig. 4 shows what happens to Fig. 2(a) if the cross terms are
eliminated from the calculation. As one can see, the vortices
vanish.

Figures 5 shows the effect of the phase shift / on the
behavior of vortices. It depicts the streamlines of the

projected streaming field on the xy plane at z ¼ 0 for various
values of the phase shift. As one can see, the phase shift
changes the form, the location, and the sense of rotation of
the vortices. The calculation also shows that / in the range
between p and 2p gives the same streaming patterns as /
between 0 and p but with the opposite sense of rotation.

Finally, Fig. 6 demonstrates the effect of the phase shift
on the vorticity of the streaming velocity, X ¼ $' VL. The
vorticity is calculated in the center of the resonator at
x ¼ y ¼ z ¼ 0; see the point in Fig. 5. The calculation
reveals that at this point, the vorticity has only the z compo-
nent, Xz, which is created by the streaming cross terms
alone; see W in Eq. (16). The terms Ux and Uy are not able

FIG. 2. (Color online) Streamlines of the projected streaming field on xy planes at z ¼ (a) 0 and (b) %0:9z0. The calculation parameters are f ¼ 36 MHz,
/ ¼ p=2, and l ¼ 5k=4. The fluid is rotating about axes perpendicular to the walls.

FIG. 3. (Color online) The 3D trajectory of a fluid particle rotating in the
central vortex shown in Fig. 2. The starting point of the trajectory is
(0, 0:2k, %0:95z0) (black point). The fluid particle is moving upstream from
the bottom wall located at z=z0 ¼ %1.

FIG. 4. (Color online) Example of calculation without the cross terms Wx

and Wy; cf. Fig. 2(a). Vortices vanish.
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FIG. 5. (Color online) Streamlines of the projected streaming field on the xy plane at z ¼ 0 for various values of the phase shift /. The phase shift changes the
form, the location, and the sense of rotation of vortices.
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to produce any rotation along the z axis, and $' VS ¼ 0 at
z ¼ 0. Figure 6 depicts the normalized value of Xz as a func-
tion of the phase shift /. The normalization is performed as

Xzn ¼
xjcosh alð Þj2

ja2ux0uy0j
Xz: (45)

This normalization is suggested by the leading factor in Eq.
(40). Figure 6 shows that the phase shift can increase or
decrease the magnitude of the vorticity and change its sign.
The peak values of the vorticity are reached at / ¼ p=2 and
3p=2.

IV. CONCLUSION

The present paper provides an analytical solution for the
acoustic streaming generated by two orthogonal standing
waves that propagate between two plane rigid walls. The
derivation is based on the approximation proposed by
Hamilton et al.6 The developed theory shows that the acous-
tic streaming gives rise to vortices in planes parallel to the
walls. As a result, fluid particles, when moving up and down
between the walls, are rotating with a variable rotation radius
about axes perpendicular to the walls. The location, the
form, the sense of rotation of the vortices and the vortex
strength are governed by the phase shift between the driving
waves. The obtained results are of interest for applications
concerning the micromixing of fluids and the manipulation
of microparticles suspended in a fluid.
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APPENDIX: EXPRESSIONS FOR THE COMPONENTS
OF Ux AND Uy

These expressions follow from the results obtained by
Hamilton et al.,6
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cosh kvz% kvzsinh kvz

4cosh kvz0
þ cosh k&v z

4cosh k&v z0

% cosh 2z=dvð Þ þ i cos 2z=dvð Þ
8kvdvjcosh kvz0j2

; (A12)

H3 zð Þ ¼
sinh 2z=dvð Þ % sin 2z=dvð Þ

16jcosh kvz0j2

% Im
sinh kvz

kvdvcosh kvz0

& '
; (A13)

FIG. 6. (Color online) The normalized z component of the vorticity of the
streaming velocity at x ¼ y ¼ z ¼ 0 (see the point in Fig. 5) as a function of
the phase shift /. The phase shift can increase or decrease the magnitude of
the vorticity and change its sign.
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H4 zð Þ ¼ b&
2sinh kvz% kvzcosh kvz

4kvdvcosh kvz0
þ isinh k&v z

4kvdvcosh k&v z0

% sinh 2z=dvð Þ þ i sin 2z=dvð Þ
16kvdvjcosh kvz0j2

; ðA14Þ

H5 zð Þ ¼
z

dv
% isinh k&v z

kvdvcosh k&v z0
: (A15)
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