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Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by
two counterpropagating leaky surface waves
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A theory is developed for the modeling of acoustic streaming in a microfluidic channel confined between an
elastic solid wall and a rigid reflector. A situation is studied where the acoustic streaming is produced by two
leaky surface waves that propagate towards each other in the solid wall and thus form a combined standing wave
in the fluid. Full analytical solutions are found for both the linear acoustic field and the field of the acoustic
streaming. A dispersion equation is derived that allows one to calculate the wave speed in the system under
study. The obtained solutions are used to consider particular numerical examples and to reveal the structure
of the acoustic streaming. It is shown that two systems of vortices are established along the boundaries of the

microfluidic channel.
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I. INTRODUCTION

The phenomenon of acoustic streaming is widely applied in
microfluidic devices for the implementation of such processes
as micromixing of fluids and contactless manipulation of
microparticles suspended in a fluid [1-6]. There is a long-
standing interest in acoustic streaming that arises in the course
of wave propagation between two boundaries. Rayleigh [7]
was the first to theoretically study this problem for the case
of a plane standing wave propagating between two plane
rigid walls. The vortex pattern outside the viscous boundary
layer predicted by his theory is known as Rayleigh streaming.
Later, this problem also was considered by Westervelt [8]
and Nyborg [9,10]. The solutions obtained by Rayleigh,
Westervelt, and Nyborg are valid for channels with a relatively
large distance between the walls in which the boundary
layer thickness is negligible in comparison with the interwall
distance. Hamilton et al. [11] derived an analytical solution for
acoustic streaming generated by a standing wave between two
rigid walls with an arbitrary interwall distance. Their theory
shows that, as the distance between the walls is reduced,
the streaming vortices inside the boundary layer increase in
size relative to the Rayleigh streaming vortices outside the
boundary layer and, for interwall distances less than about
ten times the boundary layer thickness, the Rayleigh vortices
disappear and only the inner vortices exist. Recently, Doinikov
etal. [12] have generalized the approach of Hamilton er al. [11]
to the case of two orthogonal standing waves. They showed
that the acoustic streaming gives rise to rotational fluid motion
in planes parallel to the walls. As a result, fluid particles, when
moving up and down between the walls, are rotating about
axes perpendicular to the walls.

However, the generation of acoustic streaming in microflu-
idic devices is realized under conditions different from those
considered in the above-mentioned papers. To induce acoustic
waves in a microfluidic channel, leaky surface waves are used,
which are excited in a solid substrate and emit into the fluid
layer through the vibrations of the solid-fluid interface [13].
The speed of the leaky surface waves and hence that of
acoustic waves induced in the fluid are different from the
normal speed of sound in the fluid and are determined by a
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dispersion equation. The dispersion equation for a half-infinite
inviscid fluid layer can be found, for example, in the book by
Viktorov [14] and that for a finite viscous layer with a free
boundary was derived by Qi [15]. A dispersion equation for a
microfluidic channel with a reflector is derived here. Vanneste
and Biihler [16] obtained linear analytical solutions and then
performed a numerical modeling of acoustic streaming for the
case of one leaky surface wave and a fluid layer with a free
boundary.

In the present paper, we consider a fluid layer confined
between an elastic solid wall and a rigid reflector. We derive
solutions for leaky surface waves in the solid wall, a dispersion
equation for the speed of these waves, and linear solutions for
acoustic waves in the fluid. We then solve the equations of
acoustic streaming assuming that this latter is produced by
a standing wave that is generated by two counterpropagating
leaky surface waves as is the case in microfluidic devices. All
the solutions are analytical and valid for the entire section of
the fluid channel without splitting it into the bulk part and
viscous boundary layers. No restrictions are imposed on the
value of the fluid viscosity.

II. THEORY
A. Problem formulation

Let us assume that a fluid layer is confined between an
elastic solid wall and a rigid reflector (see Fig. 1). We will
first consider a plane harmonic surface wave that is excited in
the solid wall and propagates in the positive direction of the x
axis, the z axis being directed perpendicular to the fluid-solid
interface into the depth of the solid wall. The results obtained
for this wave will then be applied to two counterpropagating
waves in order to get a combined standing wave. We assume
that the solid wall occupies the half-space z > 0 and the fluid
layer occupies the space 0 > z > —h.

B. Linear solutions
1. Waves in the fluid

If the fluid is treated as compressible and vis-
cous, the linearized equations of the fluid motion are
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FIG. 1. A fluid layer of height & is located between an elastic
solid wall and a rigid reflector. A surface acoustic wave is excited in
the solid wall and propagates along the x axis.

given by [17]

el
pra = —Vp+uAv+E+0/AVV 0, (D)

ap
— 'V.-v=0, 2
at+/0_f v )

p=cip. 3)

where Eqgs. (1)—(3) are the Navier-Stokes equation, the conti-
nuity equation, and the equation of state, respectively, o is the
fluid density at rest, v is the fluid velocity, p is the perturbed
fluid pressure, 1 is the shear viscosity, & is the bulk viscosity,
p is the perturbed fluid density, and c is the speed of sound.

Let us set the time dependence as exp(—iwt) and represent
v as

v=Vo;+V xy,, 4)

where @7 and ¥ , are the scalar and the vector potentials.
Substituting Eq. (4) into Eqgs. (1)—(3) after some manipulations,
one obtains

Agy +kiop =0, (5)
AV + kY, =0, (6)
I
P =—prcikier (7
w
where
—1/2
. w | iw (%‘ 4 4 ) / ®)
=—1- 27 ;
Y Cf p‘fci‘ 3
1414 2
= ts =2 v L ©)
(Sv w Pf

Recall that §, is known as the viscous penetration depth and
v is the kinematic viscosity.

The geometry of the problem (Fig. 1) suggests that ¢, and
¥ ; can be represented as

9 = @s(x,2,t) = F(2)e' ", (10)
V= e p(x,z,0) = e,G(z)e" ", (11)

where e, is the unit vector along the y axis and k is the wave
number to be found. Substitution of Egs. (10) and (11) into
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Egs. (5) and (6) gives the following equations for F(z) and
G(2):

d*F 2 d*G »
d—ZZ—C]fFZO, d—Zz—quZO, (12)
where
0 =K —kj. q; =k —k. (13)

Solutions to Eq. (12) are expressed in terms of the functions
exp(%q rz) and exp(#£q, z) where the first exponential function
gives two independent solutions for F(z) and the second
function gives two independent solutions for G(z). It follows
that ¢ s and v/ can be written as

0F = (A1e7 4 Agedro)eltemen, (14)
Uy = (Bie® + Bye h)e!lrmen, (15)

where A;, and B, are constants to be determined by
boundary conditions.

It follows from Eqs. (4), (10), and (11) that the components
of v are calculated by

ol ol 0 0
_ ey Wy o, s OV

, = . 16
TToax dz C 9z ox .
Substitution of Egs. (14) and (15) into Eq. (16) yields
vy = e C T ik(A 1V + Are™ 1)
—qu(Bie™* — Bye™ )], a7
ve = g (A1€7T = Are™)
+ ik(B1e™* + Bye 7). (18)
2. Waves in the solid
The motion of the solid wall is governed by [14]
0’u
psg oy = pAu+ A+ V(Y -u), (19)

where u is the displacement vector, p; is the wall density, and
w and A are the Lamé coefficients. By representing u as

u=Ve;,+Vxvy,, (20)

and substituting it into Eq. (19), one obtains
Aps +kip, =0, 1)
AV, + kY, =0, (22)

where k; and k; are the wave numbers of the longitudinal and
transverse waves, respectively, given by

[ Ps [ Ps
k = , k= —. 23
1 w A+ 20 t w m (23)

Solutions for Egs. (21) and (22) are found in the same way
as those for Eqs. (5) and (6). Since the waves must decay
into the depth of the solid wall (in the positive direction of z),
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we obtain
@5 = Ce el kx=on, (24)
¥, = eV, P, = De #ieltrmon, (25)
where
gt =k —k}, qF =k -k, (26)

and C and D are constants to be determined by boundary
conditions.
The components of u are calculated by

dps 0Py dps Y
Uy = -, U;= + —.
ox 0z 0z 0x
Substitution of Egs. (24) and (25) into Egs. (27) yields
U, = ei(kxfwt)(ikcefqlz + the*%Z)’ (28)
u; =i (iq Ce % + kDe 7). (29)

27)

3. Boundary conditions for linear solutions

The boundary conditions at the reflector, which is treated
as a rigid wall, are given by

vy =v, =0 at z=—h. (30)

The boundary conditions at the fluid-solid interface where
the continuity of velocities and stresses is assumed are written
as

v, = —lwu, at z=020, 3D
v, = —iwu, at z=0, 32)
Oy; = Ty; at =0, (33)
0, =71, at z=0, (34)

where o, and o,, are the components of the stress tensor
in the fluid and 7., and t,, are the components of the stress
tensor in the solid. They are defined by [14,17]

v, ov
ze=n< =+ Z), (35)

0z ax
|
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v
o.=—-p+ 2773—; + (& —2n/3)V - v, (36)
Py Y Y
=uf2 — , 37
Fxz M( 8x3z+ 9x2 3Z2) ©7
32% 82(/’5 az‘Py 32%
= “D) poul =2 . (38
& <3x2 * aZZ>+ “( 922 +8x8z) 8

Substituting Egs. (7), (17), (18), (24), and (25) into
Egs. (35)—(38), one obtains

o, = ' C [ 2ikg (At — Are™ 1)

— (K + q2)(B1e?* + Bye™49)], 39)
0, = BT[Nk — iwpp)(A1e? + Aye™ %)
+2inkq,(B1e?* — Bye” 9], (40)

Top = —e"(kx*’”t)pg[21'kqlCefqlZ + (k2 + th)DeﬂM],(‘u)
. = PO (K* + ¢7)Ce % — 2ikg, De %], (42)

4. Dispersion equation

Substitution of Egs. (17), (18), (28), (29), and (39)—(42)
into Egs. (30)—(34) yields a system of six algebraic equations
in the unknowns A 2, By 2, C, and D,

an A1 + an Az + a3 By + apa By + a,5C + asD = 0,
n=12....6 (43)

The coefficients of Eq. (43) are given in Appendix A.

The system of Eq. (43) has nontrivial solutions only if its
determinant is equal to 0. This condition gives an equation for
calculating &,

{2nwkq (1 — Dyr — icays] — no(k* + qp)licsyr + (1 + a)ys] + 2i kg )

x (2nwkg,liczys + (1 + a)yal — 0Qink* + wp li(1 + a1)ys + aayal + 2i pkq,)

—{2nwkq li(1 + anys + eoys] — no(k® + g)lozys — i(1 + ow)ys] + (k> + ¢7)}

x {wQink® + wp I + @)1 — icays] + 2nwkglesy +i(1 — ag)ys] — u(k* +¢2)} = 0. (44)

The functions appearing in Eq. (44) are calculated as
follows:

_ UK oy

oy , 45)
qrqv — k2
2ikq,
oy = %e*(q/ﬂh)h’ (46)
qrqv —k
2ik
oz = _if2‘6,—(1]/’-"-5]1:);!7 47)
qrqv —k

[
_ U9t R oy

* qrqy — k? ’ 45
2

N Bt g “

= Bt =

e gy
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KB +4:q9:Bs

= , (52)
T 1B B + 4, 90Pabs
5 qrqy — k2 + (qrqo + kz)e_Z‘]fh _ 2qfqve_(‘1f+‘1v)h
1= )
qrqv —k?
(53)
p k2 — qrq, — 2k2e” WM 4 (g g, + KP)e 20"
2 = 9
qrqv — k?
(54)

J

(K +¢2)* — 4k%q1q; —
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_qrqy — k> —(qrqy + ke 2" 4 24 e~ @t

B3

qdrqv — k2 ,
(55)
g, = U~ k* = 2qrque” TN 4 (qrq, 4 k7)e 20"
4 = .
qrqv — k?
(56)

In the case of low viscosity, we can keep only terms of first
order in §,. As a result, Eq. (44) reduces to

k4
Praty cot(ht) + g(k) =0, (57)
psT

where T = ,/k} — k2, k; = w/c, and the function g(k), which allows for viscous effects, is calculated by

gk) =

(14 k> (k2 + q2)8, [ K2y
272

S

2iht

26]16 . 2 2
|:‘L' cot(ht) + m] — n(k + qt)

(14 Dk*qi8, [k p 2 2iht .
— T2 qi t Sf q:T COt(l’lf) + W _ 2lkZTQt
1 —i)8, [ik? 2
+ ( 2le) v {t ;)pf.[k2 cot(ht) — tq,] + K> (K> + qlz)}[‘ﬂp;pf cot(ht) + (K + qtz)]
(1 — k38, iklzpf 5 k,2,0f
B 212 [q: cot(ht) — 7] + 2k"q, p_ cot(ht) + 27q, |. (58)

The wave number of a leaky surface wave should be a
complex number, which provides the formation of a wave
departing from the boundary into the fluid [14]. For an inviscid
fluid layer, theoretically, such solutions exist if the fluid layer
is of infinite thickness. The dispersion equation for this case is
given by Viktorov [14],

iprqiki _

s

(& +q2)* — 4K%q1q; + 0. (59)
Note that for s — oo, cot(ht) — —i,andatn = 0,Eq. (57)
turns into Eq. (59).
Qi [15] considered the case of a finite viscous fluid layer
with a free surface. He derived a dispersion equation up to
viscous corrections of first order,

k! 1+i)/wv
PsT \/ECI T

k* 2 2\2 2
x tan(ht) k—[(k +c1,) — 4k C]l%]

t

(K +¢2)* — 4k2qiq: +

20f
+ p_szkr (k2 + qtz - 2‘11‘]1)

2 . 3
141 k>g,/wv
+(—pf> kf(kz—CIIQz)]-l-( orkigi/ov _
ﬁpscl

s

(60)

It is instructive to compare the predictions of Eq. (57)
with those of Egs. (59) and (60). The comparison is
presented in Figs. 2 and 3. The following parameters

(

were used: p; = 1000 kg/m?, ¢y =1500m/s, n = 0.001,
£ = 0.003Pas, p, = 4640kg/m>, A = 68, 1 = 68 GPa, and
f = o/2n = 36 MHz. These parameters correspond to water
(fluid layer) and lithium niobate (solid wall). Figure 2 shows
the speed of the acoustic wave in the microfluidic channel
¢ = w/Re[k] as a function of the channel height /4, and Fig. 3
shows the attenuation coefficient « = Im[k] as a function of
h. The solid lines depict the results calculated by Eq. (57),
the long-dashed lines are provided by Eq. (59), and the
short-dashed lines correspond to Eq. (60). The breaks in the

3800+
3600+
34001

3200t

Speed ¢ = w/Re[k] (m/s)

3000¢

20 40 60 80 100

Channel height 2 (um)
FIG. 2. Speed of the acoustic wave in the microfluidic channel
versus channel height for three cases: a fluid layer with a reflector

(solid line), a fluid layer with a free boundary (short-dashed line), and
an infinite inviscid fluid layer (long-dashed line).
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solid and short-dashed curves are caused by singularities in
cot(ht)and tan(ht). As one can see from Figs. 2 and 3, the case
of afluid layer with areflector differs greatly from the other two
cases.

A] = w(zy1C + )/zD),

PHYSICAL REVIEW E 96, 013101 (2017)

5. Calculation of constants

The system of Eq. (43) also allows one to express Aj,
Bi», C, and D in terms of one of these quantities. Choosing
C as such a quantity, one obtains

of the x axis. The potential functions that describe this process
can be represented as

(61)
Ay = ol(iony) + a2y3)C + (a1y2 — iaays) D], (62)
By = o(y3C — iys D), (63)
B, = wl(iazyr + a4y3)C + (a3y2 — iaays) D], (64)
no{ (k2 + g2)liasyr + (1 + ag)ys] + 2kq[(1 — )y + ionysl} — 2ipkg, 65)
no{2kqli(1+a)y: + eayal = (K + g3)leays — i(1 + a)yal} + p(k? +47)
[

6. Standing wave vy = 2ie " [ik(A e + Are V)
Let a second leaky wave propagate in the negative direction — qu(B1e?* — Bye "9 sin(kx), (70)

v, = 2e " [qr(A1e7* — Are V%)
+ik(B1e?* 4+ Bye %) cos(kx). (71)

;= (Aleq/z + Aze_qu)ei(_kx_w’),
‘fo — (Blequz + éze—qu)ei(—kx—wz)’

¢, = C oz pi(—kx—oi) 0 = Pe—7 i (—kx—on)
, .

(66)
(67)

To get a combined standing wave, we set C = C. The
other constants are found from  Egs. (61) (65) by replacmg k
with —k: D——D Al A],Az—Az,Blz—Bl,ande
—B,. As a result, the components of the total displacement in
the solid wall are given by

u, = 2ie” " (ikCe 4% 4 g, De %) sin(kx), (68)
u, =2ie (iqCe 4 + kDe %) cos(kx),  (69)
and those of the total fluid velocity are written as
1000 ——————————— — — — —
£ 100}
E I'I\ ~ -~ ’
E 10} .' ~ ,';' ‘~
c 1 . .' “ '. \ :l \ ! \\‘
el i vy V! i !
w 0.100¢ " \ H " H
3 W n K \ !
c ] [ Y W 1
£ 0.010} ; ; '.
< ' i '
0.001}
20 40 60 80 100

Channel height # (um)

FIG. 3. Attenuation of the acoustic wave in the microfluidic
channel versus channel height for three cases: a fluid layer with a
reflector (solid line), a fluid layer with a free boundary (short-dashed
line), and an infinite inviscid fluid layer (long-dashed line).

It is seen that we really get a standing wave along the x
axis. Although k is a complex number, the attenuation is weak
and therefore practically does not manifest itself within the
dimensions of microfluidic devices.

To facilitate calculations that follow, Egs. (70) and (71) are
represented by

vy = 2ie [iks (z) — qus2(2)] sin(kx), (72)
v, = Qe it [g753(2) + iks4(z)] cos(kx), (73)
where
51(z) = A1e?* 4 Aje 477, 74)
52(z) = Bre?* — Bye 1%, (75)
53(2) = A1e?* — Aje 4%, (76)
54(z) = Bre?* 4 Bye 1%, (77)

Note that the functions s,(z) obey the following identities:

S| =qrs3, Sh=qusa, S5=qrs1, Sy=qus, (78)

where the prime denotes the derivative with respect to z. These
identities will be used in the calculation of acoustic streaming.
C. Acoustic streaming
1. Solutions of the equations of acoustic streaming

The equations of acoustic streaming are given by [18]

V.V =0, (79)
VAV — LVP = ((v- V)v),

(80)
Py

where V and P are the Eulerian velocity and the pressure of
the acoustic streaming and () means time averaging. To satisfy
Eq. (79), we set

V=VxW. (81)
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Substituting Eq. (81) into Eq. (80) and applying the curl
operator, one obtains
AW = —éV x W, (82)
where
W= {((v-V)v). (83)
The geometry of the problem allows one to write
¥ =V(x,z2)e,, (84)
so the velocity components are given by

ow ow
Vi=—— ), V,=—.
0z 0x

Substituting Eq. (84) into Eq. (82) and considering that

(85)

W = W.(x,2)e, + W.(x,2)e, (86)
one obtains
1/0W. IW,
AW = — 1), (87)
v\ dx 0z

where, as follows from Eq. (83),
W 1 Rel v* dvy 4o vy
= —Relv v ,
) Tax % az

W IR *sz+ L0V,
= —Rejv. v, — ¢,
) T ox 2 9z

(88)

with the asterisks denoting the complex conjugates.

Substituting Eqs. (72) and (73) into Eq. (88) and then
into Eq. (87) after cumbersome but straightforward rearrange-
ments, one obtains

1
AW = —Relk; sin(kpx)[i (IkI* + k3 )s155 — iqrq;s3s3
v : :
+ 2kq;‘s§S4] + k? sin(2ik1x)[i(|k|2 — kff)slsjf
+iqrqysyss — 2kq;s3sal}, (89)
where kp = Re{k} and k; = Im{k}. Equation (89) suggests
that W should be sought in the following form:
1
= ;Re{kg[Fl (z) sin(2kgx) + F>(z) sin(2ik;x)1}.  (90)

Substitution of Eq. (90) into Eq. (89) yields equations for
F) and F>,
d’F,

d*F, 5 4
o Sk 16K

= i(|k|2 + kff)slsj{ —iqrq;sys3 + 2kq;syss, (91)
d*F, k2d2F2
dz* "dz?

= i(kP* — K3)s185 + iqrqlsiss — 2kq}syss. (92)

+8 + 16k} F5

Analysis of Eqgs. (91) and (92) reveals that particular
solutions for these equations can be written as

fn(@) = fuis155 + fu28553 + fu3sy54 + fuasasy,  (93)

PHYSICAL REVIEW E 96, 013101 (2017)

where n = 1,2 and f,,,’s are constants. The constants are
calculated by substituting Eq. (93) into Eqgs. (91) and (92)
and using Eqgs. (78). The resulting expressions are provided in
Appendix B.

The general solution of a nonhomogeneous differential
equation is known to be a sum of its particular solution and
solutions for the homogeneous equation corresponding to the
equation being considered, i.e., solutions for the same equation
with a zero right side. According to this rule, the general
solutions of Egs. (91) and (92) are given by

Fi(2) = fi(2) + (c11 + c122)e™ % + (c13 + craz)e” 2,
94
F(2) = f2(2) + (ca1 + €02)e®™ + (c23 + cuz)e 1%,
95)
where c,;,’s are constants to be determined by boundary
conditions.

By using Eq. (85), one obtains the velocity components of
the streaming,

Vx

—%Re{kﬁ[F{(z) sin(2kgx) + F3(2) sin(2ik;x)]}, (96)

V, = %Re{kﬁ[kR Fi(z) cos(kgx) + ik; F>(z) cos(2ik1x)]}.
C0)

Expressions for the derivatives F, are given in Appendix C.

The constants ¢, in Egs. (94) and (95) are calculated by
the boundary conditions for V, and V. at the reflector and
at the solid wall. However, the boundary conditions should
be applied to the Lagrangian streaming velocity, which is the
sum of the Eulerian streaming velocity and the Stokes drift
velocity. Therefore, the Stokes drift velocity is calculated in
the next subsection.

2. Stokes drift velocity
The Stokes drift velocity is calculated by [19]

1
Vg = </ v dt-Vv> = —{((iv-V)v). 98)
w
Substitution of Egs. (72) and (73) into Eq. (98) yields

Vox = éRe{Gl(z)[Sin(Ziklx) — sin(2kgx)]}, 99)

1
Vs, = —Re{Gy(z) cos(Rkgrx) + G3(z) cos(ik;x)}, (100)
w
where

Gi(z) = iklks) +iquss|* + (iqps3 — ksa) (kg rss +iqrss)”,

(101)
_ 2 2 . . *

G2(2) = [(q7 + |kIP)s1 + 2ikrqusa](igpss — ksa)*,  (102)

G3(2) = [(q7 — IkPP)s1 — 2k;qus2)(iqpss — ksa)*.  (103)
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3. Boundary conditions for acoustic streaming

The boundary conditions for the acoustic streaming are given by [16,20]

V+Vs=0 atz=0

Substitution of Egs. (96), (97), (99), and (100) into Eq. (104) yields

2

k2

2 1
—kﬁkRFl(z) 4+ —Gy(z) =0 at z=0 and
v 10)

2i 1
—lkﬁk,Fz(z) 4+ —G3(z) =0 at z=0 and
v 1)

2o
2F(@)+—-Gi(z)=0 at z=0 and
v ®

1
—~F)(z)— —Gi(z)=0 at z=0 and
v w

and z = —h. (104)
7= —h, (105)
z=—h, (106)
7= —h, (107)
7= —h. (108)

These equations allows one to calculate the constants c,,, appearing in Egs. (94) and (95). Equations (105) and (107) give a

system of equations in ¢y,

S i H{(V)

2k 1 kg 1 ci Z’kfo)
1 0 1 0 i — 30ty — S100)
Dhge 24 (1= 2ghye 04 —2kgeeh (1 2kghyee | = G (109)
o~ 2kxh _he~2kxh o2kih _ hekah . UG“”(‘;) !
" ~eitky — J1(=H)
The unknowns cy,, are calculated by

Dy,

Cim = —2, (110)
D,

where D is the determinant of the coefficient matrix of Eq. (109) and Dy, is the determinant of the coefficient matrix in which

the mth column is replaced with the column of the free terms.

A system of equations in ¢y, is given by Eqgs. (106) and (108),

vGi(0) fz/(o)

2ik, 1 —2ik, 1 ca1 .
1 ) 0 ) 1 ) 0 ) c» lzwk%k, - fZ(O)

2ik16721k1h (1 _ 2ik1h)e’2’k’h _ZikleZlk,h (1 + Ziklh)ebk,h X = VG (—h) , . (111)

. : ) , €23 oz — L=l

o—2ikih _he~2ikih o2ikih _helikih ol
@\ = Al
(

The unknowns cy,, are calculated by parameters, the viscous penetration depth is §, = 94 nm, the
D longitudinal wave speed is ¢; = 6630.65 m/s, the transverse
Com = ﬂ7 (112) wave speed is ¢, = 3828.21 m/s, and the dispersion equation
D, Eq. (57) gives the wave number of the leaky surface wave k =

where the meaning of D, and D5, is analogous to that of D,
and D1 me

The calculation of the constants c,,, completes the calcula-
tion of the acoustic streaming, so the aim of our derivation is
achieved.

III. NUMERICAL EXAMPLES

In the present section, the analytical theory developed above
is applied to reveal the structure of the acoustic streaming
by analyzing particular numerical examples. The following
parameters were used: p, = 1000 kg/m?, ¢y =1500m/s,
n =0.001, &£ =0.003Pas, p, = 4640kg/m>, L =68, u =
68GPa, f = w/2mr =36 MHz, and & = 50 um. These val-
ues are typical of microfluidic experiments [21]. For these

62859 + 5.64i m~!, which corresponds to the wave speed ¢ =
w/Re[k] = 3598.45m/s, the wavelength A, = 99.96 um,
and the attenuation coefficient « = Im[k] = 5.64m™~!. The
low attenuation appears to be a result of reflections from the
rigid upper boundary. The radiation angle of the leaky surface
wave, as follows from Snell’s law cos 6 = cy/c, is 6 ~ 65°.

The x dependence of the linear solutions, given by Eqgs. (72)
and (73), is absolutely clear: Both components of the fluid
velocity behave as a sinusoidal standing wave along the x
axis. Hence, there is little point in graphically representing
their x dependences. The behavior of the linear solutions
along the z axis is less explicit. Therefore, it is illustrated
in Fig. 4 where the amplitudes of v, and v, are depicted as
functions of z. Note that the label 1.0 on the vertical axis
in Fig. 4 corresponds to the position of the reflector. The
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(a) Reflector (b) Reflector
1.0 1.0
0.8 0.8
0.6 0.6
< <
= =
N N
\ \
0.4 0.4
0.2 0.2
-0.02 -0.01 0 0.01 0.02 -0.04 -0.02 0 0.02 0.04

Amplitude of v, (m/s) Amplitude of v, (m/s)

FIG. 4. The amplitudes of the components of the linear fluid
velocity as functions of z.

value of C was set equal to 1.25 x 107> m?. At this value,
the magnitude of the vertical displacement of the solid-fluid
interface is about 0.1 nm as in the numerical simulations
performed in Ref. [16]. This choice is somewhat arbitrary
because the vertical displacements of the solid boundary are
difficult to measure experimentally [16]. Figure 4 shows that v,
undergoes strong jumps near the boundaries in order to achieve
the matching with the boundary velocities. The enlarged views
of the boundary regions are shown in Fig. 5. The abrupt change
in v, in these regions is caused by the fact that the bulk fluid mo-
tion along the x axis is in effect nonviscous. Only within very
narrow boundary layers (5, = 0.002k) do viscous effects begin
to act.

Figure 6 shows the contour plot of the Eulerian stream
function ¥(x,z) given by Eq. (90). The streamline pattern
corresponding to Fig. 6 is presented in Fig. 7. As one can see,
two vortex systems are established along the boundaries of the
channel. The vortices are located with a step of Ay, /4 along
the x axis.

a b
(a) 0.010 (b) y Reflector
0.008 0.998
0.006 0.996
= =
~ ~
N N
" 0.004 " 0.994
0.002 1N\ ofmennns 0.992
Solid wall ! |
002 -001 0 0.01 -0.02 -0.01 0

Amplitude of v, (m/s) Amplitude of v, (m/s)

FIG. 5. Behavior of the linear fluid velocity within the boundary
layer (a) at the solid wall and (b) at the reflector.
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FIG. 6. Contour plot of the Eulerian stream function W (x,z) given
by Eq. (90).

Figure 8 illustrates the dependence of the streaming pattern
on the channel height /. Although & changes in a rather wide
range from 10 to 200 um, qualitatively, the streaming behavior
remains the same. Two rows of vortices persist along the
boundaries of the channel. However, their form changes with
changing h. At higher &, the vortices become more pressed
against the boundaries. The absence of lines in the middle part
of the plots in the left panel of Fig. 8 means that the value of
W(x,z) is very small there. The right panel in Fig. 8 shows
that the streamlined patterns become more sophisticated with
increasing h.

IV. CONCLUSION

A theory has been developed for the modeling of acoustic
streaming in a microfluidic channel confined between an
elastic solid wall and a rigid reflector. The theory assumes
that the acoustic streaming is generated by a standing wave
that is created by two counterpropagating leaky surface waves
induced in the solid wall as is the case in microfluidic
devices. A dispersion equation was derived that allows one
to calculate the speed of leaky surface waves in the case
under consideration. Analytical solutions were obtained for

/V’-"\ ('”‘N
D
- SR 9
V04l ///}“\\(/;;‘\;‘3@%
0.2} 7/(:) \@J @ Q

X / Ao

FIG. 7. Streamlines in the case shown in Fig. 6. Two systems of
vortices are established along the boundaries of the channel.
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stream function W(x,z). Right panel:

FIG. 8. Streaming behavior at different values
Streamline patterns.

of the channel height /. Left panel: Contour plots of
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all the processes involved: wave propagation in the solid,
linear acoustic waves in the fluid, and the time-averaged fluid
flow. Particular numerical examples were considered to reveal
the structure of the acoustic streaming. It was found that two
systems of vortices were established along the boundaries of
the microchannel.
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APPENDIX A: COEFFICIENT MATRIX OF EQ. (43)

ike=arh ikedrh —gpe it goe®" 0 0
qfe’qfh —qfeqfh ke~ " ike?" 0 0
ik ik —qy qv —wk iwg,
= qr —qr ik ik —iwg —wk
2inkq s —2inkqy —n(k2 + qf) —n(k2 + qf) 2ipkq ,u(k2 + q,z)
2nk* —iwpy  2nk* —iwpy 2inkq, —2inkq, —/VL(k2 + qtz) 2i ukg;

APPENDIX B: EXPRESSIONS FOR f,,

The constants f,, and f5,, (m = 1-4), which appear in Eq.

i(|k|2 + k;)ml +igrqim;

(91), are calculated by
igrqymy + i(lkl2 + k?)mg

= ) = 3 Bl

11 - 12 o —s B1)

2kqim; 2kqimy
fu=—"—">, fu=-—7F——>, (B2)

m3 — my m3y — my

i(|k|2 — k%)nl —iqrqyn; igrqyng — i(lkl2 — k?)nz
Jfa = > s o= R , (B3)
ny —n; ny—n;
2kqns 2kqing
f23=_ 2 t 2 24=ﬁ7 (B4)
n3y —ny n3 —nj
where
mi=qf+4q," +647q, +8kp(2%kz — 7 — 477), m2=445q;(q7 + a7 — 4kg), (BS)
m3 = qy +q7" +6q,q," + 8k (2kz — a; — 4)F).  ma =4q.q;(q; + 4" — 4kz). (B6)
ni=q}+4q," +6q7q," +8k;(2k; +qF +a)).  n2=4qq;(qF + a7 + 4k7), (B7)
ny =qy +q;" +6q7q," + 8k (2k] + g7 + a7*).  na=4q.q; (g, + g, + 4k7). (B8)
APPENDIX C: DERIVATIVES OF F,

F(2) = f1(2) + [2kgenr + cio(l + 2kgz)]e*** — [2kgers — cia(1 — 2kgz)]e 242, (C1)
Fy(2) = f5(2) + [2ikicar + en(l + 2ik;2)]e*™* — [2ikjcas — caa(l — 2ik;z)]e 0%, (C2)
@) = (@5 far + 1 fa2)s185 + (G o3 + G5 faa)$285 + (1 fur + G5 fu2)s385 + (G fuz + G faa)sasy. (C3)
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