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Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by
two counterpropagating leaky surface waves
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A theory is developed for the modeling of acoustic streaming in a microfluidic channel confined between an
elastic solid wall and a rigid reflector. A situation is studied where the acoustic streaming is produced by two
leaky surface waves that propagate towards each other in the solid wall and thus form a combined standing wave
in the fluid. Full analytical solutions are found for both the linear acoustic field and the field of the acoustic
streaming. A dispersion equation is derived that allows one to calculate the wave speed in the system under
study. The obtained solutions are used to consider particular numerical examples and to reveal the structure
of the acoustic streaming. It is shown that two systems of vortices are established along the boundaries of the
microfluidic channel.
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I. INTRODUCTION

The phenomenon of acoustic streaming is widely applied in
microfluidic devices for the implementation of such processes
as micromixing of fluids and contactless manipulation of
microparticles suspended in a fluid [1–6]. There is a long-
standing interest in acoustic streaming that arises in the course
of wave propagation between two boundaries. Rayleigh [7]
was the first to theoretically study this problem for the case
of a plane standing wave propagating between two plane
rigid walls. The vortex pattern outside the viscous boundary
layer predicted by his theory is known as Rayleigh streaming.
Later, this problem also was considered by Westervelt [8]
and Nyborg [9,10]. The solutions obtained by Rayleigh,
Westervelt, and Nyborg are valid for channels with a relatively
large distance between the walls in which the boundary
layer thickness is negligible in comparison with the interwall
distance. Hamilton et al. [11] derived an analytical solution for
acoustic streaming generated by a standing wave between two
rigid walls with an arbitrary interwall distance. Their theory
shows that, as the distance between the walls is reduced,
the streaming vortices inside the boundary layer increase in
size relative to the Rayleigh streaming vortices outside the
boundary layer and, for interwall distances less than about
ten times the boundary layer thickness, the Rayleigh vortices
disappear and only the inner vortices exist. Recently, Doinikov
et al. [12] have generalized the approach of Hamilton et al. [11]
to the case of two orthogonal standing waves. They showed
that the acoustic streaming gives rise to rotational fluid motion
in planes parallel to the walls. As a result, fluid particles, when
moving up and down between the walls, are rotating about
axes perpendicular to the walls.

However, the generation of acoustic streaming in microflu-
idic devices is realized under conditions different from those
considered in the above-mentioned papers. To induce acoustic
waves in a microfluidic channel, leaky surface waves are used,
which are excited in a solid substrate and emit into the fluid
layer through the vibrations of the solid-fluid interface [13].
The speed of the leaky surface waves and hence that of
acoustic waves induced in the fluid are different from the
normal speed of sound in the fluid and are determined by a

dispersion equation. The dispersion equation for a half-infinite
inviscid fluid layer can be found, for example, in the book by
Viktorov [14] and that for a finite viscous layer with a free
boundary was derived by Qi [15]. A dispersion equation for a
microfluidic channel with a reflector is derived here. Vanneste
and Bühler [16] obtained linear analytical solutions and then
performed a numerical modeling of acoustic streaming for the
case of one leaky surface wave and a fluid layer with a free
boundary.

In the present paper, we consider a fluid layer confined
between an elastic solid wall and a rigid reflector. We derive
solutions for leaky surface waves in the solid wall, a dispersion
equation for the speed of these waves, and linear solutions for
acoustic waves in the fluid. We then solve the equations of
acoustic streaming assuming that this latter is produced by
a standing wave that is generated by two counterpropagating
leaky surface waves as is the case in microfluidic devices. All
the solutions are analytical and valid for the entire section of
the fluid channel without splitting it into the bulk part and
viscous boundary layers. No restrictions are imposed on the
value of the fluid viscosity.

II. THEORY

A. Problem formulation

Let us assume that a fluid layer is confined between an
elastic solid wall and a rigid reflector (see Fig. 1). We will
first consider a plane harmonic surface wave that is excited in
the solid wall and propagates in the positive direction of the x

axis, the z axis being directed perpendicular to the fluid-solid
interface into the depth of the solid wall. The results obtained
for this wave will then be applied to two counterpropagating
waves in order to get a combined standing wave. We assume
that the solid wall occupies the half-space z > 0 and the fluid
layer occupies the space 0 > z > −h.

B. Linear solutions

1. Waves in the fluid

If the fluid is treated as compressible and vis-
cous, the linearized equations of the fluid motion are
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FIG. 1. A fluid layer of height h is located between an elastic
solid wall and a rigid reflector. A surface acoustic wave is excited in
the solid wall and propagates along the x axis.

given by [17]

ρf

∂v

∂t
= −∇p + η �v + (ξ + η/3)∇(∇ · v), (1)

∂ρ

∂t
+ ρf ∇ · v = 0, (2)

p = c2
f ρ, (3)

where Eqs. (1)–(3) are the Navier-Stokes equation, the conti-
nuity equation, and the equation of state, respectively, ρf is the
fluid density at rest, v is the fluid velocity, p is the perturbed
fluid pressure, η is the shear viscosity, ξ is the bulk viscosity,
ρ is the perturbed fluid density, and cf is the speed of sound.

Let us set the time dependence as exp(−iωt) and represent
v as

v = ∇ϕf + ∇ × ψf , (4)

where ϕf and ψf are the scalar and the vector potentials.
Substituting Eq. (4) into Eqs. (1)–(3) after some manipulations,
one obtains

�ϕf + k2
f ϕf = 0, (5)

�ψf + k2
vψf = 0, (6)

p = i

ω
ρf c2

f k2
f ϕf , (7)

where

kf = ω

cf

[
1 − iω

ρf c2
f

(
ξ + 4

3
η

)]−1/2

, (8)

kv = 1 + i

δv

, δv =
√

2ν

ω
, ν = η

ρf

. (9)

Recall that δv is known as the viscous penetration depth and
ν is the kinematic viscosity.

The geometry of the problem (Fig. 1) suggests that ϕf and
ψf can be represented as

ϕf = ϕf (x,z,t) = F (z)ei(kx−ωt), (10)

ψf = eyψf (x,z,t) = eyG(z)ei(kx−ωt), (11)

where ey is the unit vector along the y axis and k is the wave
number to be found. Substitution of Eqs. (10) and (11) into

Eqs. (5) and (6) gives the following equations for F (z) and
G(z):

d2F

dz2
− q2

f F = 0,
d2G

dz2
− q2

vG = 0, (12)

where

q2
f = k2 − k2

f , q2
v = k2 − k2

v . (13)

Solutions to Eq. (12) are expressed in terms of the functions
exp(±qf z) and exp(±qvz) where the first exponential function
gives two independent solutions for F (z) and the second
function gives two independent solutions for G(z). It follows
that ϕf and ψf can be written as

ϕf = (A1e
qf z + A2e

−qf z)ei(kx−ωt), (14)

ψf = (B1e
qvz + B2e

−qvz)ei(kx−ωt), (15)

where A1,2 and B1,2 are constants to be determined by
boundary conditions.

It follows from Eqs. (4), (10), and (11) that the components
of v are calculated by

vx = ∂ϕf

∂x
− ∂ψf

∂z
, vz = ∂ϕf

∂z
+ ∂ψf

∂x
. (16)

Substitution of Eqs. (14) and (15) into Eq. (16) yields

vx = ei(kx−ωt)[ik(A1e
qf z + A2e

−qf z)

− qv(B1e
qvz − B2e

−qvz)], (17)

vz = ei(kx−ωt)[qf (A1e
qf z − A2e

−qf z)

+ ik(B1e
qvz + B2e

−qvz)]. (18)

2. Waves in the solid

The motion of the solid wall is governed by [14]

ρs

∂2u
∂t2

= μ�u + (λ + μ)∇(∇ · u), (19)

where u is the displacement vector, ρs is the wall density, and
μ and λ are the Lamé coefficients. By representing u as

u = ∇ϕs + ∇ × ψ s , (20)

and substituting it into Eq. (19), one obtains

�ϕs + k2
l ϕs = 0, (21)

�ψ s + k2
t ψ s = 0, (22)

where kl and kt are the wave numbers of the longitudinal and
transverse waves, respectively, given by

kl = ω

√
ρs

λ + 2μ
, kt = ω

√
ρs

μ
. (23)

Solutions for Eqs. (21) and (22) are found in the same way
as those for Eqs. (5) and (6). Since the waves must decay
into the depth of the solid wall (in the positive direction of z),

013101-2



ACOUSTIC STREAMING IN A MICROFLUIDIC CHANNEL . . . PHYSICAL REVIEW E 96, 013101 (2017)

we obtain

ϕs = Ce−qlzei(kx−ωt), (24)

ψ s = eyψs, ψs = De−qt zei(kx−ωt), (25)

where

q2
l = k2 − k2

l , q2
t = k2 − k2

t , (26)

and C and D are constants to be determined by boundary
conditions.

The components of u are calculated by

ux = ∂ϕs

∂x
− ∂ψs

∂z
, uz = ∂ϕs

∂z
+ ∂ψs

∂x
. (27)

Substitution of Eqs. (24) and (25) into Eqs. (27) yields

ux = ei(kx−ωt)(ikCe−qlz + qtDe−qt z), (28)

uz = iei(kx−ωt)(iqlCe−qlz + kDe−qt z). (29)

3. Boundary conditions for linear solutions

The boundary conditions at the reflector, which is treated
as a rigid wall, are given by

vx = vz = 0 at z = −h. (30)

The boundary conditions at the fluid-solid interface where
the continuity of velocities and stresses is assumed are written
as

vx = −iωux at z = 0, (31)

vz = −iωuz at z = 0, (32)

σxz = τxz at z = 0, (33)

σzz = τzz at z = 0, (34)

where σxz and σzz are the components of the stress tensor
in the fluid and τxz and τzz are the components of the stress
tensor in the solid. They are defined by [14,17]

σxz = η

(
∂vx

∂z
+ ∂vz

∂x

)
, (35)

σzz = −p + 2η
∂vz

∂z
+ (ξ − 2η/3)∇ · v, (36)

τxz = μ

(
2

∂2ϕs

∂x∂z
+ ∂2ψs

∂x2
− ∂2ψs

∂z2

)
, (37)

τzz = λ

(
∂2ϕs

∂x2
+ ∂2ϕs

∂z2

)
+ 2μ

(
∂2ϕs

∂z2
+ ∂2ψs

∂x∂z

)
. (38)

Substituting Eqs. (7), (17), (18), (24), and (25) into
Eqs. (35)–(38), one obtains

σxz = ei(kx−ωt)η
[
2ikqf (A1e

qf z − A2e
−qf z)

− (
k2 + q2

v

)
(B1e

qvz + B2e
−qvz)

]
, (39)

σzz = ei(kx−ωt)[(2ηk2 − iωρf )(A1e
qf z + A2e

−qf z)

+ 2iηkqv(B1e
qvz − B2e

−qvz)], (40)

τxz = −ei(kx−ωt)μ
[
2ikqlCe−qlz + (

k2 + q2
t

)
De−qt z

]
,(41)

τzz = ei(kx−ωt)μ
[(

k2 + q2
t

)
Ce−qlz − 2ikqtDe−qt z

]
. (42)

4. Dispersion equation

Substitution of Eqs. (17), (18), (28), (29), and (39)–(42)
into Eqs. (30)–(34) yields a system of six algebraic equations
in the unknowns A1,2, B1,2, C, and D,

an1A1 + an2A2 + an3B1 + an4B2 + an5C + an6D = 0,

n = 1,2, . . . ,6. (43)

The coefficients of Eq. (43) are given in Appendix A.
The system of Eq. (43) has nontrivial solutions only if its

determinant is equal to 0. This condition gives an equation for
calculating k,

{
2ηωkqf [(α1 − 1)γ1 − iα2γ3] − ηω

(
k2 + q2

v

)
[iα3γ1 + (1 + α4)γ3] + 2iμkql

}
×{2ηωkqv[iα3γ2 + (1 + α4)γ4] − ω(2iηk2 + ωρf )[i(1 + α1)γ2 + α2γ4] + 2iμkqt }
− {

2ηωkqf [i(1 + α1)γ2 + α2γ4] − ηω
(
k2 + q2

v

)
[α3γ2 − i(1 + α4)γ4] + μ

(
k2 + q2

t

)}
× {

ω(2iηk2 + ωρf )[(1 + α1)γ1 − iα2γ3] + 2ηωkqv[α3γ1 + i(1 − α4)γ3] − μ
(
k2 + q2

t

)} = 0. (44)

The functions appearing in Eq. (44) are calculated as
follows:

α1 = qf qv + k2

qf qv − k2
e−2qf h, (45)

α2 = 2ikqv

qf qv − k2
e−(qf +qv )h, (46)

α3 = − 2ikqf

qf qv − k2
e−(qf +qv )h, (47)

α4 = qf qv + k2

qf qv − k2
e−2qvh, (48)

γ1 = qlqvβ2 − k2β4

k2β1β4 + qf qvβ2β3
, (49)

γ2 = k(qvβ2 − qtβ4)

k2β1β4 + qf qvβ2β3
, (50)

γ3 = k(qlβ1 + qf β3)

k2β1β4 + qf qvβ2β3
, (51)
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γ4 = k2β1 + qtqf β3

k2β1β4 + qf qvβ2β3
, (52)

β1 = qf qv − k2 + (qf qv + k2)e−2qf h − 2qf qve
−(qf +qv )h

qf qv − k2
,

(53)

β2 = k2 − qf qv − 2k2e−(qf +qv )h + (qf qv + k2)e−2qvh

qf qv − k2
,

(54)

β3 = qf qv − k2 − (qf qv + k2)e−2qf h + 2k2e−(qf +qv )h

qf qv − k2
,

(55)

β4 = qf qv − k2 − 2qf qve
−(qf +qv )h + (qf qv + k2)e−2qvh

qf qv − k2
.

(56)

In the case of low viscosity, we can keep only terms of first
order in δv . As a result, Eq. (44) reduces to

(
k2 + q2

t

)2 − 4k2qlqt − ρf qlk
4
t

ρsτ
cot(hτ ) + g(k) = 0, (57)

where τ =
√

k2
f − k2, kf = ω/cf , and the function g(k), which allows for viscous effects, is calculated by

g(k) = (1 + i)k2
(
k2 + q2

t

)
δv

2τ 2

{
k2
t ρf

ρs

[
τ cot(hτ ) + 2qle

2ihτ

1 − e2ihτ

]
− iτ

(
k2 + q2

t

)}

− (1 + i)k2qlδv

τ 2

{
k2
t ρf

ρs

[
qtτ cot(hτ ) + 2k2e2ihτ

1 − e2ihτ

]
− 2ik2τqt

}

+ (1 − i)δv

2τ 2

{
ik2

t ρf

ρs

[k2 cot(hτ ) − τqt ] + k2
(
k2 + q2

t

)}[
qlk

2
t ρf

ρs

cot(hτ ) + τ
(
k2 + q2

t

)]

− (1 − i)k2δv

2τ 2

{
ik2

t ρf

ρs

[ql cot(hτ ) − τ ] + 2k2ql

}[
k2
t ρf

ρs

cot(hτ ) + 2τqt

]
. (58)

The wave number of a leaky surface wave should be a
complex number, which provides the formation of a wave
departing from the boundary into the fluid [14]. For an inviscid
fluid layer, theoretically, such solutions exist if the fluid layer
is of infinite thickness. The dispersion equation for this case is
given by Viktorov [14],

(
k2 + q2

t

)2 − 4k2qlqt + iρf qlk
4
t

ρsτ
= 0. (59)

Note that for h → ∞, cot(hτ ) → −i, and at η = 0, Eq. (57)
turns into Eq. (59).

Qi [15] considered the case of a finite viscous fluid layer
with a free surface. He derived a dispersion equation up to
viscous corrections of first order,

(
k2 + q2

t

)2 − 4k2qlqt + ρf k4
t ql

ρsτ
tan(hτ ) − (1 + i)

√
ων√

2ct τ

× tan(hτ )

[
k2

kt

[(
k2 + q2

t

)2 − 4k2qlqt

]
+ 2ρf

ρs

k2kt

(
k2 + q2

t − 2qlqt

)

+
(

ρf

ρs

)2

k3
t (k2 − qlqt )

]
+ (1 + i)ρf k3

t qt

√
ων√

2ρsct

= 0.

(60)

It is instructive to compare the predictions of Eq. (57)
with those of Eqs. (59) and (60). The comparison is
presented in Figs. 2 and 3. The following parameters

were used: ρf = 1000 kg/m3, cf = 1500 m/s, η = 0.001,
ξ = 0.003 Pa s, ρs = 4640 kg/m3, λ = 68, μ = 68 GPa, and
f = ω/2π = 36 MHz. These parameters correspond to water
(fluid layer) and lithium niobate (solid wall). Figure 2 shows
the speed of the acoustic wave in the microfluidic channel
c = ω/Re[k] as a function of the channel height h, and Fig. 3
shows the attenuation coefficient α = Im[k] as a function of
h. The solid lines depict the results calculated by Eq. (57),
the long-dashed lines are provided by Eq. (59), and the
short-dashed lines correspond to Eq. (60). The breaks in the
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FIG. 2. Speed of the acoustic wave in the microfluidic channel
versus channel height for three cases: a fluid layer with a reflector
(solid line), a fluid layer with a free boundary (short-dashed line), and
an infinite inviscid fluid layer (long-dashed line).
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solid and short-dashed curves are caused by singularities in
cot(hτ ) and tan(hτ ). As one can see from Figs. 2 and 3, the case
of a fluid layer with a reflector differs greatly from the other two
cases.

5. Calculation of constants

The system of Eq. (43) also allows one to express A1,2,
B1,2, C, and D in terms of one of these quantities. Choosing
C as such a quantity, one obtains

A1 = ω(iγ1C + γ2D), (61)

A2 = ω[(iα1γ1 + α2γ3)C + (α1γ2 − iα2γ4)D], (62)

B1 = ω(γ3C − iγ4D), (63)

B2 = ω[(iα3γ1 + α4γ3)C + (α3γ2 − iα4γ4)D], (64)

D = ηω
{(

k2 + q2
v

)
[iα3γ1 + (1 + α4)γ3] + 2kqf [(1 − α1)γ1 + iα2γ3]

} − 2iμkql

ηω
{
2kqf [i(1 + α1)γ2 + α2γ4] − (

k2 + q2
v

)
[α3γ2 − i(1 + α4)γ4]

} + μ
(
k2 + q2

t

)C. (65)

6. Standing wave

Let a second leaky wave propagate in the negative direction
of the x axis. The potential functions that describe this process
can be represented as

ϕ̂f = (Â1e
qf z + Â2e

−qf z)ei(−kx−ωt),

ψ̂f = (B̂1e
qvz + B̂2e

−qvz)ei(−kx−ωt), (66)

ϕ̂s = Ĉe−qlzei(−kx−ωt), ψ̂s = D̂e−qt zei(−kx−ωt). (67)

To get a combined standing wave, we set Ĉ = C. The
other constants are found from Eqs. (61)–(65) by replacing k

with −k: D̂ = −D, Â1 = A1, Â2 = A2, B̂1 = −B1, and B̂2 =
−B2. As a result, the components of the total displacement in
the solid wall are given by

ux = 2ie−iωt (ikCe−qlz + qtDe−qt z) sin(kx), (68)

uz = 2ie−iωt (iqlCe−qlz + kDe−qt z) cos(kx), (69)

and those of the total fluid velocity are written as
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FIG. 3. Attenuation of the acoustic wave in the microfluidic
channel versus channel height for three cases: a fluid layer with a
reflector (solid line), a fluid layer with a free boundary (short-dashed
line), and an infinite inviscid fluid layer (long-dashed line).

vx = 2ie−iωt [ik(A1e
qf z + A2e

−qf z)

− qv(B1e
qvz − B2e

−qvz)] sin(kx), (70)

vz = 2e−iωt [qf (A1e
qf z − A2e

−qf z)

+ ik(B1e
qvz + B2e

−qvz)] cos(kx). (71)

It is seen that we really get a standing wave along the x

axis. Although k is a complex number, the attenuation is weak
and therefore practically does not manifest itself within the
dimensions of microfluidic devices.

To facilitate calculations that follow, Eqs. (70) and (71) are
represented by

vx = 2ie−iωt [iks1(z) − qvs2(z)] sin(kx), (72)

vz = 2e−iωt [qf s3(z) + iks4(z)] cos(kx), (73)

where

s1(z) = A1e
qf z + A2e

−qf z, (74)

s2(z) = B1e
qvz − B2e

−qvz, (75)

s3(z) = A1e
qf z − A2e

−qf z, (76)

s4(z) = B1e
qvz + B2e

−qvz. (77)

Note that the functions sn(z) obey the following identities:

s ′
1 = qf s3, s ′

2 = qvs4, s ′
3 = qf s1, s ′

4 = qvs2, (78)

where the prime denotes the derivative with respect to z. These
identities will be used in the calculation of acoustic streaming.

C. Acoustic streaming

1. Solutions of the equations of acoustic streaming

The equations of acoustic streaming are given by [18]

∇ · V = 0, (79)

ν�V − 1

ρf

∇P = 〈(v · ∇)v〉, (80)

where V and P are the Eulerian velocity and the pressure of
the acoustic streaming and 〈〉 means time averaging. To satisfy
Eq. (79), we set

V = ∇ × �. (81)
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Substituting Eq. (81) into Eq. (80) and applying the curl
operator, one obtains

�2� = −1

ν
∇ × W, (82)

where

W = 〈(v · ∇)v〉. (83)

The geometry of the problem allows one to write

� = �(x,z)ey, (84)

so the velocity components are given by

Vx = −∂�

∂z
, Vz = ∂�

∂x
. (85)

Substituting Eq. (84) into Eq. (82) and considering that

W = Wx(x,z)ex + Wz(x,z)ez, (86)

one obtains

�2� = 1

ν

(
∂Wz

∂x
− ∂Wx

∂z

)
, (87)

where, as follows from Eq. (83),

Wx = 1

2
Re

{
v∗

x

∂vx

∂x
+ v∗

z

∂vx

∂z

}
,

(88)
Wz = 1

2
Re

{
v∗

x

∂vz

∂x
+ v∗

z

∂vz

∂z

}
,

with the asterisks denoting the complex conjugates.
Substituting Eqs. (72) and (73) into Eq. (88) and then

into Eq. (87) after cumbersome but straightforward rearrange-
ments, one obtains

�2� = 1

ν
Re

{
k2
v sin(2kRx)

[
i
(|k|2 + k2

f

)
s1s

∗
4 − iqf q∗

v s∗
2 s3

+ 2kq∗
v s∗

2 s4
] + k2

v sin(2ikI x)
[
i
(|k|2 − k2

f

)
s1s

∗
4

+ iqf q∗
v s∗

2 s3 − 2kq∗
v s∗

2 s4
]}

, (89)

where kR = Re{k} and kI = Im{k}. Equation (89) suggests
that � should be sought in the following form:

� = 1

ν
Re

{
k2
v[F1(z) sin(2kRx) + F2(z) sin(2ikI x)]

}
. (90)

Substitution of Eq. (90) into Eq. (89) yields equations for
F1 and F2,

d4F1

dz4
− 8k2

R

d2F1

dz2
+ 16k4

RF1

= i
(|k|2 + k2

f

)
s1s

∗
4 − iqf q∗

v s∗
2 s3 + 2kq∗

v s∗
2 s4, (91)

d4F2

dz4
+ 8k2

I

d2F2

dz2
+ 16k4

I F2

= i
(|k|2 − k2

f

)
s1s

∗
4 + iqf q∗

v s∗
2 s3 − 2kq∗

v s∗
2 s4. (92)

Analysis of Eqs. (91) and (92) reveals that particular
solutions for these equations can be written as

fn(z) = fn1s1s
∗
4 + fn2s

∗
2 s3 + fn3s

∗
2 s4 + fn4s2s

∗
4 , (93)

where n = 1,2 and fnm’s are constants. The constants are
calculated by substituting Eq. (93) into Eqs. (91) and (92)
and using Eqs. (78). The resulting expressions are provided in
Appendix B.

The general solution of a nonhomogeneous differential
equation is known to be a sum of its particular solution and
solutions for the homogeneous equation corresponding to the
equation being considered, i.e., solutions for the same equation
with a zero right side. According to this rule, the general
solutions of Eqs. (91) and (92) are given by

F1(z) = f1(z) + (c11 + c12z)e2kRz + (c13 + c14z)e−2kRz,

(94)

F2(z) = f2(z) + (c21 + c22z)e2ikI z + (c23 + c24z)e−2ikI z,

(95)

where cnm’s are constants to be determined by boundary
conditions.

By using Eq. (85), one obtains the velocity components of
the streaming,

Vx = −1

ν
Re

{
k2
v[F ′

1(z) sin(2kRx) + F ′
2(z) sin(2ikI x)]

}
, (96)

Vz = 2

ν
Re

{
k2
v[kRF1(z) cos(2kRx) + ikIF2(z) cos(2ikI x)]

}
.

(97)

Expressions for the derivatives F ′
n are given in Appendix C.

The constants cnm in Eqs. (94) and (95) are calculated by
the boundary conditions for Vx and Vz at the reflector and
at the solid wall. However, the boundary conditions should
be applied to the Lagrangian streaming velocity, which is the
sum of the Eulerian streaming velocity and the Stokes drift
velocity. Therefore, the Stokes drift velocity is calculated in
the next subsection.

2. Stokes drift velocity

The Stokes drift velocity is calculated by [19]

V S =
〈∫

v dt·∇v

〉
= 1

ω
〈(iv·∇)v〉. (98)

Substitution of Eqs. (72) and (73) into Eq. (98) yields

VSx = 1

ω
Re{G1(z)[sin(2ikI x) − sin(2kRx)]}, (99)

VSz = 1

ω
Re{G2(z) cos(2kRx) + G3(z) cos(2ikI x)}, (100)

where

G1(z) = ik|ks1 + iqvs2|2 + (iqf s3 − ks4)
(
kqf s3 + iq2

v s4
)∗

,

(101)

G2(z) = [(
q2

f + |k|2)s1 + 2ikRqvs2
]
(iqf s3 − ks4)∗, (102)

G3(z) = [(
q2

f − |k|2)s1 − 2kI qvs2
]
(iqf s3 − ks4)∗. (103)
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3. Boundary conditions for acoustic streaming

The boundary conditions for the acoustic streaming are given by [16,20]

V + V S = 0 at z = 0 and z = −h. (104)

Substitution of Eqs. (96), (97), (99), and (100) into Eq. (104) yields

k2
v

ν
F ′

1(z) + 1

ω
G1(z) = 0 at z = 0 and z = −h, (105)

k2
v

ν
F ′

2(z) − 1

ω
G1(z) = 0 at z = 0 and z = −h, (106)

2

ν
k2
vkRF1(z) + 1

ω
G2(z) = 0 at z = 0 and z = −h, (107)

2i

ν
k2
vkIF2(z) + 1

ω
G3(z) = 0 at z = 0 and z = −h. (108)

These equations allows one to calculate the constants cnm appearing in Eqs. (94) and (95). Equations (105) and (107) give a
system of equations in c1m,

⎛
⎜⎜⎝

2kR 1 −2kR 1
1 0 1 0

2kRe−2kRh (1 − 2kRh)e−2kRh −2kRe2kRh (1 + 2kRh)e2kRh

e−2kRh −he−2kRh e2kRh −he2kRh

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎝

c11

c12

c13

c14

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

− νG1(0)
ωk2

v
− f ′

1(0)

− νG2(0)
2ωk2

vkR
− f1(0)

− νG1(−h)
ωk2

v
− f ′

1(−h)

− νG2(−h)
2ωk2

vkR
− f1(−h)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (109)

The unknowns c1m are calculated by

c1m = D1m

D1
, (110)

where D1 is the determinant of the coefficient matrix of Eq. (109) and D1m is the determinant of the coefficient matrix in which
the mth column is replaced with the column of the free terms.

A system of equations in c2m is given by Eqs. (106) and (108),

⎛
⎜⎜⎝

2ikI 1 −2ikI 1
1 0 1 0

2ikI e
−2ikI h (1 − 2ikI h)e−2ikI h −2ikI e

2ikI h (1 + 2ikIh)e2ikI h

e−2ikI h −he−2ikI h e2ikI h −he2ikI h

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎝

c21

c22

c23

c24

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

νG1(0)
ωk2

v
− f ′

2(0)

iνG3(0)
2ωk2

vkI
− f2(0)

νG1(−h)
ωk2

v
− f ′

2(−h)

iνG3(−h)
2ωk2

vkI
− f2(−h)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (111)

The unknowns c2m are calculated by

c2m = D2m

D2
, (112)

where the meaning of D2 and D2m is analogous to that of D1

and D1m.
The calculation of the constants cnm completes the calcula-

tion of the acoustic streaming, so the aim of our derivation is
achieved.

III. NUMERICAL EXAMPLES

In the present section, the analytical theory developed above
is applied to reveal the structure of the acoustic streaming
by analyzing particular numerical examples. The following
parameters were used: ρf = 1000 kg/m3, cf = 1500 m/s,
η = 0.001, ξ = 0.003 Pa s, ρs = 4640 kg/m3, λ = 68, μ =
68 GPa, f = ω/2π = 36 MHz, and h = 50 μm. These val-
ues are typical of microfluidic experiments [21]. For these

parameters, the viscous penetration depth is δv = 94 nm, the
longitudinal wave speed is cl = 6630.65 m/s, the transverse
wave speed is ct = 3828.21 m/s, and the dispersion equation
Eq. (57) gives the wave number of the leaky surface wave k =
62859 + 5.64i m−1, which corresponds to the wave speed c =
ω/Re[k] = 3598.45 m/s, the wavelength λsw = 99.96 μm,
and the attenuation coefficient α = Im[k] = 5.64 m−1. The
low attenuation appears to be a result of reflections from the
rigid upper boundary. The radiation angle of the leaky surface
wave, as follows from Snell’s law cos θ = cf /c, is θ ≈ 65◦.

The x dependence of the linear solutions, given by Eqs. (72)
and (73), is absolutely clear: Both components of the fluid
velocity behave as a sinusoidal standing wave along the x

axis. Hence, there is little point in graphically representing
their x dependences. The behavior of the linear solutions
along the z axis is less explicit. Therefore, it is illustrated
in Fig. 4 where the amplitudes of vx and vz are depicted as
functions of z. Note that the label 1.0 on the vertical axis
in Fig. 4 corresponds to the position of the reflector. The
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FIG. 4. The amplitudes of the components of the linear fluid
velocity as functions of z.

value of C was set equal to 1.25 × 10−15 m2. At this value,
the magnitude of the vertical displacement of the solid-fluid
interface is about 0.1 nm as in the numerical simulations
performed in Ref. [16]. This choice is somewhat arbitrary
because the vertical displacements of the solid boundary are
difficult to measure experimentally [16]. Figure 4 shows that vx

undergoes strong jumps near the boundaries in order to achieve
the matching with the boundary velocities. The enlarged views
of the boundary regions are shown in Fig. 5. The abrupt change
in vx in these regions is caused by the fact that the bulk fluid mo-
tion along the x axis is in effect nonviscous. Only within very
narrow boundary layers (δv ≈ 0.002h) do viscous effects begin
to act.

Figure 6 shows the contour plot of the Eulerian stream
function �(x,z) given by Eq. (90). The streamline pattern
corresponding to Fig. 6 is presented in Fig. 7. As one can see,
two vortex systems are established along the boundaries of the
channel. The vortices are located with a step of λsw/4 along
the x axis.

-
/z
h

Amplitude of (m/s)vx

Solid wall

(a)

-
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h
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1

0-0.02 -0.01 -0.01-0.02

δv /h

δv /h

FIG. 5. Behavior of the linear fluid velocity within the boundary
layer (a) at the solid wall and (b) at the reflector.
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0.0
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0.4

0.6

0.8

1.0

-
/z
h

x / λsw

FIG. 6. Contour plot of the Eulerian stream function �(x,z) given
by Eq. (90).

Figure 8 illustrates the dependence of the streaming pattern
on the channel height h. Although h changes in a rather wide
range from 10 to 200 µm, qualitatively, the streaming behavior
remains the same. Two rows of vortices persist along the
boundaries of the channel. However, their form changes with
changing h. At higher h, the vortices become more pressed
against the boundaries. The absence of lines in the middle part
of the plots in the left panel of Fig. 8 means that the value of
�(x,z) is very small there. The right panel in Fig. 8 shows
that the streamlined patterns become more sophisticated with
increasing h.

IV. CONCLUSION

A theory has been developed for the modeling of acoustic
streaming in a microfluidic channel confined between an
elastic solid wall and a rigid reflector. The theory assumes
that the acoustic streaming is generated by a standing wave
that is created by two counterpropagating leaky surface waves
induced in the solid wall as is the case in microfluidic
devices. A dispersion equation was derived that allows one
to calculate the speed of leaky surface waves in the case
under consideration. Analytical solutions were obtained for

-
/z
h

x / λsw
-0.4 -0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7. Streamlines in the case shown in Fig. 6. Two systems of
vortices are established along the boundaries of the channel.
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all the processes involved: wave propagation in the solid,
linear acoustic waves in the fluid, and the time-averaged fluid
flow. Particular numerical examples were considered to reveal
the structure of the acoustic streaming. It was found that two
systems of vortices were established along the boundaries of
the microchannel.
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APPENDIX A: COEFFICIENT MATRIX OF EQ. (43)

anm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ike−qf h ikeqf h −qve
−qvh qve

qvh 0 0

qf e−qf h −qf eqf h ike−qvh ikeqvh 0 0

ik ik −qv qv −ωk iωqt

qf −qf ik ik −iωql −ωk

2iηkqf −2iηkqf −η
(
k2 + q2

v

) −η
(
k2 + q2

v

)
2iμkql μ

(
k2 + q2

t

)
2ηk2 − iωρf 2ηk2 − iωρf 2iηkqv −2iηkqv −μ

(
k2 + q2

t

)
2iμkqt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

APPENDIX B: EXPRESSIONS FOR fnm

The constants f1m and f2m (m = 1–4), which appear in Eq. (91), are calculated by

f11 = i
(|k|2 + k2

f

)
m1 + iqf q∗

v m2

m2
1 − m2

2

, f12 = − iqf q∗
v m1 + i

(|k|2 + k2
f

)
m2

m2
1 − m2

2

, (B1)

f13 = 2kq∗
v m3

m2
3 − m2

4

, f14 = − 2kq∗
v m4

m2
3 − m2

4

, (B2)

f21 = i
(|k|2 − k2

f

)
n1 − iqf q∗

v n2

n2
1 − n2

2

, f22 = iqf q∗
v n1 − i

(|k|2 − k2
f

)
n2

n2
1 − n2

2

, (B3)

f23 = − 2kq∗
v n3

n2
3 − n2

4

, f24 = 2kq∗
v n4

n2
3 − n2

4

, (B4)

where

m1 = q4
f + q4∗

v + 6q2
f q2∗

v + 8k2
R

(
2k2

R − q2
f − q2∗

v

)
, m2 = 4qf q∗

v

(
q2

f + q2∗
v − 4k2

R

)
, (B5)

m3 = q4
v + q4∗

v + 6q2
v q

2∗
v + 8k2

R

(
2k2

R − q2
v − q2∗

v

)
, m4 = 4qvq

∗
v

(
q2

v + q2∗
v − 4k2

R

)
, (B6)

n1 = q4
f + q4∗

v + 6q2
f q2∗

v + 8k2
I

(
2k2

I + q2
f + q2∗

v

)
, n2 = 4qf q∗

v

(
q2

f + q2∗
v + 4k2

I

)
, (B7)

n3 = q4
v + q4∗

v + 6q2
v q

2∗
v + 8k2

I

(
2k2

I + q2
v + q2∗

v

)
, n4 = 4qvq

∗
v

(
q2

v + q2∗
v + 4k2

I

)
. (B8)

APPENDIX C: DERIVATIVES OF Fn

F ′
n(z) = f ′

n(z) + [2kRc11 + c12(1 + 2kRz)]e2kRz − [2kRc13 − c14(1 − 2kRz)]e−2kRz, (C1)

F ′
2(z) = f ′

2(z) + [2ikI c21 + c22(1 + 2ikI z)]e2ikI z − [2ikI c23 − c24(1 − 2ikI z)]e−2ikI z, (C2)

f ′
n(z) = (q∗

v fn1 + qf fn2)s1s
∗
2 + (qvfn3 + q∗

v fn4)s2s
∗
2 + (qf fn1 + q∗

v fn2)s3s
∗
4 + (q∗

v fn3 + qvfn4)s4s
∗
4 . (C3)
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