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a b s t r a c t

The present study is motivated by cavitation phenomena that occur in the stems of trees.

The internal pressure in tree conduits can drop down to significant negative values. This drop

gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the

present study is to determine the parameters of the bubble natural oscillations. To this end,

a theory is developed that describes the pulsation of a spherical bubble located at the center

of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium

inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liq-

uid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical

solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the

incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave

propagating in the solid. A dispersion equation for the calculation of complex wavenumbers

of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equa-

tion are found. Numerical simulations are performed to reveal the effect of different physical

parameters on the resonance frequency and the attenuation coefficient of the bubble oscilla-

tions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Most theoretical studies on bubble dynamics consider bubbles in an unbounded liquid or near a plane infinite wall. These

studies are very numerous and have a long-standing history. Reviews of results obtained can be found in Refs. [1–8]. There

are also studies that consider the bubble motion between two plane infinite walls [9] and between tubular walls such as those

of blood vessels [10,11]. Theoretical consideration of cavitation phenomena that occur in fully confined liquids, i.e. in liquids

surrounded by solid walls in all directions, has received less attention. Such situations, however, occur quite often in nature and

technology. Examples are provided by applications in manifold areas such as geology [12,13], processes in porous media [14–16],

tensiometer measurements [17], biology [18–21], etc. It should be also pointed out that this problem is of considerable academic

interest because it reveals that the resonance behavior of oscillating bubbles becomes qualitatively different in a confined space.

An interesting example of bubble dynamics in a confined space is provided by cavitation phenomena inside the stems of trees

[18,20]. These phenomena have an important effect on tree physiology. Hydrodynamic cavitation is typically triggered by high

liquid velocities, which, for example, are generated by propellers, resulting in a transient pressure drop according to Bernoulli’s

law. In trees, water flows are very slow but strong evaporative stresses make the internal pressure inside tree conduits drop

down to significant negative values [22–24]. This effect gives rise to a sudden nucleation of microbubbles, which undergo natural
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oscillations and produce acoustic emissions, mainly in the ultrasonic range [18].

Recently, an experimental technology has been developed that allows one to create spherical liquid-filled microcavities

embedded in a stiff polymer hydrogel [16,25]. In such a microcavity, a high negative pressure can be generated by evaporation of

liquid from the gel. As a result, the liquid in the cavity experiences a stretched, metastable state. At pressures of about −20 MPa,

spontaneous cavitation arises, which relaxes the tension in the cavity. Using this technology, Vincent et al. [16,17,26] have

performed experiments for bubbles under the conditions of full confinement. These experiments demonstrated an order-of-

magnitude increase in the frequency of bubble oscillations and a very strong damping of the oscillations in comparison with the

case of similar bubbles in an unbounded liquid.

Several theoretical approaches have been proposed for the modeling of bubble dynamics in a fully confined liquid [17,26–29].

Vincent et al. [17,26] have proposed a quasi-static model, based on semi-qualitative considerations, that allows one to evaluate

the equilibrium radius reached by the growing bubble and the frequency of the bubble oscillation. This model does not consider

wave processes in the liquid and in the solid. Vincent and Marmottant [27] and Wang [28] have derived Rayleigh-Plesset-

like equations for the finite-amplitude oscillation of a bubble in a liquid confined in an elastic solid. Both derivations use an

approximation that introduces a combined compressibility of the liquid and the solid, assuming that the pressure in the cavity

varies in time but is uniform in space. Both approaches do not consider wave processes in the solid. Drysdale et al. [29] have

developed a theory that describes the linear oscillation of a bubble in a liquid-filled cavity surrounded by an elastic solid. Their

theory takes into account the propagation of acoustic waves in the liquid and in the solid and allows one to calculate the natural

frequency and the attenuation coefficient of the bubble. The model of Drysdale et al. [29] assumes that the bubble interior is

vacuum and ignores surface tension. Therefore, this model cannot be applied to gas bubbles. For the same reason, this model

does not allow recovering results obtained for bubbles in an unbounded liquid, such as the Minnaert formula for the bubble

natural frequency [30], when the radius of the cavity tends to infinity.

The purpose of the present study is to generalize the model of Drysdale et al. [29] and thus to bring theory closer to real

conditions, as well as to remove the problem with the transition from the case of a confined liquid to the case of an unbounded

liquid. To this end, we consider important physical effects that have been neglected in the above-mentioned model, namely, the

presence of a gas-vapor mixture inside the bubble and viscous damping in the solid medium.

In the situation under study, cavitation bubbles nucleate very fast and therefore they in fact contain vacuum initially. Then,

however, they are quickly filled with ballistic water molecules and water vapor. Eventually, depending on their size, the bubbles

are filled with air that diffuses from the surrounding liquid where it is dissolved [3]. It is of importance to understand the impact

of the gas content on the dynamics of cavitation bubbles in tree conduits.

Another effect that we incorporate in the model is viscous attenuation of acoustic waves in the solid environment. Indeed,

real solids are viscoelastic and experimental measurements show that the viscosity of wood is much higher than that of water

[31]. Therefore, it is important to reveal the effect of the viscoelastic behavior of wood on the dynamics of cavitation bubbles in

tree conduits. Analysis of this effect is also important for other cases of interest, such as microbubbles in soft biological tissues,

where viscosity rather than elasticity is a dominant factor.

2. Theoretical model

To simplify the problem and to make it amenable to analytical consideration, we use spherical geometry and approximate

the tree conduit as a spherical cavity. We consider a spherical bubble located at the center of a spherical cavity, as shown in

Fig. 1. We assume that the cavity is filled with a compressible viscous liquid, the medium surrounding the cavity is a viscoelastic

solid of the Kelvin-Voigt type, and the medium inside the bubble is a gas-vapor mixture. It is assumed that the bubble undergoes

free oscillations in response to a small random perturbation.

2.1. Bubble

We assume that the pressure of the gas-vapor mixture within the bubble obeys the adiabatic law,

pb =
(

Pg + Pv

)(Rb

R

)3𝛾

, (1)

where pb is the time-varying pressure within the bubble, Pg and Pv are the equilibrium pressures of the gas and the vapor,

respectively, R is the time-varying bubble radius, Rb is the bubble radius at rest, and 𝛾 is the specific heat ratio.

In response to a small initial perturbation, a bubble is known to react as a harmonic oscillator. Therefore, we assume that the

bubble oscillation is linear and its time dependence is exp(−i𝜔t), where𝜔 is the angular frequency of the free bubble oscillations.

Then R can be represented as

R = Rb

(
1 + ae−i𝜔t

)
. (2)

Substituting Eq. (2) into Eq. (1) and linearizing the latter, one obtains

pb ≈
(

Pg + Pv

) (
1 − 3𝛾ae−i𝜔t

)
(3)

This equation will be used in the boundary conditions below.
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Fig. 1. Geometry of the system under study. A spherical gas bubble is located at the center of a spherical liquid-filled cavity confined in a viscoelastic solid. Three acoustic

waves arise in the system: an outgoing wave in the liquid that is generated by the bubble pulsation, an incoming wave in the liquid that is caused by reflection from the

liquid-solid interface, and an outgoing wave in the solid that propagates from the liquid-solid interface to infinity.

2.2. Liquid

The linearized equations of motion of a viscous compressible liquid are given by Ref. [32].

𝜌0
𝜕𝐯
𝜕t

= −𝛁p + 𝜂∇2𝐯 +
(
𝜁 + 1

3
𝜂
)
𝛁(𝛁 · 𝐯), (4)

𝜕𝜌

𝜕t
+ 𝜌0𝛁 · 𝐯 = 0, (5)

p = c2𝜌, (6)

where v is the liquid velocity, p is the perturbed liquid pressure, 𝜂 is the shear viscosity, 𝜁 is the bulk viscosity, 𝜌 is the perturbed

liquid density, 𝜌0 is the liquid density at rest, and c is the speed of sound, which is assumed to be a constant. Eqs. (4)–(6) are the

compressible Navier-Stokes equation, the continuity equation, and the equation of state, respectively.

In view of spherical symmetry, the liquid motion is irrotational and hence we can set

𝐯 = 𝛁𝜑, (7)

where 𝜑 is the scalar velocity potential. Substitution of Eq. (7) into Eqs. (4)–(6) results in the Helmholtz equation,

∇2𝜑 + k2𝜑 = 0, (8)

where the wavenumber k is defined as

k = 𝜔

c

[
1 − i𝜔

𝜌0c2

(
𝜁 + 4

3
𝜂
)]− 1

2

. (9)

A spherically symmetrical solution to Eq. (8) is given by

𝜑 = A

r
ei(kr−𝜔t) + B

r
e−i(kr+𝜔t), (10)

where A and B are constants to be determined by boundary conditions. Eq. (10) describes an outgoing wave produced by the

bubble pulsation and an incoming wave that is caused by reflection from the liquid-solid boundary; see Fig. 1. As follows from

Eq. (10), the liquid velocity has only the radial component, which is calculated by

v = 𝜕𝜑

𝜕r
= A

(
ik

r
− 1

r2

)
ei(kr−𝜔t) − B

(
ik

r
+ 1

r2

)
e−i(kr+𝜔t). (11)

To satisfy the boundary conditions, we also need an expression for the normal stress in the liquid. It is given by Ref. [32].

𝜎rr = −p + 2𝜂
𝜕v

𝜕r
+
(
𝜁 − 2

3
𝜂
)
𝛁 · 𝐯. (12)
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The perturbed liquid pressure p is calculated from Eqs. (5), (6) and (8) as

p = i𝜌0c2k2

𝜔
𝜑. (13)

Substituting Eqs. (11) and (13) into Eq. (12) and using Eq. (9), one obtains

𝜎rr = −A

(
i𝜌0𝜔

r
+ 4i𝜂k

r2
− 4𝜂

r3

)
ei(kr−𝜔t) − B

(
i𝜌0𝜔

r
− 4i𝜂k

r2
− 4𝜂

r3

)
e−i(kr+𝜔t). (14)

2.3. Solid

We assume that the medium that surrounds the liquid cavity behaves as a viscoelastic material of the Kelvin-Voigt type. The

motion of such a material is governed by the following equation [33]:

𝜌s
𝜕2𝐮
𝜕t2

= 𝜇∇2𝐮 + (𝜆 + 𝜇)𝛁(𝛁 · 𝐮) + 𝜂s∇2 𝜕𝐮
𝜕t

+
(
𝜁s +

1

3
𝜂s

)
𝛁
(
𝛁 · 𝜕𝐮

𝜕t

)
, (15)

where u is the displacement vector, 𝜌s is the density of the solid, 𝜆 and 𝜇 are the Lamé coefficients, 𝜁 s is the bulk viscosity, and

𝜂s is the shear viscosity. The spherical symmetry allows one to set

𝐮 = 𝛁𝜑s, (16)

where 𝜑s is the scalar potential of the displacement. Substitution of this equation into Eq. (15) yields

∇2𝜑s + k2
s
𝜑s = 0, (17)

where the wavenumber ks is calculated by

ks =
𝜔

cl

[
1 − i𝜔

𝜌sc2
l

(
𝜁s +

4

3
𝜂s

)]− 1
2

(18)

and cl denotes the longitudinal wave speed, defined by

cl =

√
𝜆 + 2𝜇

𝜌s

, (19)

A solution to Eq. (17) is written as

𝜑s =
C

r
ei(ksr−𝜔t), (20)

where C is a constant to be determined. Eq. (20) describes an outgoing wave that propagates from the liquid-solid interface to

infinity. The radial component of u is calculated by

u = C

(
iks

r
− 1

r2

)
ei(ksr−𝜔t). (21)

Finally, the normal stress in a Kelvin-Voigt material is defined by Ref. [33].

𝜏rr = 𝜆𝛁 · 𝐮 + 2𝜇
𝜕u

𝜕r
+ 2𝜂s

𝜕2u

𝜕r𝜕t
+
(
𝜁s +

2

3
𝜂s

)
𝛁 · 𝜕𝐮

𝜕t
. (22)

Substitution of Eq. (21) into Eq. (22) yields

𝜏rr = C

[
4(𝜇 − i𝜔𝜂s)

(
1

r3
− iks

r2

)
−
(
𝜆 + 2𝜇 − i𝜔𝜁s −

4i

3
𝜔𝜂s

)
k2

s

r

]
ei(ksr−𝜔t). (23)

2.4. Boundary conditions

The boundary conditions assume the continuity of velocity and normal stress at the bubble surface and at the liquid-solid

interface. These requirements are expressed as follows:

v = dR

dt
= −i𝜔aRbe−i𝜔t at r = Rb, (24)

pb = P0 + pst − 𝜎rr at r = Rb, (25)

v = 𝜕u

𝜕t
at r = Rc, (26)
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𝜎rr = 𝜏rr at r = Rc, (27)

where P0 is the hydrostatic pressure, Rc is the equilibrium radius of the cavity, and pst is the pressure of surface tension, which

is given by

pst =
2𝜎

R
≈ 2𝜎

Rb

(
1 − ae−i𝜔t

)
, (28)

with 𝜎 denoting the surface tension coefficient.

Eq. (24) allows one to calculate a. Substitution of Eq. (11) into Eq. (24) yields

a = i

𝜔R3
b

[
A(ikRb − 1)eikRb − B(ikRb + 1)e−ikRb

]
. (29)

Substituting Eqs. (3), (11), (14), (21), (23), (28) and (29) into Eqs. (25)–(27), one obtains

Pg + Pv = P0 +
2𝜎

Rb

(30)

and a system of three algebraic equations in the unknowns A, B, and C,⎛⎜⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎝
A

B

C

⎞⎟⎟⎟⎠ = 0. (31)

The matrix elements anm are calculated by

a11 =

[
1 +

(
2𝜉2

b
+

i𝜔2
b

𝜔2

)
(i + kRb)

]
eikRb a12 =

[
1 +

(
2𝜉2

b
+

i𝜔2
b

𝜔2

)
(i − kRb)

]
e−ikRb

a13 = 0

a21 = (ikRc − 1)eikRc a22 = −(ikRc + 1)e−ikRc a23 = i𝜔(iksRc − 1)eiksRc

a31 = [1 + 2𝜉2
c (i + kRc)]eikRc a32 = [1 + 2𝜉2

c (i − kRc)]e−ikRc

a33 = i𝜌s𝜔

𝜌0

[
1 + 2(iksRc − 1)

(
2

k2
t
R2

c

− i𝜉2
s

)]
eiksRc , (32)

where

𝜔b = 1

Rb

√
3𝛾P0

𝜌0

+ 2(3𝛾 − 1)𝜎
𝜌0Rb

, (33)

𝜉b = 𝛿

Rb

, 𝜉c =
𝛿

Rc

, 𝛿 =

√
2𝜂

𝜌0𝜔
, (34)

kt =
𝜔

ct

, ct =
√

𝜇

𝜌s

, 𝜉s =
𝛿s

Rc

, 𝛿s =

√
2𝜂s

𝜌s𝜔
. (35)

Here, 𝜔b is the resonance frequency of the bubble in an unbounded perfect liquid [30], 𝛿 is the viscous penetration depth in the

liquid [32], ct is the transverse wave speed in the solid [33], and 𝛿s is the viscous penetration depth in the solid. Note that in

most cases of interest, 𝜉b, c, s ≪ 1.

2.5. Dispersion equation

The system of Eq. (31) has a nontrivial solution only if its determinant is equal to zero. This condition provides an equation

for calculating 𝜔,{[
4 − 2i𝜉2

s

(
ktRc

)2] (
1 − iksRc

)
−
(

ktRc

)2} ×

{
1 +

(
2i𝜉2

b
−
𝜔2

b

𝜔2

)(
1 + k2RbRc

)
− kRc cot(kRc − kRb)

[
1 +

(
2i𝜉2

b
−
𝜔2

b

𝜔2

)(
1 − Rb

Rc

)]}
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+ 𝜌0

𝜌s

(
ktRc

)2 (
1 − iksRc

){
1 + 2i𝜉2

c +

(
2i𝜉2

b
−
𝜔2

b

𝜔2

)[
1 + 2i𝜉2

c

(
1 + k2RbRc

)]
− kRc cot(kRc − kRb)

[
2i𝜉2

c
+

(
2i𝜉2

b
−
𝜔2

b

𝜔2

)(
2i𝜉2

c

(
1 − Rb

Rc

)
− Rb

Rc

)]}
= 0. (36)

Recall that k, ks and kt , as well as 𝜉b, 𝜉c and 𝜉s, are functions of 𝜔. In the general case, 𝜔 is a complex number whose real part is

the resonance frequency and the imaginary part is the attenuation coefficient. Approximate analytical solutions to Eq. (36) are

derived in Section 2.6 and exact numerical solutions are considered in Section 3.

It is pertinent to note that in the limit of a rigid solid (𝜌s → ∞) and negligible viscosity (𝜂, 𝜂s → 0), we recover a simpler

dispersion equation derived in Ref. [27]: 1 − kRc cot(kRc − kRb) = 0.

2.6. Approximate solutions of the dispersion equation

In this subsection, we derive approximate analytical solutions to the dispersion Eq. (36), assuming that kRb,c, ks,tRc,

𝜉b,c,s ≪ 1.

2.6.1. 2nd-order approximation

Let us first expand Eq. (36) up to second order in kRb,c and ks,tRc. Correct to leading viscous terms, the result is a quadratic

equation in 𝜔,

𝜔2 + 2i𝛼0𝜔 − 𝜔2
0
= 0, (37)

where

𝜔2
0
= 4𝜇Rb

𝛽𝜌0R2
c (Rc − Rb)

+
𝜔2

b

𝛽

[
Rc

Rc − Rb

+ 4𝜇

3𝜌0c2

(
1 + Rb

Rc

+
R2

b

R2
c

)]
, (38)

𝛽 = 1 + 4𝜇

3𝜌0c2

(
1 − Rb

Rc

)
+ 𝜌sRb

𝜌0(Rc − Rb)
, (39)

𝛼0 = 2𝜇Rb

𝛽𝜌0clRc(Rc − Rb)
+ 2𝜂sRb

𝛽𝜌0R2
c (Rc − Rb)

+ 2𝜂

𝛽𝜌0R2
b

(
1 + 4𝜇

3𝜌0c2

)(
1 + Rb

Rc

+
R2

b

R2
c

)
. (40)

A solution to Eq. (37) is given by

𝜔 = −i𝛼0 +𝜔0

√√√√1 −
𝛼2

0

𝜔2
0

. (41)

The resonance frequency is defined as f r = Re[𝜔]/2𝜋 and the attenuation coefficient is equal to 𝛼0.

Comparison of Eq. (38) with a similar result obtained by Drysdale et al. [29] for a vacuum bubble shows that the presence

of gas inside a bubble leads to a significant difference. Eq. (38) reveals that the resonance frequency of a gas bubble in a solid

confinement is determined by two contributions. The first term in Eq. (38) comes from the elastic properties of the confining

solid medium, while the second term comes from the gas content of the bubble. This term is absent from the result of Drysdale

et al. [29] For Rc → ∞, the first term in Eq. (38) vanishes and the second term reduces to Eq. (33), which gives the resonance

frequency of a bubble in an unbounded liquid [30]. Comparison of the first and the second terms of Eq. (38) allows one to

evaluate when each of them plays a dominant role. Assuming for simplicity that Rb is small compared to Rc and the surface

tension is negligible, one finds that for Rb > Rb, where

Rb = Rc
3

√
3𝛾P0

4𝜇

(
1 + 4𝜇

3𝜌0c2

)
, (42)

the resonance frequency is dominated by the first term. This means that the resonance behavior of the system is governed by the

elastic properties of the confining solid medium rather than the properties of the bubble. On the contrary, bubbles with Rb < Rb

resonate like bubbles in an unbounded liquid. To put it differently, small bubbles do not “feel” the presence of a confining

boundary.

Eq. (40) shows that the attenuation consists of three contributions: radiation damping in the solid (the first term), viscous

damping in the solid (the second term), and viscous damping in the liquid (the third term). Eq. (40) allows one to estimate

the relative contributions of the viscous damping in the liquid and the combined radiation and viscous damping in the solid.

Comparing the terms of this equation, one finds that for Rb/Rc ≪ 1, the viscous damping in the liquid is dominant if

Rb < Rc
3

√
𝜂

𝜂s + 𝜇Rc∕cl

(
1 + 4𝜇

3𝜌0c2

)
. (43)
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To ascertain when the viscous damping in the solid may be dominant, we can compare the first and the second terms in

Eq. (40). The comparison shows that the viscous damping is dominant if 𝜂s > 𝜇Rc/cl. Typical values of these parameters for

biomimetic wood experiments are 𝜇 = 0.74 GPa, Rc = 100 μm and cl = 2111 m/s; see Section 3. This means that the viscous

damping in the solid may be dominant if 𝜂s > 35 Pa s. It is shown in Section 3 that a typical value of 𝜂s for wood is 0.43 Pa s.

This fact suggests that for cavitation in trees, the solid viscosity appears to give only a small correction to the radiation damping.

However there are other cases of interest, such as microbubbles in soft biological tissues. The value of 𝜇 in soft biological tissues

is of the order of a few kPa, while the value of 𝜂s is of the order of 10 Pa s [34]. In this case, the contribution of viscosity to the

damping in the confining medium is decisive; see Section 3.

2.6.2. 3nd-order approximation

Comparison with exact numerical solutions given by Eq. (36) (see Section 3) shows that Eq. (41) provides a satisfactory

approximation for the resonance frequency. However, Eq. (40) fails in predicting the attenuation coefficient at intermediate

values of the ratio Rb/Rc. To improve the approximate equation for the attenuation coefficient, the compressible terms in Eq.

(36) should be kept up to third order in kRb,c and ks,tRc. Doing so, with an accuracy to leading viscous terms, one obtains a cubic

equation in 𝜔,

a1𝜔
3 + a2𝜔

2 + a3𝜔 + a4 = 0, (44)

where

a1 = − iRc

cl

[
1 + 4𝜇

3𝜌0c2

(
1 − Rb

Rc

)]
, (45)

a2 = 1 + 4𝜇

3𝜌0c2

(
1 − Rb

Rc

)
+ 𝜌sRb

𝜌0(Rc − Rb)
+ 4𝜂Rc

𝜌0clR
2
b

(
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)(
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+
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b

R2
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)
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, (46)

a3 = 4i
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)]
+ 4i𝜂sRb

𝜌0R2
c (Rc − Rb)

, (47)

a4 = − 4𝜇Rb

𝜌0R2
c (Rc − Rb)

− 𝜔2
b

[
Rc

Rc − Rb

+ 4𝜇

3𝜌0c2

(
1 + Rb

Rc

+
R2

b

R2
c

)]
. (48)

In the general case, Eq. (44) has three roots. However, calculations show that only one of them has a positive real part, which is

necessary to get a physical value for the resonance frequency. This root is calculated by Cardan’s formulas as follows:

p = a3

a1

−
a2

2

3a2
1

, (49)

q =
2a3

2

27a3
1

− a2a3

3a2
1

+ a4

a1

, (50)

s =
3

√
− q

2
+
√(

p

3

)3

+
(

q

2

)2

, (51)

𝜔 = s − p

3s
− a2

3a1

. (52)

The resonance frequency is calculated as Re[𝜔]/2𝜋 and the attenuation coefficient is equal to −Im[𝜔].

3. Numerical simulations

Simulations were carried out at the following values of the physical parameters: 𝜌0 = 1000 kg/m3, c = 1500 m/s,

𝜂 = 0.001 Pa s, 𝜁 = 0.003 Pa s, 𝜌s = 1233 kg/m3, 𝜆 = 4.01 GPa, 𝜇 = 0.74 GPa, cl = 2111 m/s, ct = 774.7 m/s,

𝜎 = 0.072 N/m and 𝛾 = 1.4. These values were chosen to correspond to cavitation experiments on transparent biomimetic

wood [27]. To estimate the values of 𝜂s and 𝜁 s, we have used the results of Vincent [31]. He measured the attenuation of

acoustic waves in thin layers of synthetic wood (pHEMA hydrogel) and found that the acoustic intensity I demonstrated a

Beer-Lambert type of attenuation. Assuming that the attenuation law is I = I0 exp(−x/l), he obtained that the attenuation length

l = 0.7 mm at 15 MHz in dry synthetic wood. Using this result in Eq. (18) and assuming that 𝜁 s = 3𝜂s as is the case with

water, we have found 𝜂s = 0.43 Pa s and 𝜁 s = 1.29 Pa s.
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Fig. 2. Comparison of exact numerical solutions calculated by Eq. (36) with approximate analytical solutions calculated by Eqs. (41) and (52). (a) The bubble resonance

frequency, (b) the attenuation coefficient of the bubble oscillation and (c) the quality factor of the bubble oscillation are shown as functions of the ratio Rb/Rc . For reference,

the results given by the Minnaert law [30] and the theory of Drysdale et al. [29] for a vacuum bubble are also plotted.

Fig. 2 shows the resonance frequency, f r = Re[𝜔]/2𝜋, the attenuation coefficient, 𝛼 = −Im[𝜔], and the quality factor,

Q = Re[𝜔]/2𝛼, as functions of the ratio Rb/Rc. The plots were obtained at P0 = 101.3 kPa and Rc = 100 μm. The solid lines

depict the numerical results calculated by Eq. (36), the long-dash lines are given by the 2nd-order approximation, Eq. (41), and

the short-dash lines follow from the 3rd-order approximation, Eq. (52). The dash-dot line in Fig. 2(a) shows the resonance fre-

quency given by the Minnaert law, Eq. (33), and the dotted line demonstrates the case that the bubble interior is vacuum [29]. As

one can see, the 2nd-order approximation is quite correct for the resonance frequency but fails for the attenuation coefficient.

The 3rd-order approximation allows one to achieve a good agreement with the exact numerical results for both the resonance

frequency and the attenuation coefficient. Fig. 2(a) shows that at small values of Rb, the resonance frequency follows the Min-

naert law and decreases with increasing Rb . However, with increasing Rb/Rc , the presence of the solid environment begins to

play a dominant role. As a result, the resonance frequency begins to increase with increasing Rb and tends to the value given by

the first term of Eq. (38). Eq. (42) predicts that this change should occur at Rb/Rc ≈ 0.06. As one can see, the exact numerical

solution confirms this prediction. It is also seen that at Rb/Rc < 0.15 the curves for a gas bubble and for a vacuum bubble begin

to disagree. In this range of bubble radii, the resonance frequency of a gas bubble increases with decreasing Rb, whereas that of a

vacuum bubble decreases and eventually ceases to exist because of viscous overdamping, as follows from the results of Drysdale

et al. [29]. Fig. 2(b) reveals that the attenuation coefficient passes through a minimum at Rb/Rc ≈ 0.08. The quality factor has

correspondingly a maximum; see Fig. 2(c). Note also that for small bubbles there is a considerable difference between the values
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of the quality factor for a gas bubble and a vacuum bubble [29].

It should be mentioned that the values of the resonance frequency given by our theory, shown by the solid curve in Fig. 2(a),

are in agreement with the experimental measurements made by Vincent et al. [17,26].

Eqs. (38) and (42) suggest that the presence of the gas inside the bubble, and hence the gas pressure, plays a role only at

relatively small values of Rb . With increasing Rb/Rc , when the resonance frequency begins to tend to the value given by the

first term of Eq. (38), the effect of the gas inside the bubble becomes insignificant. This prediction is corroborated by Fig. 3,

which shows the behavior of the resonance frequency at different values of P0, the other parameters being the same as in Fig. 2.

Note that the curves in Fig. 3, except the dotted one, were calculated by the exact dispersion equation (36). As one can see, a

difference between the curves is observed only when Rb/Rc is smaller than approximately 0.1. At larger values, all the curves

tend to the dotted curve given by the theory of Drysdale et al. [29] for a vacuum bubble. Note also that even at small Rb , a

noticeable difference between the curves appears only if the change of P0 is great enough.

Fig. 4 demonstrates the contributions of the liquid viscosity and the solid viscosity to the attenuation coefficient. The curves

were calculated by Eq. (36), the parameters being the same as in Fig. 2. The comparison of the solid curve, which depicts the

total attenuation coefficient, with the short-dash curve (𝜂s = 0) and the long-dash curve (𝜂 = 0) reveals that the contribution

of the solid viscosity is insignificant, whereas the contribution of the liquid viscosity is very important at small values of Rb . Its

neglect leads to a considerable underestimation of the attenuation coefficient for small bubbles.

Fig. 5 illustrates the dependence of the bubble response on a change in the solid parameters. Fig. 5(a) shows that the res-

onance frequency increases when the shear modulus 𝜇 increases, which is expectable as the rigidity of the system increases.

The dependence of the attenuation coefficient on 𝜇, presented in Fig. 5(b), shows that the damping of the bubble oscillations

has a maximum at a certain value of 𝜇 and its magnitude increases with increasing bubble radius. The behavior of the curves in

Fig. 5(b) can be explained using Eq. (40), which gives the attenuation coefficient in the 2nd-order approximation. As was shown

above, if the bubble radius is not very small, the main contribution to the damping comes from the radiation loss. This means

that the attenuation coefficient is determined by the first term of Eq. (40). Mathematical analysis of this term reveals that it

passes through a maximum when, with varying 𝜇, the compression modulus of the solid, Ks = 𝜌sc2
l

, becomes of the same order

as the compression modulus of the liquid, Kl = 𝜌0c2. Also, as one can see directly, the magnitude of this term increases with

increasing Rb . Thus, the curves in Fig. 5(b) behave in conformity with the predictions of the first term of Eq. (40). Physically, the

Fig. 3. Behavior of the resonance frequency of the bubble oscillations at different values of the hydrostatic pressure P0, the other parameters being the same as in Fig. 2.

Fig. 4. Comparison of the contributions of the liquid viscosity 𝜂 and the solid viscosity 𝜂s to the attenuation coefficient of the bubble oscillations. The parameters are as in

Fig. 2.
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Fig. 5. Dependance of (a) the resonance frequency and (b) the attenuation coefficient on the shear modulus 𝜇 at different values of the bubble radius, the other parameters

being the same as in Fig. 2.

appearance of the maximum in the attenuation is likely to be caused by the fact that at a certain value of 𝜇, a better acoustic

matching between the liquid and the solid is settled so that acoustic energy more easily penetrates through the liquid-solid

interface and then is carried away to infinity. Unfortunately, at present there are no experimental data that could be used to

verify the predictions of Fig. 5(b).

It was shown above (see Fig. 4) that for the physical parameters characteristic of cavitation experiments on transparent

biomimetic wood, the contribution of the solid viscosity 𝜂s to the total damping is insignificant. However there are other cases of

interest, such as microbubbles in soft biological tissues. In this case, we have the following typical parameters: Young’s modulus

E = 10 kPa, Poisson’s ratio 𝜈 = 0.495, 𝜌s = 1000 kg/m3 and 𝜂s = 10 Pa s [34]. Converting these elastic parameters to those

used in our simulations, we obtain 𝜇 = 3.34 kPa, 𝜆 = 331 kPa, ct = 1.83 m/s and cl = 18.38 m/s. The parameters for the

liquid and the gas are kept the same as above. Fig. 6 demonstrates the behavior of the attenuation coefficient which is predicted

by our theory for the case of soft biological tissues. Compare it with Fig. 4. As one can see, when we set 𝜂s = 0 in Fig. 6, a great

Fig. 6. Comparison of the contributions of the liquid viscosity 𝜂 and the solid viscosity 𝜂s to the attenuation coefficient of the bubble oscillations. The physical parameters

of the confining elastic medium correspond to soft biological tissues [34].
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difference from the curve that shows the total attenuation appears, which means that the contribution of 𝜂s cannot be neglected.

On the contrary, when we set 𝜇 = 0, no difference from the curve of the total attenuation is observed, which means that the

contribution of 𝜇 is negligible. Thus, in contrast with the damping in wood, it is the viscosity 𝜂s, not the shear modulus 𝜇, that

governs the damping in soft biological tissues.

4. Conclusions

The present study develops a theory to describe the behavior of a spherical bubble located at the center of a spherical liquid-

filled cavity surrounded by an infinite solid medium. It was assumed that the medium inside the bubble is a gas-vapor mixture,

the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid.

A dispersion equation was derived, whose complex roots allow one to calculate the resonance frequency and the attenuation

coefficient of the bubble natural oscillations. Approximate analytical solutions to the dispersion equation were obtained. It

was found that the second-order approximation, accurate to second order in compressible terms, predicts quite precisely the

resonance frequency but cannot provide correct values for the attenuation coefficient, and hence the quality factor, within the

entire range of bubble radii. It was shown that this problem is solved if the accuracy of approximation is increased to third order

in compressible terms.

Numerical simulations have been performed at physical parameters characteristic of cavitation experiments on transparent

biomimetic wood. It was found that the effect of the gas content inside a bubble on the resonance frequency is insignificant if

the bubble radius is comparable to the radius of the cavity as in this case the resonance properties of the system are determined

by the elastic properties of the confining solid medium. However, if the bubble radius is relatively small compared to the cavity

radius, the gas content plays a key role as in this case the resonance properties of the system are determined by the properties

of the bubble.

The contributions of the liquid and solid viscosities to the attenuation coefficient were analyzed. It was found that these

contributions are determined by the nature of a confining elastic medium. It was shown that for the physical parameters char-

acteristic of cavitation experiments on transparent biomimetic wood, the attenuation is mainly determined by the radiation loss

in the solid, whereas the contribution of the solid viscosity is insignificant and that of the liquid viscosity is important only for

small bubbles. However in the case that a confining elastic medium has the properties of soft biological tissue, the role of the

viscosity of the confining medium becomes dominant.
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